Simulink® 7
Using Simulink

MATLAB
SIMULINK"

‘\The MathWorks™

Accelerating the pace of engineering and science

LN

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Using Simulink®
© COPYRIGHT 1990-2008 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined

in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

November 1990
December 1996
January 1999
November 2000
July 2002

April 2003
April 2004

June 2004
October 2004
March 2005
September 2005
March 2006
March 2006
September 2006
March 2007
September 2007
March 2008

First printing
Second printing
Third printing
Fourth printing
Fifth printing
Online only
Online only
Sixth printing
Seventh printing
Online only
Eighth printing
Online only
Ninth printing
Online only
Online only
Online only
Online only

New for Simulink 1

Revised for Simulink 2

Revised for Simulink 3 (Release 11)
Revised for Simulink 4 (Release 12)
Revised for Simulink 5 (Release 13)
Revised for Simulink 5.1 (Release 13SP1)
Revised for Simulink 5.1.1 (Release 13SP1+)
Revised for Simulink 5.0 (Release 14)
Revised for Simulink 6.1 (Release 14SP1)
Revised for Simulink 6.2 (Release 14SP2)
Revised for Simulink 6.3 (Release 14SP3)
Revised for Simulink 6.4 (Release 2006a)
Revised for Simulink 6.4 (Release 2006a)
Revised for Simulink 6.5 (Release 2006b)
Revised for Simulink 6.6 (Release 2007a)
Revised for Simulink 7.0 (Release 2007b)
Revised for Simulink 7.1 (Release 2008a)

Simulink® Basics

Starting the Simulink® Engine 1-2
OpeningModels 14
Editing an Existing Model 14
Opening Models with Different Character Encodings 1-4
Avoiding Initial Model Open Delay 1-5
Model Editor 1-6
Opening the Simulink® Model or Library 1-6
Editor Components00, 1-7
Undoinga Commandcciiuuninnn.. 1-8
Zooming Block Diagrams 1-9
Panning Block Diagrams 1-9
View Command History 1-10
Bringing the MATLAB® Software Desktop Forward 1-11
Copying Models to Third-Party Applications 1-11
Updating a Block Diagram 1-13
SavingaModel 1-15
About SavingaModel oo, 1-15
Saving Models with Different Character Encodings 1-16
Saving a Model in Earlier Formats 1-17
Opening Models Originally Created in an Older Version of
Simulink® 1-19
Printing a Block Diagram 1-21
About Printing i 1-21
Print DialogBox 1-21
Specifying Paper Size and Orientation 1-23
Positioning and Sizing a Diagram 1-23
Tiled Printing it i 1-24

Print Command 0., 1-28

vi

Contents

Generating a Model Report 1-30

Model Report Optionscoiiiieiiinnnnnnn. 1-31
Summary of Mouse and Keyboard Actions 1-33
Model Viewing Shortcutscc .. 1-33
Block Editing Shortcuts, 1-34
Line Editing Shortcuts 1-35
Signal Label Editing Shortcuts 1-35
Annotation Editing Shortcuts 1-36
Ending a Simulink® Session 1-37

2

Introduction i, 2-2
Modeling Dynamic Systems 2-3
Block Diagram Semanticsccviii.. 2-3
CreatingModels, 2-4
TIMeE oottt e e e e e e 2-5
States .o e e 2-5
Block Parameters i i 2-9
Tunable Parameters, 2-9
Block Sample Timesc0iiiiiiiiinnnnnnn. 2-10
Custom Blocks i 2-10
Systems and Subsystems, 2-11
Signals e 2-12
Block Methodscciiiiiiiiiiiinnn. 2-12
Model Methodscciiiiiiiiiiiiiinnn 2-14
Simulating Dynamic Systems 2-15
Model Compilationt 2-15
Link Phasettt 2-16
Simulation Loop Phase 2-16
SOlVETS i e e 2-18
Zero-Crossing Detection 2-20
Algebraic Loopscciiiiiiii e e 2-31

Modeling and Simulating Discrete Systems 2-40

Multirate and Hybrid Systems 2-40
Specifying Sample Time, .. 2-41
Purely Discrete Systems, 2-44
Multirate Systems i i 2-44
Determining Step Size for Discrete Systems 2-46
Sample Time Propagation 2-47
Propagating Sample Times Back to Source Blocks 2-48
Constant Sample Time i, 2-49
Mixed Continuous and Discrete Systems 2-52

Creating a Model

3

Creating an Empty Model 3-3
Creating a Model Template 3-3
Selecting Objects i, 3-5
Selecting an Object, 3-5
Selecting Multiple Objects 3-5
Specifying Block Diagram Colors 3-7
How to Specify Block Diagram Colors 3-7
Choosing a Custom Color, 3-8
Defining a Custom Coloro i, 3-8
Specifying Colors Programmatically 3-9
Displaying Sample Time Colors 3-10
ConnectingBlocks 3-13
Automatically Connecting Blocks 3-13
Manually Connecting Blocks 3-16
Disconnecting Blocks i ., 3-21

Aligning, Distributing, and Resizing Groups of

Blocks e 3-22
Annotating Diagrams 3-24
How to Annotate Diagrams 3-24

vii

viii

Contents

Annotations Properties DialogBox 3-25

Annotation Callback Functions 3-28
Associating Click Functions with Annotations 3-29
Annotations APT 3-31
Using TeX Formatting Commands in Annotations 3-31
Creating Annotations Programmatically 3-33
Creating Subsystems 3-35
Why Subsystems are Advantageous 3-35
Creating a Subsystem by Adding the Subsystem Block ... 3-36
Creating a Subsystem by Grouping Existing Blocks 3-36
Model Navigation Commandsco.... 3-38
Window Reuse i, 3-38
Labeling Subsystem Ports 3-39
Controlling Access to Subsystems 3-40
Interconverting Subsystems and Block Diagrams 3-41
Emptying Subsystems and Block Diagrams 3-41
Modeling Control Flow Logic 3-42
Equivalent C Language Statements 3-42
Modeling Conditional Control Flow Logic 3-42
Modeling While and For Loops 3-45
Using Callback Functions 3-52
About Callback Functions 3-52
Tracing Callbacksc. i, 3-52
Creating Model Callback Functions 3-53
Creating Block Callback Functions 3-55
Port Callback Parameters 3-59
Using Model Workspaces 3-61
About Model Workspacesciiiinn... 3-61
Changing Model Workspace Data 3-62
Model Workspace DialogBox 3-64
Resolving Symbols 3-69
About Symbol Resolution 3-69
Hierarchical Symbol Resolution 3-70
Specifying Numeric Values with Symbols 3-71
Specifying Other Values with Symbols 3-71
Limiting Signal Resolution 3-72
Explicit and Implicit Resolution 3-72

Programmatic Symbol Resolution 3-73

Working with Data Stores 3-74
About Data Stores, 3-74
Defining Data Stores 3-74
Accessing DataStores 3-76
Data Store Examples i .. 3-77

Consulting the Model Advisor 3-80
About the Model Advisor e, .. 3-80
Starting Model Advisorcciiiiiiinn... 3-80
Model Advisor Windowciiiieiiinnnnnnnn 3-81
Navigating Model Advisor Checks 3-83
Model Advisor Result Explorer 3-90
Model Advisor Reportsciiiiiiiiiiia.. 3-92
Checking Code-Generation Targets 3-94
Model Advisor Democ.coiiiiiiiiinnnnnann 3-94
Running the Model Advisor Programmatically 3-94

Managing Model Versions 3-95
How Simulink® Helps You Manage Model Versions 3-95
Model File Change Notification 3-96
Specifying the Current User 3-97
Model Properties DialogBox 3-99
Creating a Model Change History 3-107
Version Control Properties 3-108

Model Discretizer 3-110
What is the Model Discretizer? 3-110
Requirements i 3-110
How to Discretize a Model from the Model Discretizer

GUIL e 3-111
Viewing the Discretized Model 3-120
How to Discretize Blocks from the Simulink® Model 3-123

How to Discretize a Model from the MATLAB® Command
WiIndow ..ot e 3-134

X

Contents

Creating Conditional Subsystems

q |

About Conditional Subsystems 4-2
Enabled Subsystems 4-4
Creating an Enabled Subsystem 4-5
Blocks an Enabled Subsystem Can Contain 4-7
Using Blocks with Constant Sample Times in Enabled
Subsystems e 4-9
Triggered Subsystems 4-12
Creating a Triggered Subsystem 4-13
Blocks That a Triggered Subsystem Can Contain 4-15
Triggered and Enabled Subsystems 4-16
Creating a Triggered and Enabled Subsystem 4-17
A Sample Triggered and Enabled Subsystem 4-18
Creating Alternately Executing Subsystems 4-18
Function-Call Subsystems 4-21
Conditional Execution Behavior 4-22
Propagating Execution Contexts 4-24
Behavior for Switch Blocks 4-25
Displaying Execution Contexts 4-25
Disabling Conditional Execution Behavior 4-26
Displaying Execution Context Bars 4-26

Referencing a Model

5

Overview of Model Referencing 5-3
About Model Referencing 5-3
Referenced Model Advantages 5-5
Model Referencing Demos 5-6
Model Referencing Resources 5-7

Creating a Model Reference 5-8

Converting a Subsystem to a Referenced Model 5-11
Referenced Model Simulation Modes 5-13
About Referenced Model Simulation Modes 5-13
Specifying the Simulation Mode 5-14
Mixing Simulation Modes 5-14
Accelerating a Freestanding or Top Model 5-15
Simulation Targets 5-16
About Simulation Targets 5-16
Building Simulation Targets 5-17
Simulink® Model Referencing Requirements 5-19
About Model Referencing Requirements 5-19
Name Length Requirement 5-19
Configuration Parameter Requirements 5-19
Model Structure Requirements 5-25
Parameterizing Model References 5-26
Why Parameterize Model References? 5-26
Global Nontunable Parameters 5-26
Global Tunable Parameters 5-27
Model Argumentsc. i e 5-27
Using Model Arguments 5-28
About Model Arguments, 5-28
Creating the MATLAB® Variables 5-29
Registering the Model Arguments 5-30
Assigning Model Argument Values 5-31
Refreshing ModelBlocks 5-34
Examining a Model Reference Hierarchy 5-35
Displaying Version Numbers 5-35
Inheriting Sample Times 5-36
Blocks That Preclude Sample-Time Inheritance 5-37

xi

xii

Contents

Defining Function-CallModels 5-39
About Function-Call Models 5-39
Function-Call Model Demo 5-39
Creating a Function-Call Model 5-39
Referencing a Function-Call Model 5-40
Function-Call Model Requirements 5-41

Simulink® Model Referencing Limitations 5-43
Requirements i 5-43
Limitations on All Model Referencing 5-43
Limitations on Normal Mode Referenced Models 5-46
Limitations on Accelerator Mode Referenced Models 5-47

Working with Blocks

AboutBlocks 6-2
What are Blocks? i 6-2
Block Data Tips .. ovvviiiiii it e et e i 6-2
Virtual Blocks i 6-2

EditingBlocks i 6-4
Copying and Moving Blocks from One Window to

Another e 6-4
Moving BlocksinaModel 6-5
Copying Blocksina Model 6-7
Deleting Blocksttt 6-7

Working with Block Parameters 6-8
About Block Parameters, 6-8
Mathematical Versus Configuration Parameters 6-8
Setting Block Parameters 6-9
Specifying Numeric Parameter Values 6-10
Checking Parameter Values 6-12
Changing the Values of Block Parameters During

Simulation i 6-16
Inlining Parameters0 i, 6-18
Block Properties Dialog Box 6-20
State Properties DialogBox 6-27

Changing a Block’s Appearance 6-28

Changing the Orientation ofaBlock 6-28
ResizingaBlock i 6-29
Displaying Parameters Beneatha Block 6-30
Using Drop Shadowscciiiiiiieennnnn. 6-30
Manipulating Block Names 6-30
Specifying a Block’'s Color, 6-32
Displaying Block Outputs 6-33
Block Output Example, 6-33
Enabling Port Values Display 6-34
Port Values Display Options 6-35
Controlling and Displaying the Sorted Order 6-36
What is Block Sorted Order? 6-36
How Simulink® Determines the Sorted Order 6-36
Displaying the Sorted Order 6-38
Assigning Block Priorities o L. 6-39
Accessing Block Data During Simulation 6-40
About Block Run-Time Objects 6-40
Accessing a Run-Time Object 6-40
Listening for Method Execution Events 6-41
Synchronizing Run-Time Objects and Simulink®
Execution, 6-42

Working with Block Libraries

7

About Block Libraries 7-2
Working with Reference Blocks 7-3
About Reference Blocks 7-3
Creating a Reference Block 7-3
Updating a Reference Block 7-4
Modifying Reference Blocks 7-4
Finding a Reference Block’s Library Block Prototype 7-5
Getting Information About Library Blocks Referenced by a
Model ...t e e e 7-5

xiii

xiv

Contents

Working with Library Links 7-6

Displaying Library Links 7-6
Disabling Links to Library Blocks 7-7
Determining Link Status 7-8
Breaking a Link to a Library Block 7-9
Fixing Unresolved Library Links 7-10
Browsing and Searching Block Libraries 7-12
About the Simulink® Library Browser 7-12
Opening the Library Browser 7-12
Browsing Block Libraries 7-13
Searching Block Libraries, 7-17
Openinga Libraryccciiiiiiinnnninnnen.. 7-19
Creating and Opening Models 7-19
Copying Blocks i 7-19
Creating Block Libraries 7-20
Creating a Library, 7-20
Creating a Sublibrary i, 7-21
Modifying a Libraryccoiiiiiieennnnnnnnn. 7-21
Locking Librariesc.iiiiiiieeninnnnnnn. 7-22
Making Backward-Compatible Changes to Libraries 7-22
Adding Libraries to the Library Browser 7-30
Sample slblocks.mfile 7-30

8|

SignalBasics 8-3
About Signals e e 8-3
Creating Signals, 8-4
Naming Signalsctiiiiiiiiiiinnnnnnn. 8-4
Displaying Signal Values 8-6
Signal Line Styles, 8-7
Signal Labels 8-7
Signal Data Typesccoiiiiiiiiiiiinnnnnnen.. 8-9
Signal Dimensionsciiiiiiiinnnnneee... 8-9
Complex Signalscoiiiiiiiiiiniiinne... 8-12

Virtual Signals, 8-13

Control Signals 0., 8-15
Signal Glossarycciiiiiiiiiiinnnnie.. 8-16
Validating Signal Connections 8-17
Displaying Signal Sources and Destinations 8-18
About Signal Highlighting 8-18
Highlighting Signal Sources 8-18
Highlighting Signal Destinations 8-19
Removing Highlighting 8-19
Signal Highlighting and Library Blocks 8-20
Determining Output Signal Dimensions 8-21
About Signal Dimensionsciiiiiiiea... 8-21
Determining the Output Dimensions of Source Blocks ... 8-21
Determining the Output Dimensions of Nonsource
Blocks ..o e 8-22
Signal and Parameter Dimension Rules 8-22
Scalar Expansion of Inputs and Parameters 8-24
Checking Signal Ranges 8-26
About Signal Range Checking 8-26
Blocks That Allow Signal Range Specification 8-26
Specifying Ranges for Signals 8-27
Checking for Signal Range Errors 8-28
Introducing the Signal and Scope Manager 8-33
What is the Signal & Scope Manager? 8-33
Displaying the Signal and Scope Manager User
Interface i 8-34
Understanding the Signal and Scope Manager User
Interface i 8-34
Using the Signal and Scope Manager 8-39
Introduction 8-39
Attaching a New Viewer or Generator 8-39
Creating a Multiple Axes Viewer 8-40
Adding Additional Signals to an Existing Viewer 8-41
Viewing Test Point Data 8-41
Adding Custom Viewers and Generators 8-42

XV

xvi

Contents

The Signal Selector 8-44

About the Signal Selector 8-44
Port/Axis Selector i 8-45
Model Hierarchyc.0 . 8-46
Inputs/Signals List i, 8-46
Logging Signals i, 8-49
About Signal Logging, 8-49
Signal Logging Limitations 8-50
Enabling Signal Logging 8-50
Specifying a Logging Name 8-51
Limiting the Data Logged for a Signal 8-52
Logging Referenced Model Signals 8-52
Viewing Logged Signal Data 8-53
Accessing Logged Signal Data 8-54
Example: Logging Signal Data in the F14 Model 8-54
Handling Spaces and Newlines in Logged Signal Names .. 8-58
Extracting Partial Data from a Running Simulation 8-61
Initializing Signals and Discrete States 8-62
About Initialization 8-62
Using Block Parameters to Initialize Signals and Discrete
States .. e 8-63
Using Signal Objects to Initialize Signals and Discrete
States .. e 8-63
Using Signal Objects to Tune Initial Values 8-64
Example: Using a Signal Object to Initialize a Subsystem
Output ..o e e e 8-66
Initialization Behavior Summary for Signal Objects 8-67
Working with Test Points 8-70
About Test Points 8-70
Designating a Signal asa Test Point 8-70
Displaying Test Point Indicators 8-71
Displaying Signal Properties 8-73
Port/Signal Displays Menuccciiiiunnnn. 8-73
Port Data Typesovviiii ittt e e i 8-73
Signal Dimensionscouiuiiiiiinnnieee... 8-74
Signal Resolution Indicators 8-75
Wide Nonscalar Linescciiiiinnne... 8-76

Working with Signal Groups 8-77

About the Signal Groupsc ... 8-77
Creating a Signal Group Set 8-77
Signal Builder Dialog Box 8-78
Editing Signal Groupsc.oiiiiiiiiiiiin 8-81
Editing Signals i i 8-81
Editing Waveforms 8-84
Signal Builder Time Range 8-90
Exporting Signal Group Data 8-91
Printing, Exporting, and Copying Waveforms 8-91
Simulating with Signal Groups 8-92
Simulation Options Dialog Box 8-93

Using Composite Signals

About Composite Signals 9-2
Using MUuXescoitiiiitiimnniieeennnnnnnns 9-3
UsingBusesiiiiiiiiiiiiiiinnnnnnn. 9-5
Introduction 9-5
Creating and AccessingaBus 9-6
Nesting Buses, 9-7
Bus-Capable Blocksccoiiiiiiiiiiinnnnnn. 9-8
Circular Bus Definitions 9-8
Using the Bus Editor 9-10
Introduction 9-10
Opening the Bus Editor 9-11
Displaying Bus Objectsciiiiiiiiinnna.. 9-12
Creating Bus Objectsciiiiiiiiine... 9-14
Creating Bus Elements 9-16
Nesting Bus Definitions 9-19
Changing Bus Entities 9-22
Exporting Bus Objects 9-26
Importing Bus Objects 9-27
Closing the Bus Editor 9-28

xXVvii

Using the Bus Object API 9-29

Virtual and Nonvirtual Buses 9-30
Introduction 9-30
Creating Nonvirtual Buses 9-31

Connecting Buses to Nonvirtual Subsystems 9-33
Connecting Buses to Root Level Inports 9-33
Connecting Buses to Nonvirtual Inports 9-33
Connecting Multi-Rate Buses to Referenced Models 9-35

Intermixing Composite Signal Types 9-37
Differences Between Muxes and Buses 9-37
Using Diagnostics for Mixed Composite Signals 9-38
Using the Model Advisor for Mixed Composite Signals ... 9-40
Correcting Buses Usedas Muxes 9-42
Bus to Vector Block Backward Compatibility 9-43
Avoiding Mixed Composite Signals When Developing

Modelsiii e e e e e 9-43

10|

Working with DataTypes 10-2
About Data Typesc.oiiiiiiiii ... 10-2
Data Types Supported by Simulink® 10-3
Fixed-Point Data 10-4
Block Support for Data and Numeric Signal Types 10-6
Creating Signals of a Specific Data Type 10-6
Specifying Block Output Data Types 10-6
Using the Data Type Assistant 10-14
Displaying Port Data Typescc .. 10-24
Data Type Propagation 10-24
Data TypingRules 10-25
Typecasting Signalsc.oiiiiieiinnnnnnn. 10-26

Working with Data Objects 10-27
About Data Object Classesccvvinee.... 10-27
About Data Object Methods 10-28

xviii Contents

Using the Model Explorer to Create Data Objects 10-30

About Object Propertiesc i, 10-32
Changing Object Properties 10-32
Handle Versus Value Classes 10-34
Comparing Data Objects 10-36
Saving and Loading Data Objects 10-36
Using Data Objects in Simulink® Models 10-37
Creating Persistent Data Objects 10-37
Data Object Wizard 10-37
Subclassing Simulink® DataClasses 10-41
About the Data Class Designer 10-41
Creating a Data ObjectClass 10-41
Specifying a ParentforaClass 10-45
Defining Class Properties 10-46
Defining Enumerated Property Types 10-48
Creating Initialization Code 10-51
Creatinga Class Package 10-52
Associating User Data withBlocks 10-55

Working with Lookup Tables

About Lookup Table Blocks 11-2
Anatomy of a Lookup Table 11-5
Lookup Tables Block Library 11-6
Choosing a Lookup Table 11-8
Data Set Dimensionality 11-8
Data Set Numeric and Data Types 11-8
Data Accuracy and Smoothness 11-8
Dynamics of Table Inputs 11-9
Efficiency of Performance 11-9
Summary of Lookup Table Block Features 11-10

Xix

Entering Breakpoints and Table Data 11-11
Entering Data in a Lookup Table Block’s Parameter Dialog

BOX i e e e 11-11
Entering Data in the Lookup Table Editor 11-13
Entering Data Using the Lookup Table Dynamic Block’s

Inports i e 11-15

Characteristics of Lookup Table Data 11-17
Sizes of Breakpoint Data Sets and Table Data 11-17
Monotonicity of Breakpoint Data Sets 11-18
Representing Discontinuities 11-19

Estimating Missing Points 11-21
About Estimating Missing Points 11-21
Interpolation Methods 11-21
Extrapolation Methods 11-22
Rounding Methods 11-23
Example Output i, 11-24

Lookup Table Editor 11-25
About the Lookup Table Editor 11-25
Opening the LUT Editor 11-25
Browsing LUT Blocks, 11-26
Editing Table Values i, 11-28
Displaying N-Dimensional Tables 11-29
Plotting LUT Tablesc.oiiiiiieennnnnnnnn. 11-31
Editing Custom LUT Blocks 11-32

Example of a Logarithm Lookup Table 11-34

Lookup Table Glossarycciiiiininnnn. 11-37

Modeling with Simulink®

12

General Considerations when Building Simulink®
Models ittt 12-2
Avoiding Invalid Loopscciiiiiiie... 12-2

XX Contents

Shadowed Files i, 12-4

Model Building Tipsttt i e i 12-6
Modeling a Continuous System 12-8
Best-Form Mathematical Models 12-11

Series RLC Example i, .. 12-11

Solving Series RLC Using Resistor Voltage 12-12

Solving Series RLC Using Inductor Voltage 12-13
Example: Converting Celsius to Fahrenheit 12-15

Exploring, Searching, and Browsing Models

13

The Model Explorer, 13-2
Introduction to the Model Explorer 13-2
Model Hierarchy Pane o viuu.. 13-4
Contents Pane 13-6
DialogPanettt 13-12
Main Toolbarciiiiiiiiiiiii e 13-14
SearchBar i 13-17
Setting the Model Explorer’s Font Size 13-21

The Finder i, 13-22
AbouttheFinder i, 13-22
Filter Optionscotttii ittt it 13-24
Search Criteriai i, 13-25

The Model Browserciiiiiiiinnnn. 13-28
About the Model Browser 13-28
Navigating with the Mouse 13-30
Navigating with the Keyboard 13-30
Showing Library Links 13-30
Showing Masked Subsystems 13-30

Model Dependenciescciiiiiinnnnnn. 13-31
What Are Model Dependencies? 13-31

xxi

xxii

Dependency Analysis0iiiiiiiiiiinnnnan. 13-32

Best Practices for Dependency Analysis 13-37
Generating Manifests 13-38
Editing Manifests i 13-42
Comparing Manifests, 13-45
Exporting Files in a Manifest 13-48
Using the Model Dependency Viewer 13-49

Running Simulations

14

Contents

Simulation Basics 14-3
Controlling Execution of a Simulation 14-4
Starting a Simulation 0., 14-4
Pausing or Stopping a Simulation 14-6
Using Blocks to Stop or Pause a Simulation 14-6
Interacting with a Running Simulation 14-9
Specifying a Simulation Start and Stop Time 14-10
Choosinga Solver i, 14-11
Whatisa Solver? i 14-11
Choosinga Solver Typecoiiiiiiinininnne... 14-11
Choosing a Fixed-Step Solver 14-13
Choosing a Variable-Step Solver 14-17
Importing and Exporting Simulation Data 14-21
Importing and Exporting Capabilities 14-21
Importing Data from a Workspace 14-21
Exporting Data to the MATLAB® Workspace 14-28
Importing and Exporting States 14-31
Limiting Output i, 14-34
Specifying Output Options 14-34
Configuration Sets 14-37
About Configuration Sets 14-37

Configuration Set Components 14-38

The Active Sett i e 14-38
Displaying Configuration Sets 14-38
Activating a Configuration Set 14-39
Opening Configuration Sets 14-39
Copying, Deleting, and Moving Configuration Sets 14-40
Copying Configuration Set Components 14-41
Creating Configuration Sets 14-41
Setting Values in Configuration Sets 14-42
Configuration Set API oo, 14-42
Model Configuration Dialog 14-45
Model Configuration Preferences Dialog 14-45
Referencing Configuration Sets 14-47
Overview of Configuration References 14-47
Creating a Freestanding Configuration Set 14-50
Creating and Attaching a Configuration Reference 14-52
Obtaining a Configuration Reference Handle 14-56
Attaching a Configuration Reference to Additional
Modelsiii e e e e 14-57
Changing a Configuration Reference 14-58
Activating a Configuration Reference 14-59
Unresolved Configuration References 14-59
Getting Values from a Referenced Configuration Set 14-60
Changing Values in a Referenced Configuration Set 14-60
Replacing a Referenced Configuration Set 14-62
Building Models and Generating Code 14-63
Configuration Reference Limitations 14-63
Diagnosing Simulation Errors 14-65
Response to Run-Time Errors 14-65
Simulation Diagnostics Viewer 14-65
Creating Custom Simulation Error Messages 14-67
Improving Simulation Performance and Accuracy 14-71
About Improving Performance and Accuracy 14-71
Speeding Up the Simulation 14-71
Improving Simulation Accuracy 14-72
Running a Simulation Programmatically 14-74
About Simulating Programmatically 14-74
Using the sim Command 14-74

xxiii

xxiv

Using the set_param Command 14-75

Visualizing Simulation Results

15

Contents

About Scope Blocks, Viewers, Signal Logging, and Test

Points i e e 15-2
What are Scope Blocks, Signal Viewers, Test Points and
Data Logging?ttt 15-2
How Scope Blocks and Signal Viewers Differ 15-3
Why Use Generators and Signal Viewers Instead of Source
and Scope Blocks? i i i 15-4
Methods for Attaching a Generator or Viewer 15-5
Displaying a Scope Viewer 15-6
Things to Know When Using Viewers 15-8
About Viewerscciiiiiiiiiii e 15-8
How the Viewer Determines Trace Color Coding and Line
Styles i e e e 15-8
How Scope Viewer Parameter Settings Can Affect
Performance, 15-9
Changing Viewer Characteristics 15-11
The Scope Viewer Toolbar 15-11
Scope Viewer Parameters Dialog Box 15-12
Scope Viewer Context Menu 15-16
Performing Common Viewer Tasks 15-17
Viewing Scope Viewer Help 15-17
Attaching a Scope Viewer, 15-17
Adding Multiple Signals to a Scope Viewer 15-17
Addingalegend i, 15-18
Zooming In On Graph Regions 15-18
Displaying Multiple Axesciiiiiiiinnnnnn. 15-19

Performing Common Generator Tasks 15-21
Attaching a Generator, 15-21
Removing a Generator 15-21

Analyzing Simulation Results

16

Viewing Output Trajectories 16-2
Using the Scope Block 16-2
Using Return Variablesc.. ... 16-2
Using the To Workspace Block 16-3

LinearizingModels 16-4
About Linearizing Models 16-4
Linearization with Referenced Models 16-6
Linearization Using the 'v5’ Algorithm 16-8

Finding Steady-State Points 16-10

Creating Block Masks

About Masksttt 17-2
What are Masks? ..., 17-2
Mask Features, 17-2
Creating Masksciiiiiiiiiiniinnnnn... 17-5

Masked Subsystem Example 17-6
Introduction to Example 17-6
Creating Mask Dialog Box Prompts 17-8
Creating the Block Description and Help Text 17-10
Creating the Block Icon 17-11

MaskingaBlock i ., 17-14
About Block Masking, 17-14

XXV

xXxXVi

Masking a Subsystem i i, 17-14

Masking a Built-in Block 17-16
Mask Editor i 17-17
Creating a Subsystem Mask 17-17
IconPane 17-20
ParametersPane i 17-24
Control Types ...ttt e 17-30
Initialization Pane 17-33
Documentation Pane, 17-36
Linking Mask Parameters to Block Parameters 17-39
Creating Dynamic Mask Parameter Dialog Boxes 17-40
About Creating Masked Dialog Boxes 17-40
Setting Masked Block Dialog Parameters 17-41
Predefined Masked Dialog Parameters 17-44
Masking Library Blocks 17-47
Why Mask Blocks? i, 17-47
Specifying Default Values for Library Block Mask
Parameters i, 17-47
Creating Self-Modifying Masks for Library Blocks 17-48
Debugging Masks 17-52
About Debugging Masks, 17-52
Debugging Masks Using the Mask Editor 17-52
Debugging Masks Using the MATLAB®
Editor/Debugger 17-52
Simulink® Debugger
Introduction to the Debugger 18-2
Using the Debugger’s Graphical User Interface 18-3
Displaying the Graphical Interface 18-3
Toolbarot e e 18-4

Contents

Breakpoints Pane, 18-6

Simulation Loop Pane 18-7
Outputs Pane 18-8
Sorted List Pane 18-9
Status Pane 18-10
Using the Debugger’s Command-Line Interface 18-11
Controlling the Debugger 18-11
MethodID i e 18-11
Block ID ... e e 18-11
Accessing the MATLAB® Workspace 18-12
Getting OnlineHelp 18-13
Starting the Debugger 18-14
Starting a Simulation 18-15
Running a Simulation Stepby Step 18-19
Introduction 18-19
Block Data Output 18-20
Stepping Commandscittiiiinnnneee... 18-21
Continuing a Simulation 18-22
Running a Simulation Nonstop 18-24
Debug Pointer i 18-25
Setting Breakpoints 18-27
About Breakpoints i i 18-27
Setting Unconditional Breakpoints 18-27
Setting Conditional Breakpoints 18-30
Displaying Information About the Simulation 18-33
Displaying Block I/O 18-33
Displaying Algebraic Loop Information 18-35
Displaying System States 18-36
Displaying Solver Information 18-36
Displaying Information About the Model 18-38
Displaying a Models Sorted Lists 18-38
DisplayingaBlock i 18-39

XxXVii

xxviii

Accelerating Models

19

What Is Acceleration? 19-2
How the Acceleration Modes Work 19-3
OVeIVIEW & ittt ettt et et e 19-3
NormalModeciiiiiiiiiiiiiiiiinnn, 19-3
Accelerator Mode, 19-4
Rapid Accelerator Mode 19-5
Code Regeneration in Accelerated Models 19-7
Structural Changes That Cause Rebuilds 19-7
Determining If the Simulation Will Rebuild 19-7
Choosing a Simulation Mode 19-9
Tradeoffs i 19-9
Comparing Modescoiiiiiiiiinnnnnnnen.. 19-10
Decision Treecciiuiiiiiii i 19-11
Designing Your Model for Effective Acceleration 19-13
Selecting Blocks for Accelerator Mode 19-13
Selecting Blocks for Rapid Accelerator Mode 19-14
Controlling S-Function Execution 19-14
Accelerator and Rapid Accelerator Mode Fixed-Point
Considerationscotiiiiiinnneennnenn. 19-15
Using Scopes and Viewers with Rapid Accelerator Mode .. 19-16
Factors Inhibiting Acceleration 19-16
Performing Acceleration 19-19
Customizing the Build Process 19-19
Running Acceleration Mode from the User Interface 19-20
Making Run-Time Changescccvuiiunu.. 19-21
Improving Acceleration Mode Performance 19-22
Techniquesiiiiiiii ittt e et 19-22
CCompilerscuiiiiiiiiii ittt 19-23
Comparing Performance 19-24
Performance of the Simulation Modes 19-24

Contents

Measuring Performancec .. 19-26

Interacting with the Acceleration Modes

Programmatically 19-28
Why Interact Programmatically? 19-28
Building Accelerator Mode MEX-files 19-28
Controlling Simulation 19-28
Simulating Your Model 19-29
Customizing the Acceleration Build Process 19-30

Using the Accelerator Mode with the Simulink®

Debugger i e 19-31
Advantages of Using Accelerator Mode with the
Debugger i e 19-31
How to Run the Debugger 19-31
When to Switch Back to Normal Mode 19-32
Capturing PerformanceData 19-33
What Is the Profiler? 19-33
How the Profiler Works, 19-33
Enabling the Profiler 19-35
Simulation Profile 19-36

Customizing the Simulink® User Interface

20

Adding Items to Model Editor Menus 20-2
About Adding Items to the Model Editor Menus 20-2
Code Examplecciiiiiiiiiiiiiiiiiinnen.. 20-2
Defining Menu Items 20-4
Registering Menu Customizations 20-9
Callback Info Objectttt 20-10
Debugging Custom Menu Callbacks 20-10
About MenuTagsciiiiiiiii ... 20-10

Disabling and Hiding Model Editor Menu Items 20-13

About Disabling and Hiding Model Editor Menu Items ... 20-13
Example: Disabling the New Model Command on the
Simulink® Editor’s File Menu 20-13

XXix

XXX

Creating a Filter Function 20-13

Registering a Filter Function 20-14
Disabling and Hiding Dialog Box Controls 20-15
About Disabling and Hiding Controls 20-15
Example: Disabling a Button on a Simulink® Dialog
BOX i e e e 20-16
Writing Control Customization Callback Functions 20-17
Dialog Box Methods 20-17
Dialog Box and WidgetIDs 20-18
Registering Control Customization Callback Functions ... 20-19
Registering Customizations 20-21
About Registering User Interface Customizations 20-21
Customization Managercviuiiue.... 20-21

Creating Custom Blocks

21

When to Create Custom Blocks 21-2
Types of Custom Blocks 21-3
MATLAB® Function Blockscccviun... 21-3
Subsystem Blocks 21-4
S-Function Blocks 21-4
Comparison of Custom Block Functionality 21-7
Custom Block Considerations 21-7
Modeling Requirements 21-10
Speed and Code Generation Requirements 21-13
Expanding Custom Block Functionality 21-17
Tutorial: Creating a Custom Block 21-18
How to Design a Custom Block 21-18
Defining Custom Block Behavior 21-20
Deciding on a Custom Block Type 21-21
Placing Custom Blocks in a Library 21-26

Contents

Adding a Graphical User Interface to a Custom Block 21-28

Adding Block Functionality Using Block Callbacks 21-37
Custom Block Examples 21-44
Creating Custom Blocks from Masked Library Blocks 21-44
Creating Custom Blocks from MATLAB® Functions 21-44
Creating Custom Blocks from S-Functions 21-45

Using the Embedded MATLAB™ Function Block

22

Introduction to Embedded MATLAB™ Function

BlocCKS e 22-3
What Is an Embedded MATLAB™ Function Block? 22-3
Why Use Embedded MATLAB™ Function Blocks? 22-5

Creating an Example Embedded MATLAB™

Function 22-7
Adding an Embedded MATLAB™ Function Block to a

Model e e e 22-7
Programming the Embedded MATLAB™ Function 22-9
Checking the Function for Errors 22-14
Defining Inputs and Outputs 22-17

Debugging an Embedded MATLAB™ Function

Block ... e 22-21
How Debugging Affects Simulation Speed 22-21
Enabling and Disabling Debugging 22-21
Debugging the Function in Simulation 22-22
Watching Function Variables During Simulation 22-30
Checking for Data Range Violations 22-33
How Exiting Debug Mode Affects Simulation 22-33
Debugging Toolsttt 22-34
The Embedded MATLAB™ Function Editor 22-36
Customizing the Embedded MATLAB™ Editor 22-36
Embedded MATLAB™ Editor Tools 22-36
Ports and Data Managercciiina.. 22-37

xxxi

Typing Function Arguments 22-61

About Function Arguments 22-61
Specifying Argument Types 22-61
Inheriting Argument Data Types 22-64
Built-In Data Types for Arguments 22-66
Specifying Argument Types with Expressions 22-66
Specifying Simulink® Fixed Point™ Data Properties 22-67
Sizing Function Arguments 22-71
Specifying Argument Size 22-71
Inheriting Argument Sizes from Simulink® 22-71
Specifying Argument Sizes with Expressions 22-73

Parameter Arguments in Embedded MATLAB™

Functions i 22-74
Resolving Signal Objects for OQutput Data 22-75

Implicit Signal Resolution 22-75
Eliminating Warnings for Implicit Signal Resolution in the

Model ... e e e 22-75
Disabling Implicit Signal Resolution for an Embedded

MATLAB™ Function Block 22-76
Forcing Explicit Signal Resolution for an Output Data

Signal ... e e e 22-76

Working with Structures and Bus Signals 22-77

About Structures in Embedded MATLAB™ Function

Blocks ..o e 22-77
Example of Structures in an Embedded MATLAB™

Function Block i i, 22-78
How Structure Inputs and Outputs Interface with Bus

Signals ... e e e e 22-82
Rules for Defining Structures in Embedded MATLAB™

Function Blocks 22-82
Workflow for Creating Structures in Embedded MATLAB™

Function Blocks 22-83
Indexing Substructures and Fields 22-84
Assigning Values to Structures and Fields 22-85
Working with Non-Tunable Structure Parameters in

Embedded MATLAB™ Function Blocks 22-87
Limitations of Structures in Embedded MATLAB™

Function Blocks 22-90

xxxii Contents

Working with Frame-Based Signals 22-91

About Frame Based Signals 22-91
Supported Types for Frame-Based Data 22-92
Adding Frame-Based Data in Embedded MATLAB™
Function Blocks 22-92
Examples of Frame-Based Signals in Embedded MATLAB™
Function Blocks 22-93

Using Traceability in Embedded MATLAB™ Function

Blocks e 22-98
Extent of Traceability in Embedded MATLAB™ Function
Blocks ..o e 22-98
Traceability Requirements 22-98
Basic Workflow for Using Traceability 22-99
Tutorial: Using Traceability in an Embedded MATLAB™
Function Block i .. 22-100

23|

PrintFrame Editor Overview 23-2
About the Print Frame Editor 23-2
What PrintFrames Are 23-3
Starting the PrintFrame Editor 23-6
Getting Help for the PrintFrame Editor 23-7
Closing the PrintFrame Editor 23-7
Print Frame Process, 23-7

Designing the Print Frame 23-8
BeforeyouBegin, 23-8
Variable and Static Information 23-8
Single Use or Multiple Use Print Frames 23-8

Specifying the Print Frame Page Setup 23-9

Creating Borders (Rowsand Cells) 23-11
First Steps ..ot e e 23-11
Adding and Removing Rows 23-11
Adding and Removing Cells 23-12

xxxiii

XXXiv

Resizing Rowsand Cells 23-12

Print Frame Size 0., 23-12
Adding InformationtoCells 23-14
Procedure for Adding Informationto Cells 23-14
Text Informationc0iiiiii .. 23-15
Variable Information 23-15
Multiple Entriesina Cell 23-16
Changing InformationinCells 23-18
Aligning the InformationinaCell 23-18
Editing Text Stringscc0 i, 23-18
Removing and Copying Entries 23-19
Changing the Font Characteristics 23-20
Saving and Opening Print Frames 23-22
Savinga Print Frame 23-22
Opening a Print Frame 23-22
Printing Block Diagrams with Print Frames 23-23
Example e e 23-26
Aboutthe Example i, 23-26
Create the Print Frame 23-27
Print the Block Diagram with the Print Frame 23-30
Glossary

Examples

Simulink Basics i, A-2
How Simulink Works A-2

Contents

CreatingaModel, A-2

Working withBlocks A-2
Working with Lookup Tables A-3
Creating Block Masks A-3
Creating Custom Simulink Blocks A-3

Index

XXXV

XXXVi Contents

Simulink® Basics

The following sections explain how to perform basic tasks when using the

Simulink® product.

Starting the Simulink® Engine
(p. 1-2)

Opening Models (p. 1-4)
Model Editor (p. 1-6)
Updating a Block Diagram (p. 1-13)

Saving a Model (p. 1-15)
Printing a Block Diagram (p. 1-21)
Generating a Model Report (p. 1-30)

Summary of Mouse and Keyboard
Actions (p. 1-33)

Ending a Simulink® Session (p. 1-37)

How to start Simulink.

How to open a Simulink model.
Overview of the Model Editor.

How to update a diagram to reflect
changes that you have made.

How to save a Simulink model to
disk.

How to print a Simulink block
diagram.

How to generate an HTML report on
a model’s structure and content.

Lists key combinations and mouse
actions that you can use to execute
Simulink commands.

How to end a Simulink session.

1 Simulink® Basics

1-2

Starting the Simulink® Engine

To start the Simulink® software, you must first start the MATLAB® technical
computing environment. Consult your MATLAB documentation for more
information. You can then start the Simulink software in two ways:

® On the toolbar, click the Simulink icon.

¢ Enter the simulink command at the MATLAB prompt.

Starting the Simulink® Engine

The Library Browser appears. It displays a tree-structured view of the
Simulink block libraries installed on your system. You build models by copying
blocks from the Library Browser into a model window (see “Editing Blocks”).

The Simulink library window displays icons representing the pre-installed
block libraries. You can create models by copying blocks from the library

into a model window.

E! Simulink Library Browser 3

File Edit Wiew Help

=101]

D& =

Uzed Blocks

Commonly Used Blocks: zimulink/Commonly

= g Simulink

----- 2| Commonly Used Blocks
..... | Continuous

..... 2| Discontinuities

..... 2| Discrete

----- # Logic and Bit Qperations
..... 2| Lockup Tables

..... 2| Math Operations

..... 2| Model verification

..... | Model-Wide Utilities

..... 2| Ports & Subsystems
..... 2| signal Attributes

..... #| Signal Routing

----- # Sources

----- # User-Defined Functions
- 2] Additional Math & Discrete
(- T Real-Time wiorkshop

[W Simulink Extras

..... B stateflow

Ready

commoan
uszd hloc

s

7[5

-
—_—

fi v

M E

Mi=c

%n
Atk

Carnrnonly Lsed B

Continuouz

Dizcontinuities

Dizcrete

Logic and Bit Operations

Lookup Tables

td ath O perations

todel Yerification

todelwide Utilities

Parts & Subspstems

N K

1 Simulink® Basics

Note On computers running the Windows® operating system, you can display
the Simulink library window by right-clicking the Simulink node in the
Library Browser window.

Opening Models

In this section...

“Editing an Existing Model” on page 1-4
“Opening Models with Different Character Encodings” on page 1-4
“Avoiding Initial Model Open Delay” on page 1-5

Editing an Existing Model

To edit an existing model diagram, either

e Click the Open button on the Library Browser’s toolbar (Windows®
operating systems only) or select Open from the Simulink® library
window’s File menu and then choose or enter the file name for the model
to edit.

¢ Enter the name of the model (without the .md1 extension) in the MATLAB®
software Command Window. The model must be in the current directory
or on the path.

Note If you have an earlier version of the Simulink software, and you
want to open a model that was created in a later version, you must first use
the later version to save the model in a format compatible with the earlier
version. You can then open the model in the earlier version. See “Saving a
Model in Earlier Formats” on page 1-17 for details.

Opening Models with Different Character Encodings

If you open a model created in a MATLAB software session configured to
support one character set encoding, for example, Shift_JIS, in a session
configured to support another character encoding, for example, US_ASCII,

14

Opening Models

the Simulink software displays a warning or an error message, depending

on whether it can or cannot encode the model, using the current character
encoding, respectively. The warning or error message specifies the encoding
of the current session and the encoding used to create the model. To avoid
corrupting the model (see “Saving Models with Different Character Encodings”
on page 1-16) and ensure correct display of the model’s text, you should:

1 Close all models open in the current session.

2 Use the s1CharacterEncoding command to change the character encoding
of the current MATLAB software session to that of the model as specified in
the warning message.

3 Reopen the model.

You can now safely edit and save the model.

Avoiding Initial Model Open Delay

You may notice that the first model that you open in a MATLAB technical
computing environment session takes longer to open than do subsequent
models. This is because to reduce its own startup time and to avoid
unnecessary consumption of your system’s memory, the MATLAB software
does not load the Simulink product into memory until the first time you
open a Simulink model. You can cause the MATLAB technical computing
environment to load the Simulink software when the MATLAB product starts
up, and thus avoid the initial model opening delay. This can be done by using
either the -r command line option or your MATLAB software startup.m file
to run either load_simulink (loads the Simulink product) or simulink (loads
the Simulink product and opens the Simulink Library browser). For example,
to load the Simulink product when the MATLAB software starts up on a
computer running the Microsoft® Windows operating system, create a desktop
shortcut with the following target:

matlabroot\bin\win32\matlab.exe -r load_simulink

Similarly, the following command loads the Simulink software when the
MATLAB software starts up on UNIX® systems, systems:

matlab -r load_simulink

1 Simulink® Basics

Model Editor

In this section...

“Opening the Simulink® Model or Library” on page 1-6

“Editor Components” on page 1-7

“Undoing a Command” on page 1-8

“Zooming Block Diagrams” on page 1-9

“Panning Block Diagrams” on page 1-9

“View Command History” on page 1-10

“Bringing the MATLAB® Software Desktop Forward” on page 1-11
“Copying Models to Third-Party Applications” on page 1-11

Opening the Simulink® Model or Library

When you open a Simulink® model or library, the model or library is displayed
in an instance of the Model Editor.

1-6

Model Editor

=
File Edit ‘iew Simulation Format Tools Help I: Menu bar
DIeEE fBR | &= 4|2 2] =5 [Nomal =] Toolbar
- |van der Pol Equatie=!!
Unda Context
ot menu
Copy
" Paske -+—4——— Canvas
Delete
1-u” -
. Select all
L Cutl
fuluy
X2
4
Scope
2
Ready |100% | | lode4s — Status bar

Editor Components
The Model Editor includes the following components.

Menu Bar

The Simulink menu bar contains commands for creating, editing, viewing,

printing, and simulating models. The menu commands apply to the model

displayed in the editor. See “Creating a Model” and “Running Simulations”
for more information.

Toolbar

The toolbar allows you to execute the most frequently used commands with
a click of a mouse button. For example, to open a Simulink software model,

1 Simulink® Basics

click the open folder icon on the toolbar. Letting the mouse cursor hover over
a toolbar button or control causes a tooltip to appear. The tooltip describes
the purpose of the button or control. You can hide the toolbar by clearing the
Toolbar option on the View menu.

Canvas

The canvas displays the model’s block diagram. The canvas allows you to edit
the block diagram. You can use your system’s mouse and keyboard to create
and connect blocks, select and move blocks, edit block labels, display block
dialog boxes, and so on. See “Working with Blocks” for more information.

Context Menus

A context-sensitive menu is displayed when you click the right mouse button
over the canvas. The contents of the menu depend on whether a block, line,
annotation, or other object is selected. If an object is selected, the menu
displays commands that apply only to the selected object. If no object is
selected, the menu displays commands that apply to a model or library as

a whole.

Status Bar

The status bar appears only in the Windows® operating system version of the
Model Editor. When a simulation is running, the status bar displays the
status of the simulation, including the current simulation time and the name
of the current solver. Regardless of the simulation state, the status bar also
displays the zoom factor of the model editor window expressed as a percentage
of normal (100%). You can display or hide the status bar by selecting or
clearing the Status Bar option on the View menu.

Undoing a Command

You can cancel the effects of up to 101 consecutive operations by choosing
Undo from the Edit menu. You can undo these operations:

¢ Adding, deleting, or moving a block

¢ Adding, deleting, or moving a line

¢ Adding, deleting, or moving a model annotation

Model Editor

¢ Editing a block name

® Creating a subsystem (see “Undoing Subsystem Creation” for more
information)

You can reverse the effects of an Undo command by choosing Redo from
the Edit menu.

Zooming Block Diagrams

You can enlarge or shrink the view of the block diagram in the current
Simulink software window. To zoom a view:

® Select Zoom In from the View menu (or type r) to enlarge the view.
® Select Zoom Out from the View menu (or type v) to shrink the view.

¢ Select Fit System To View from the View menu (or press the space bar)
to fit the diagram to the view.

¢ Select Normal from the View menu (or type 1) to view the diagram at
actual size.

By default, the Simulink software fits a block diagram to view when you
open the diagram either in the model browser’s content pane or in a separate
window. If you change a diagram’s zoom setting and save the model containing
the diagram, the model editor restores the setting the next time you open the
diagram. If you want to restore the default behavior, choose Fit System To
View from the View menu the next time you open the diagram.

Panning Block Diagrams

You can use your keyboard alone (see “Model Viewing Shortcuts” on page
1-33) or in combination with your mouse to pan model diagrams that are
too large to fit in the Model Editor’s window. To use the keyboard and the
mouse, position the mouse over the diagram, hold down the p or q key on the
keyboard, then hold down the left mouse button.

Note You must press and hold down the key first and then the mouse button.
The reverse does not work.

1 Simulink® Basics

A pan cursor appears.

Pan cursor

=10l x|

File Edit Wiew Simulation Fofmat Tools Help

M ERE R e

rY

5 I van der Pol Equation

x1

EE
< a3
Fcn - + s

fuls

2

-
1| | v

Fllo0%s | | |ode4s &

Moving the mouse now pans the model diagram in the editor window.

View Command History

A history of the modeling viewing commands is maintained (such as pan and
zoom) that you execute for each model window. The history allows you to
quickly return to a previous view in a window, using the following commands,
accessible from the Model Editor’s View menu and tool bar:

¢ Back (+) — Displays the previous view in the view history.

¢ Forward (=) — Displays the next view in the view history.

1-10

Model Editor

e Go To Parent (1) — Opens, if necessary, the parent of the current
subsystem and brings its window to the top of the desktop.

Note A separate view history is maintained for each model window opened
in the current session. As a result, the View > Back and View > Forward
commands cannot cross window boundaries. For example, if window reuse
is not on and you open a subsystem in another window, you cannot use the
View > Back command to go to the window displaying the parent system.
You must use the View > Go To Parent command in this case. On the
other hand, if you enable window reuse and open a subsystem in the current
window, you can use View > Back to restore the parent view.

Bringing the MATLAB® Software Desktop Forward

The Simulink product opens model windows on top of the MATLAB®
desktop. To bring the MATLAB desktop back to the top of your screen, select
View > MATLAB Desktop from the Model Editor’s menu bar.

Copying Models to Third-Party Applications

On a computer running the Microsoft® Windows operating system, you can
copy a Simulink product model to the Windows operating system clipboard,
then paste it to a third-party application such as word processing software.
The Simulink product allows you to copy a model in either bitmap or metafile
format. You can then paste the clipboard model to an application that accepts
figures in bitmap or metafile format. See “Exporting to the Windows or
Macintosh® Clipboard” for a description of how to set up the figure settings
and save a figure to the clipboard.

The following steps give an example of how use the MATLAB software to copy
a model to a third-party application:
1 Set the figure copying options.

a Select File > Preferences. The Preferences dialog box appears.

b Under the Figure Copy Template node, select Copy Options.

¢ In the Clipboard format pane on the right, select Preserve information
(metafile if possible).

1-11

1 Simulink® Basics

With this setting, the MATLAB software selects the figure format for
you, and uses the metafile format whenever possible.

d Click OK.
2 Click OK.
3 Open the vdp model.
4 In the Model Editor, select Edit > Copy Model to Clipboard.

5 Open a document in Microsoft Word and paste the contents of the clipboard.

1-12

Updating a Block Diagram

Updating a Block Diagram

You can leave many attributes of a block diagram, such as signal data types
and sample times, unspecified. The Simulink® product then infers the values
of block diagram attributes based on block connectivity and attributes that
you do specify, a process known as updating the diagram. The Simulink
software tries to infer the most appropriate value for an attribute that you
do not specify. If an attribute cannot be inferred, it halts the update and
displays an error dialog box.

A model’s block diagram is updated at the start of every simulation of a
model. This assures that the simulation reflects the latest changes that you
have made to a model. In addition, you can command the Simulink software
to update a diagram at any time by selecting Edit > Update Diagram from
the Model Editor’s menu bar or context menu, or by pressing Ctrl+D. This
allows you to determine the values of block diagram attributes inferred by the
Simulink software immediately after opening or editing a model.

For example:
1 Create the following model.

. >
Outl

Constant Gain

2 Select Format > Port/Signal Displays > Port Data Types from the
Model Editor’s menu bar.

The data types of the output ports of the Constant and Gain blocks are
displayed. Note that the data type of both ports is double, the default value.

1 double »{ 1 double

Outl

Constant Gain

3 Set the Signal Data Type parameter of the Constant block (see Constant)
to single.

1-13

1 Simulink® Basics

Note that the output port data type displays on the block diagram do not
reflect this change.

4 Select Edit > Update Diagram from the Model Editor’s menu bar or press

Ctrl-D.
The block diagram is updated to reflect the change that you made
previously.
1 |single P single
. Outl
Constant Gain

Note that the Simulink software has inferred a data type for the output
of the Gain block. This is because you did not specify a data type for the
block. The data type inferred is single because single precision is all that
is necessary to simulate the model accurately, given that the precision of
the block’s input is single.

1-14

Saving a Model

Saving a Model

In this section...

“About Saving a Model” on page 1-15
“Saving Models with Different Character Encodings” on page 1-16
“Saving a Model in Earlier Formats” on page 1-17

“Opening Models Originally Created in an Older Version of Simulink®”
on page 1-19

About Saving a Model

You can save a model by choosing either the Save or Save As command from
the File menu. The model is saved by generating a specially formatted file
called the model file (with the .md1 extension) that contains the block diagram
and block properties.

If you are saving a model for the first time, use the Save command to provide
a name and location for the model file. Model file names must start with a
letter and can contain letters, numbers, and underscores. The total number
must not be greater than a certain maximum, usually 63 characters. You can
use the MATLAB® software namelengthmax namelengthmax command to find
out if the maximum is greater than 63 characters for your system. The file
name must not be the same as that of a MATLAB software command.

If you are saving a model whose model file was previously saved, use the Save
command to replace the file’s contents or the Save As command to save the
model with a new name or location. You can also use the Save As command to
save the model in a format compatible with previous releases of the Simulink®
product (see “Saving a Model in Earlier Formats” on page 1-17).

The Simulink software follows this procedure while saving a model:

1 If the md1 file for the model already exists, it is renamed as a temporary file.

2 All block PreSaveFcn callback routines are executed first, then the block
diagram’s PreSaveFcn callback routine are executed.

1-15

1 Simulink® Basics

1-16

3 The model file is written to a new file using the same name and an
extension of mdl.

4 All block PostSaveFcn callback routines are executed, then the block
diagram’s PostSaveFcn callback routine is executed.

5 The temporary file is deleted.

If an error occurs during this process, the Simulink software renames the
temporary file to the name of the original model file, writes the current version
of the model to a file with an .err extension, and issues an error message. If
an error occurs in step 2, step 3 is omitted and steps 4 and 5 are performed.

Saving Models with Different Character Encodings

When a model is saved, the character encoding in effect when the model was
created (the original encoding) is used to encode the text stored in the model’s
.md1 file, regardless of the character encoding in effect when the model is
saved. This can lead to model corruption if you save a model whose original
encoding differs from encoding currently in effect.

For example, it’s possible you could have introduced characters that cannot be
represented in the model’s original encoding. If this is the case, the model is
saved as model.err where model is the model’s name, leaving the original
model file unchanged. The Simulink software also displays an error message
that specifies the line and column number of the first unrepresentable
character. To recover from this error without losing all the changes you’ve
made to the model in the current session, use the following procedure. First,
use a text editor to find the character in the .err file at the position specified
by the save error message. Then, find and delete the corresponding character
in the open model and resave the model . Repeat this process until you are
able to save the model without error.

It’s possible that your model’s original encoding can represent all the text
changes that you’ve made in the current session, albeit incorrectly. For
example, suppose you open a model whose original encoding is A in a session
whose current encoding is B. Further, suppose you edit the model to include a
character that has different encodings in A and B and then save the model.
For example, suppose that the encoding for x in B is the same as the coding
for y in A and you insert x in the model while B is in effect, save the model,

Saving a Model

and then reopen the model with A in effect. In this scenario, the Simulink
software will display x as y. To alert you to the possibility of such corruptions,
the software displays a warning message when you save a model and the
current and original encoding differ but the original encoding can encode,
possibly incorrectly, all the characters to be saved in the model file.

Saving a Model in Earlier Formats

The Save As command allows you to save a model created with the latest
version of the Simulink software in formats used by earlier versions, including
Simulink 4 (Release 12), Simulink 4.1 (Release 12.1), Simulink 5 (Release 13),
Simulink 5.1 (Release 13SP1), and Simulink 6 (Release 14, compatible with
Release 14, Release 14SP1, and Release 14SP2). You might want to do this,
for example, if you need to make a model available to colleagues who have
access only to one of these earlier versions of the Simulink product.

To save a model in earlier format:

1 Select Save from the File menu. This saves a copy in the latest version of
Simulink. This step is necessary to avoid compatibility problems.

2 Select Save As from the File menu.

The Save As dialog box is displayed.

1-17

1 Simulink® Basics

1-18

saveas 2(x|

Save in: I) simgereral j 4 ¢ EH-
Cys bangbang. mdl

bkl biounce. mdl

| hinkernal countersdemna, mdl

)i dblcartl . mdl
Iamdl_auto_build_tokens dblpend?.mdl

| amdl_auto_save_tokens dblpendz.mdl

N

o
File name: Ih_l,ldl:_l,ll. rnd| Save I

Save as type: | Sinulink Models [*.md) =l Cancel
Simulink. Fodels [*. md]
Simulink. 4/A712 Models [*.mdl)
Simulink. 4.1/R12.1 Models [7.mdl)
Simulink. 5.0/R13 Models (% mdl)
Simulink 5.1/R13 [5P1) Models [*.mdl)

Simulink, 6.0/514 Madels [*.

3 Select a format from the Save as type list on the dialog box.

4 Click the Save button.

When saving a model in an earlier version’s format, the model is saved in the
earlier format regardless of whether the model contains blocks and features
that were introduced after that version. If the model does contain blocks

or use features that postdate the earlier version, the model might not give
correct results when run by the earlier version. For example, matrix and
frame signals do not work in Release 11, because Release 11 does not have
matrix and frame support. Similarly, models that contain unconditionally
executed subsystems marked Treat as atomic unit might produce different
results in Release 11, because Release 11 does not support unconditionally
executed atomic subsystems.

The command converts blocks that postdate the earlier version into empty
masked subsystem blocks colored yellow. For example, post-Release 11 blocks
include

Saving a Model

¢ Lookup Table (n-D)

® Assertion

® Rate Transition

® PreLookup Index Search
¢ Interpolation (n-D)

¢ Direct Lookup Table (n-D)
¢ Polynomial

® Matrix Concatenation

® Signal Specification

® Bus Creator

o If, Whilelterator, Forlterator, Assignment
¢ SwitchCase

* Bitwise Logical Operator

Post-Release 11 blocks from blocksets appear as unlinked blocks.

Opening Models Originally Created in an Older
Version of Simulink®

Opening models originally created in an older version of Simulink and then
using Save as can cause compatibility problems unless they are first saved
with the most recent Simulink version and then opened and saved with the
older version of Simulink.

Use the following procedure if you wish to open a model created in an older
version of Simulink, and wish to save it to some other version:

1 Open the older model with the most recent version of Simulink available to
you

2 Before making any changes, use Save to save the model in the most recent
version of Simulink available to you

3 If you wish to modify or run the model, do so at this step

1-19

1 Simulink® Basics

4 Use Save as to save the model in an older Simulink version. Start the
older version of Simulink and use it to open the just saved model

5 While still in the older version of Simulink, but before making any changes
or running the model, use Save to save the model. You can now run the
model in the older version of Simulink.

1-20

Printing a Block Diagram

Printing a Block Diagram

In this section...

“About Printing” on page 1-21

“Print Dialog Box” on page 1-21

“Specifying Paper Size and Orientation” on page 1-23
“Positioning and Sizing a Diagram” on page 1-23

“Tiled Printing” on page 1-24

“Print Command” on page 1-28

About Printing

You can print a block diagram by selecting Print from the File menu or by
using the print command in the MATLAB® software Command Window.

Print Dialog Box

When you select the Print menu item, the Print dialog box appears. The
Print dialog box enables you to selectively print systems within your model.
Using the dialog box, you can print

¢ The current system only

¢ The current system and all systems above it in the model hierarchy

¢ The current system and all systems below it in the model hierarchy, with
the option of looking into the contents of masked and library blocks

e All systems in the model, with the option of looking into the contents of
masked and library blocks

¢ The entire diagram over multiple pages

® An overlay frame on each diagram

1-21

1 Simulink® Basics

The portion of the Print dialog box that supports selective printing is similar
on supported platforms. This figure shows how it looks on a computer running
the Microsoft® Windows® operating system. In this figure, only the current
system is to be printed.

— Optiong

&% Curment spstem ¢~ Current system ¢~ Current spstem
Y ahd abowve ahd below

S R T L I

[Enable tiled printing for all systems

Al systems

[Include Frint Log [T Look under mask dislog. 7| Expand unigue library links

[~ Frame: ID:"-.fl'-.pplicaticuns"-.h-'l.-'i‘-.TL.&BF"DAi"-.t::u:-II:u:::-:'xsimulin |

[k I Cancel

When you select either the Current system and below or All systems
option, two check boxes become enabled. In this figure, All systems is

selected.
— Optians
" Current system ' Current gpgtem ' Current ghgtem = Al systems
and above and below

[Enable tiled printing for all systems

[Include Print Log [Look under mask dialog [Expand unigue libramy links

™ Frame: ID:"-.ﬁ.ppliI:atiDns"\M.ﬂ.TL.f-‘-.B?Dd'\tnulbnx‘\simulin |

] I Cancel

1-22

Printing a Block Diagram

Selecting the Look under mask dialog check box prints the contents of
masked subsystems when encountered at or below the level of the current
block. When you are printing all systems, the top-level system is considered
the current block, so the Simulink® software looks under any masked blocks
encountered.

Selecting the Expand unique library links check box prints the contents
of library blocks when those blocks are systems. Only one copy is printed
regardless of how many copies of the block are contained in the model.

For more information about libraries, see Chapter 7, “Working with Block
Libraries”.

The print log lists the blocks and systems printed. To print the print log,
select the Include Print Log check box.

Selecting the Enable tiled printing for all systems check box overrides the
tiled-print settings for individual subsystems in a model. See “Tiled Printing”
on page 1-24 for more information.

Selecting the Frame check box prints a title block frame on each diagram.
Enter the path to the title block frame in the adjacent edit box. You can create
a customized title block frame, using the MATLAB product frame editor. See
frameedit for information on using the frame editor to create title block
frames.

Specifying Paper Size and Orientation

You can specify the type and orientation of the paper used to print a model
diagram. You can do this on all platforms by setting the model’s PaperType
and PaperOrientation properties, respectively (see “Model and Block
Parameters” in the online reference), using the set _param command. You
can set the paper orientation alone, using the MATLAB software orient
command. On computers running the Windows, operating system, the Print
and Printer Setup dialog boxes let you set the page type and orientation
properties as well.

Positioning and Sizing a Diagram
You can use a model’s PaperPositionMode and PaperPosition parameters to
position and size the model’s diagram on the printed page. The value of the

1-23

1 Simulink® Basics

1-24

PaperPosition parameter is a vector of form [left bottom width height].
The first two elements specify the bottom-left corner of a rectangular area
on the page, measured from the page’s bottom-left corner. The last two
elements specify the width and height of the rectangle. When the model’s
PaperPositionMode is manual, the Simulink software positions (and scales,
if necessary) the model’s diagram to fit inside the specified print rectangle.
For example, the following commands

vdp

set_param('vdp', 'PaperType', 'usletter')
set_param('vdp', 'PaperOrientation', 'landscape')
set_param('vdp', 'PaperPositionMode’, 'manual')
set_param('vdp', 'PaperPosition', [0.5 0.5 4 4])
print -svdp

print the block diagram of the vdp sample model in the lower-left corner of a
U.S. letter-size page in landscape orientation.

If PaperPositionMode is auto, the Simulink software centers the model
diagram on the printed page, scaling the diagram, if necessary, to fit the page.

Tiled Printing

By default, each block diagram is scaled during the printing process such that
it fits on a single page. That is, the size of a small diagram is increased or
the size of a large diagram is decreased to confine its printed image to one
page. In the case of a large diagram, scaling can make the printed image
difficult to read.

By contrast, tiled printing enables you to print even the largest block
diagrams without sacrificing clarity and detail. Tiled printing allows you to
distribute a block diagram over multiple pages. You can control the number of
pages over which the Simulink software prints the block diagram, and hence,
the total size of the printed diagram.

Moreover, different tiled-print settings are accommodated for each of the
systems in your model. Consequently, you can customize the appearance of
all printed images to best suit your needs. The following sections describe
how to utilize tiled printing.

Printing a Block Diagram

Enabling Tiled Printing

To enable tiled printing for a particular system in your model, select the
Enable Tiled Printing item from the File menu associated with that
system’s Model Editor.

Or you can enable tiled printing programmatically using the set_param
command. Simply set the system’s PaperPositionMode parameter to tiled
(see “Model Parameters” in the online Simulink reference). For example, the
following commands

sldemo_f14
set_param('sldemo_f14/Controller', 'PaperPositionMode', 'tiled')

open the f14 demo model and enable tiled printing for the Controller
subsystem.

To enable tiled printing for all systems in your model, select the Enable
tiled printing for all systems check box on the Print dialog box (see “Print
Dialog Box” on page 1-21). If you select this option, the Simulink software
overrides the individual tiled-print settings for all systems in your model.

Displaying Page Boundaries

You can display the page boundaries in the Model Editor to visualize

the model’s size and layout with respect to the page. To make the page
boundaries visible for a particular system in your model, select the Show
Page Boundaries item from the View menu associated with that system’s
Model Editor. Or you can display the page boundaries programmatically
using the set_param command. Simply set the system’s ShowPageBoundaries
parameter to on (see “Model Parameters” in the online Simulink reference).

The Simulink software renders the page boundaries on the Model Editor’s
canvas. If tiled printing is enabled, page boundaries are represented

by a checkerboard pattern. As illustrated in the following figure, each
checkerboard square indicates the extent of a separate page.

1-25

1 Simulink® Basics

1-26

I =[5

File Edit Wiew Simulation Format Tools Help

D BHE| 2R (&4 |92 r sy o s hEES®
wvan der Pol Equation

Dutl

Seape

Qutz

Ready [1o0%% |ode4s v

If tiled printing is disabled, only a single page is displayed on the Model
Editor’s canvas.

Specifying Tiled Print Settings

You can use a system’s TiledPageScale and TiledPaperMargins parameters
to customize certain aspects of tiled printing. You specify values for these
parameters using the set_param command.

The TiledPageScale parameter scales the block diagram so that more or less
of it appears on a single tiled page. By default, its value is 1. Values greater
than 1 proportionally scale the diagram such that it occupies a smaller
percentage of the tiled page, while values between 0 and 1 proportionally
scale the diagram such that it occupies a larger percentage of the tiled page.
For example, a TiledPageScale of 0.5 makes the printed diagram appear
twice its size on a tiled page, while a TiledPageScale of 2 makes the printed
diagram appear half its size on a tiled page.

You can specify the margin sizes associated with tiled pages using the
TiledPaperMargins parameter. The value of TiledPaperMargins is a

Printing a Block Diagram

vector of form [left top right bottom]. Each element specifies the size
of the margin at a particular edge of the page. The value of the PaperUnits
parameter is used to determine its units of measurement. Each margin to
0.5 inches by default. By decreasing the margin sizes, you can increase the
printable area of the tiled pages.

Printing Tiled Pages
By default, all of a system’s tiled pages are printed when you select Print from
the File menu or use the print command at the MATLAB software prompt.

Alternatively, you can specify the range of tiled page numbers that are
printed printed, as follows:

¢ On a computer running the Microsoft Windows operating system, you can
specify a range of tiled page numbers to be printed using the Print range
portion of the Print dialog box. This field is accessible if you select both the
Current system and Enable tiled printing for all systems options (see
“Print Dialog Box” on page 1-21).

Frint range

Al

) Page: from: |1 b IEIEIEE

£ Selection

¢ On all platforms, you can specify a range of tiled page numbers to be
printed using the print command at the MATLAB software prompt. The
print command’s tileall option enables tiled printing for the system, and
its pages option indicates the range of tiled page numbers to be printed (see
“Print Command” on page 1-28). For example, the following commands

vdp
set_param('vdp', 'PaperPositionMode’', 'tiled')
set_param('vdp', 'ShowPageBoundaries', 'on')

set_param('vdp', 'TiledPageScale', '0.1"')

open the vdp demo model, enable tiled printing, display the page
boundaries, and scale the tiled pages such that the block diagram spans

1-27

1 Simulink® Basics

1-28

multiple pages. You can print the second, third, and fourth pages by issuing
the following command at the MATLAB software prompt:

print('-svdp', '-tileall', '-pages[2 4]')

Note The Simulink software uses a row-major scheme to number tiled pages.
For example, the first page of the first row is 1, the second page of the first
row is 2, etc.

Print Command
The format of the print command is

print -ssys -device -tileall -pagesp filename

sys is the name of the system to be printed. The system name must be
preceded by the s switch identifier and is the only required argument. sys
must be open or must have been open during the current session. If the
system name contains spaces or takes more than one line, you need to specify
the name as a string. See the examples below.

device specifies a device type. For a list and description of device types, see
the documentation for the MATLAB software print function.

tileall specifies the tiled printing option (see “Tiled Printing” on page 1-24).

p is a two-element vector specifying the range of tiled page numbers to be
printed. The vector must be preceded by the pages switch identifier. This
option is valid only when you enable tiled printing using the tileall switch.
For an example of its usage, see “Printing Tiled Pages” on page 1-27.

filename is the PostScript® file to which the output is saved. If filename
exists, it is replaced. If filename does not include an extension, an

appropriate one is appended.

For example, this command prints a system named untitled.

print -suntitled

Printing a Block Diagram

This command prints the contents of a subsystem named Sub1 in the current
system.

print -sSub1

This command prints the contents of a subsystem named Requisite
Friction.

print (['-sRequisite Friction'])

The next example prints a system named Friction Model, a subsystem
whose name appears on two lines. The first command assigns the newline
character to a variable; the second prints the system.

cr = sprintf('\n');
print (['-sFriction' cr 'Model'])

To print the currently selected subsystem, enter

print(['-s', gcb]l)

1-29

1 Simulink® Basics

Generating a Model Report

A model report is an HTML document that describes a model’s structure and
content. The report includes block diagrams of the model and its subsystems
and the settings of its block parameters.

To generate a report for the current model:

1 Select Print Details from the model’s File menu.

The Print Details dialog box appears.

«) Print Details - fuelsys

== x|
~File location/naming aptions

Directory = Current (pwd)

{~ Temparary (tempdir)
" Others |23

[Increment filename ko prevent overwriting ald files

~System reporking options

" Current and above ¢ Current and below € Erkire model

Y

[T Look undet mask dislog

[~ Expand unigue librarsy links

Print | Cancel | Help |

The dialog box allows you to select various report options (see “Model
Report Options” on page 1-31).

2 Select the desired report options on the dialog box.
3 Select Print.

The Simulink® software generates the HTML report and displays the report
in your system’s default HTML browser.

1-30

Generating a Model Report

While generating the report, the Simulink software displays status messages
on a messages pane that replaces the options pane on the Print Details
dialog box.

<} Print Details - fuelsys =10]
B Important messages (running a loop) ;l
Looping on model “fuelsys”
Laoaging an machine "fuelsys"
Looping on system "fuelsys”
Could notfind any "Block” ohjects for summary tahle.

Cancel

You can select the detail level of the messages from the list at the top of the
messages pane. When the report generation process begins, the Print button
on the Print Details dialog box changes to a Stop button. Clicking this
button terminates the report generation. When the report generation process
finishes, the Stop button changes to an Options button. Clicking this button
redisplays the report generation options, allowing you to generate another
report without having to reopen the Print Details dialog box.

Model Report Options

The Print Details dialog box allows you to select the following report options.

Directory

The directory where the HTML report is stored. The options include your
system’s temporary directory (the default), your system’s current directory, or
another directory whose path you specify in the adjacent edit field.

1-31

1 Simulink® Basics

1-32

Increment filename to prevent overwriting old files

Creates a unique report file name each time you generate a report for the
same model in the current session. This preserves each report.

Current object
Include only the currently selected object in the report.

Current and above

Include the current object and all levels of the model above the current object
in the report.

Current and below
Include the current object and all levels below the current object in the report.

Entire model
Include the entire model in the report.

Look under mask dialog
Include the contents of masked subsystems in the report.

Expand unique library links

Include the contents of library blocks that are subsystems. The report
includes a library subsystem only once even if it occurs in more than one
place in the model.

Summary of Mouse and Keyboard Actions

Summary of Mouse and Keyboard Actions

In this section...

“Model Viewing Shortcuts” on page 1-33
“Block Editing Shortcuts” on page 1-34

“Line Editing Shortcuts” on page 1-35
“Signal Label Editing Shortcuts” on page 1-35

“Annotation Editing Shortcuts” on page 1-36

Model Viewing Shortcuts

The following table lists keyboard shortcuts for viewing models.

Microsoft®
Windows®
Task Operating System UNIX® System
Zoom in r r
Zoom out A% v
Zoom to normal (100%) | 1 1

Pan left

d or Ctrl+Left Arrow

d or Ctrl+Left Arrow

Pan right g or Ctrl+Right g or Ctrl+Right
Arrow Arrow

Pan up e or Ctrl+Up Arrow e or Ctrl+Up Arrow

Pan down c or Ctrl+Down c or Ctrl+Down
Arrow Arrow

Fit selection to screen f f

Fit diagram to screen Space Space

Pan with mouse

Hold down p or q and
drag mouse

Hold down p or q and
drag mouse

Go back in pan/zoom
history

b or Shift+Left Arrow

b or Shift+Left Arrow

1-33

1 Simulink® Basics

1-34

Task

Microsoft®
Windows®
Operating System

UNIX® System

Go forward in pan/zoom
history

t or Shift+Right
Arrow

t or Shift+Right
Arrow

Delete selection

Delete or Back Space

Delete or Back Space

Move selection

Use arrow keys

Use arrow keys

Block Editing Shortcuts
The following table lists mouse and keyboard actions that apply to blocks.

Task

Microsoft Windows
Operating System

UNIX System

Select one block LMB LMB

Select multiple blocks Shift + LMB Shift + LMB; or CMB
alone

Copy block from Drag block Drag block

another window

Move block Drag block Drag block

Duplicate block Ctrl + LMB and drag; | Ctrl + LMB and drag;

or RMB and drag

or RMB and drag

Connect blocks

LMB

LMB

Disconnect block

Shift + drag block

Shift + drag block; or
CMB and drag

Open selected Enter Return
subsystem
Go to parent of selected | Esc Esc

subsystem

Summary of Mouse and Keyboard Actions

Line Editing Shortcuts
The following table lists mouse and keyboard actions that apply to lines.

Microsoft Windows

Task Operating System UNIX System

Select one line LMB LMB

Select multiple lines | Shift + LMB Shift + LMB; or CMB
alone

Draw branch line

Ctrl + drag line; or RMB
and drag line

Ctrl + drag line; or RMB
+ drag line

Route lines around
blocks

Shift + draw line
segments

Shift + draw line
segments; or CMB and
draw segments

Move line segment

Drag segment

Drag segment

Move vertex

Drag vertex

Drag vertex

Create line
segments

Shift + drag line

Shift + drag line; or CMB
+ drag line

Signal Label Editing Shortcuts
The next table lists mouse and keyboard actions that apply to signal labels.

Action

Microsoft Windows
Operating System

UNIX System

Create signal
label

Double-click line, then
enter label

Double-click line, then
enter label

Copy signal label

Ctrl + drag label

Ctrl + drag label

Move signal label

Drag label

Drag label

Edit signal label

Click in label, then edit

Click in label, then edit

Delete signal
label

Shift + click label, then
press Delete

Shift + click label, then
press Delete

1-35

1 Simulink® Basics

1-36

Annotation Editing Shortcuts

The next table lists mouse and keyboard actions that apply to annotations.

Microsoft Windows

Action Operating System UNIX System
Create Double-click in diagram, Double-click in diagram,
annotation then enter text then enter text

Copy annotation

Ctrl + drag label

Ctrl + drag label

Move annotation

Drag label

Drag label

Edit annotation

Click in text, then edit

Click in text, then edit

Delete
annotation

Shift + select annotation,
then press Delete

Shift + select annotation,
then press Delete

Ending a Simulink® Session

Ending a Simulink® Session

Terminate a Simulink® software session by closing all Simulink windows.

Terminate a MATLAB® software session by choosing one of these commands
from the File menu:

¢ On a computer running the Microsoft® Windows® operating system: Exit
MATLAB

¢ On a UNIX® system, system: Quit MATLAB

1-37

1 Simulink® Basics

1-38

How Simulink® Works

Introduction (p. 2-2)
Modeling Dynamic Systems (p. 2-3)

Simulating Dynamic Systems
(p. 2-15)

Modeling and Simulating Discrete
Systems (p. 2-40)

Brief overview of Simulink®.
How a dynamic system is modeled.

How the Simulink software
simulates a dynamic system.

How the Simulink product models
and simulates discrete systems.

2 How Simulink® Works

Introduction

Simulink® is a software package that enables you to model, simulate, and
analyze systems whose outputs change over time. Such systems are often
referred to as dynamic systems. The Simulink software can be used to explore
the behavior of a wide range of real-world dynamic systems, including
electrical circuits, shock absorbers, braking systems, and many other
electrical, mechanical, and thermodynamic systems. This section explains
how Simulink works.

Simulating a dynamic system is a two-step process. First, a user creates a
block diagram, using the Simulink model editor, that graphically depicts
time-dependent mathematical relationships among the system’s inputs,
states, and outputs. The user then commands the Simulink software to
simulate the system represented by the model from a specified start time to
a specified stop time.

Modeling Dynamic Systems

Modeling Dynamic Systems

In this section...

“Block Diagram Semantics” on page 2-3
“Creating Models” on page 2-4

“Time” on page 2-5

“States” on page 2-5

“Block Parameters” on page 2-9
“Tunable Parameters” on page 2-9
“Block Sample Times” on page 2-10
“Custom Blocks” on page 2-10
“Systems and Subsystems” on page 2-11
“Signals” on page 2-12

“Block Methods” on page 2-12

“Model Methods” on page 2-14

Block Diagram Semantics

A classic block diagram model of a dynamic system graphically consists

of blocks and lines (signals). The history of these block diagram models

is derived from engineering areas such as Feedback Control Theory and
Signal Processing. A block within a block diagram defines a dynamic system
in itself. The relationships between each elementary dynamic system in a
block diagram are illustrated by the use of signals connecting the blocks.
Collectively the blocks and lines in a block diagram describe an overall
dynamic system.

The Simulink® product extends these classic block diagram models by
introducing the notion of two classes of blocks, nonvirtual blocks and virtual
blocks. Nonvirtual blocks represent elementary systems. A virtual block is
provided for graphical organizational convenience and plays no role in the
definition of the system of equations described by the block diagram model.
Examples of virtual blocks are the Bus Creator and Bus Selector which are

2-3

2 How Simulink® Works

used to reduce block diagram clutter by managing groups of signals as a
“bundle.” You can use virtual blocks to improve the readability of your models.

In general, blocks and lines can be used to describe many “models of
computations.” One example would be a flow chart. A flow chart consists of
blocks and lines, but one cannot describe general dynamic systems using
flow chart semantics.

The term “time-based block diagram” is used to distinguish block diagrams
that describe dynamic systems from that of other forms of block diagrams,
and the term block diagram (or model) is used to refer to a time-based block
diagram unless the context requires explicit distinction.

To summarize the meaning of time-based block diagrams:

¢ Simulink block diagrams define time-based relationships between signals
and state variables. The solution of a block diagram is obtained by
evaluating these relationships over time, where time starts at a user
specified “start time” and ends at a user specified “stop time.” Each
evaluation of these relationships is referred to as a time step.

® Signals represent quantities that change over time and are defined for all
points in time between the block diagram’s start and stop time.

¢ The relationships between signals and state variables are defined by a set
of equations represented by blocks. Each block consists of a set of equations
(block methods). These equations define a relationship between the input
signals, output signals and the state variables. Inherent in the definition
of a equation is the notion of parameters, which are the coefficients found
within the equation.

Creating Models

The Simulink product provides a graphical editor that allows you to create and
connect instances of block types (see Chapter 3, “Creating a Model”) selected
from libraries of block types (see) via a library browser. Libraries of blocks
are provided representing elementary systems that can be used as building
blocks. The blocks supplied with Simulink are called built-in blocks. Users
can also create their own block types and use the Simulink editor to create
instances of them in a diagram. User-defined blocks are called custom blocks.

Modeling Dynamic Systems

Time

Time is an inherent component of block diagrams in that the results of a block
diagram simulation change with time. Put another way, a block diagram
represents the instantaneous behavior of a dynamic system. Determining

a system’s behavior over time thus entails repeatedly solving the model at
intervals, called time steps, from the start of the time span to the end of the
time span. The process of solving a model at successive time steps is referred
to as simulating the system that the model represents.

States

Typically the current values of some system, and hence model, outputs are
functions of the previous values of temporal variables. Such variables are
called states. Computing a model’s outputs from a block diagram hence entails
saving the value of states at the current time step for use in computing the
outputs at a subsequent time step. This task is performed during simulation
for models that define states.

Two types of states can occur in a Simulink model: discrete and continuous
states. A continuous state changes continuously. Examples of continuous
states are the position and speed of a car. A discrete state is an approximation
of a continuous state where the state is updated (recomputed) using finite
(periodic or aperiodic) intervals. An example of a discrete state would be the
position of a car shown on a digital odometer where it is updated every second
as opposed to continuously. In the limit, as the discrete state time interval
approaches zero, a discrete state becomes equivalent to a continuous state.

Blocks implicitly define a model’s states. In particular, a block that needs
some or all of its previous outputs to compute its current outputs implicitly
defines a set of states that need to be saved between time steps. Such a block
is said to have states.

The following is a graphical representation of a block that has states:

x
o ——» (states) E—
(input) foutput)

2 How Simulink® Works

Blocks that define continuous states include the following standard Simulink
blocks:

Integrator

State-Space

Transfer Fen

Variable Transport Delay

Zero-Pole

The total number of a model’s states is the sum of all the states defined by all
its blocks. Determining the number of states in a diagram requires parsing the
diagram to determine the types of blocks that it contains and then aggregating
the number of states defined by each instance of a block type that defines
states. This task is performed during the Compilation phase of a simulation.

Working with States

The following facilities are provided for determining, initializing, and logging
a model’s states during simulation:

¢ The model command displays information about the states defined by a
model, including the total number of states defined by the model, the block
that defines each state, and the initial value of each state.

¢ The Simulink debugger displays the value of a state at each time step
during a simulation, and the Simulink debugger’s states command
displays information about the model’s current states (see Chapter 18,
“Simulink® Debugger”).

¢ The Data Import/Export pane of a model’s Configuration Parameters
dialog box (see “Importing and Exporting Simulation Data” on page 14-21)
allows you to specify initial values for a model’s states, and to record the
values of the states at each time step during simulation as an array or
structure variable in the MATLAB® workspace.

¢ The Block Parameters dialog box (and the ContinuousStateAttributes
parameter) allows you to give names to states for those blocks (such as the
Integrator) that employ continuous states. This can simplify analyzing
data logged for states, especially when a block has multiple states.

Modeling Dynamic Systems

The Two Cylinder Model with Load Constraints demo illustrates the
logging of continuous states.

Continuous States

Computing a continuous state entails knowing its rate of change, or derivative.
Since the rate of change of a continuous state typically itself changes
continuously (i.e., is itself a state), computing the value of a continuous state
at the current time step entails integration of its derivative from the start of
a simulation. Thus modeling a continuous state entails representing the
operation of integration and the process of computing the state’s derivative at
each point in time. Simulink block diagrams use Integrator blocks to indicate
integration and a chain of blocks connected to an integrator block’s input to
represent the method for computing the state’s derivative. The chain of blocks
connected to the integrator block’s input is the graphical counterpart to an
ordinary differential equation (ODE).

In general, excluding simple dynamic systems, analytical methods do not
exist for integrating the states of real-world dynamic systems represented

by ordinary differential equations. Integrating the states requires the use

of numerical methods called ODE solvers. These various methods trade
computational accuracy for computational workload. The Simulink product
comes with computerized implementations of the most common ODE
integration methods and allows a user to determine which it uses to integrate
states represented by Integrator blocks when simulating a system.

Computing the value of a continuous state at the current time step entails
integrating its values from the start of the simulation. The accuracy of
numerical integration in turn depends on the size of the intervals between
time steps. In general, the smaller the time step, the more accurate the
simulation. Some ODE solvers, called variable time step solvers, can
automatically vary the size of the time step, based on the rate of change

of the state, to achieve a specified level of accuracy over the course of a
simulation. The user can specify the size of the time step in the case of
fixed-step solvers, or the solver can automatically determine the step size in
the case of variable-step solvers. To minimize the computation workload, the
variable-step solver chooses the largest step size consistent with achieving an
overall level of precision specified by the user for the most rapidly changing
model state. This ensures that all model states are computed to the accuracy
specified by the user.

2 How Simulink® Works

Discrete States

Computing a discrete state requires knowing the relationship between its
value at the current time step and its value at the previous time step. This is
referred to this relationship as the state’s update function. A discrete state
depends not only on its value at the previous time step but also on the values
of a model’s inputs. Modeling a discrete state thus entails modeling the state’s
dependency on the systems’ inputs at the previous time step. Simulink block
diagrams use specific types of blocks, called discrete blocks, to specify update
functions and chains of blocks connected to the inputs of discrete blocks to
model the dependency of a system’s discrete states on its inputs.

As with continuous states, discrete states set a constraint on the simulation
time step size. Specifically, the step size must ensure that all the sample
times of the model’s states are hit. This task is assigned to a component of the
Simulink system called a discrete solver. Two discrete solvers are provided: a
fixed-step discrete solver and a variable-step discrete solver. The fixed-step
discrete solver determines a fixed step size that hits all the sample times

of all the model’s discrete states, regardless of whether the states actually
change value at the sample time hits. By contrast, the variable-step discrete
solver varies the step size to ensure that sample time hits occur only at times
when the states change value.

Modeling Hybrid Systems

A hybrid system is a system that has both discrete and continuous states.
Strictly speaking, any model that has both continuous and discrete sample
times are treated as a hybrid model, presuming that the model has both
continuous and discrete states. Solving such a model entails choosing a
step size that satisfies both the precision constraint on the continuous state
integration and the sample time hit constraint on the discrete states. The
Simulink software meets this requirement by passing the next sample time
hit, as determined by the discrete solver, as an additional constraint on

the continuous solver. The continuous solver must choose a step size that
advances the simulation up to but not beyond the time of the next sample
time hit. The continuous solver can take a time step short of the next sample
time hit to meet its accuracy constraint but it cannot take a step beyond the
next sample time hit even if its accuracy constraint allows it to.

Modeling Dynamic Systems

Block Parameters

Key properties of many standard blocks are parameterized. For example,
the Constant value of the Simulink Constant block is a parameter. Each
parameterized block has a block dialog that lets you set the values of the
parameters. You can use MATLAB expressions to specify parameter values.
Simulink evaluates the expressions before running a simulation. You can
change the values of parameters during a simulation. This allows you to
determine interactively the most suitable value for a parameter.

A parameterized block effectively represents a family of similar blocks. For
example, when creating a model, you can set the Constant value parameter of
each instance of the Constant block separately so that each instance behaves
differently. Because it allows each standard block to represent a family of
blocks, block parameterization greatly increases the modeling power of the
standard Simulink libraries.

Tunable Parameters

Many block parameters are tunable. A tunable parameter is a parameter
whose value can be changed without recompiling the model (see “Model
Compilation” on page 2-15 for more information on compiling a model). For
example, the gain parameter of the Gain block is tunable. You can alter the
block’s gain while a simulation is running. If a parameter is not tunable and
the simulation is running, the dialog box control that sets the parameter

is disabled.

Note You can not change the values of source block parameters through
either a dialog box or the Model Explorer while a simulation is running.
Opening the dialog box of a source block with tunable parameters causes a
running simulation to pause. While the simulation is paused, you can edit
the parameter values displayed on the dialog box. However, you must close
the dialog box to have the changes take effect and allow the simulation to
continue.

It should be pointed out that parameter changes do not immediately occur,
but are queued up and then applied at the start of the next time step during
model execution. Returning to our example of the constant block, the function
it defines is signal(t) = ConstantValue for all time. If we were to allow the

2 How Simulink® Works

2-10

constant value to be changed immediately, then the solution at the point in
time at which the change occurred would be invalid. Thus we must queue the
change for processing at the next time step.

You can use the Inline parameters option on the Optimization pane of the
Configuration Parameters dialog box to specify that all parameters in
your model are nontunable except for those that you specify. This can speed
up execution of large models and enable generation of faster code from your
model. See “Configuration Parameters Dialog Box” for more information.

Block Sample Times

Every Simulink block is considered to have a sample time, even continuous
blocks (e.g., blocks that define continuous states, such as the Integrator block)
and blocks that do not define states, such as the Gain block. Most blocks allow
you to specify their sample times via a Sample Time parameter. Continuous
blocks are considered to have an infinitesimal sample time called a continuous
sample time. A block that does not specify its sample time is said to have an
implicit sample time that it inherits from its inputs. The implicit sample
time is continuous if any of the block’s inputs are continuous. Otherwise, the
implicit sample time is discrete. An implicit discrete sample time is equal

to the shortest input sample time if all the input sample times are integer
multiples of the shortest time. Otherwise, the implicit sample time is equal to
the fundamental sample time of the inputs, where the fundamental sample
time of a set of sample times is defined as the greatest integer divisor of

the set of sample times. See also “Sample Time Propagation” on page 2-47
for a description of how a process called sample time propagation is used to
determine the sample times of blocks that inherit their sample times.

A block diagram can be optionally color code to indicate the sample times of
the blocks it contains, e.g., black (continuous), magenta (constant), yellow
(hybrid), red (fastest discrete), and so on. See “Displaying Sample Time
Colors” on page 3-10 for more information.

Custom Blocks

You can create libraries of custom blocks that you can then use in your models.
You can create a custom block either graphically or programmatically. To

create a custom block graphically, you draw a block diagram representing the
block’s behavior, wrap this diagram in an instance of the Simulink Subsystem

Modeling Dynamic Systems

block, and provide the block with a parameter dialog, using the Simulink block
mask facility. To create a block programmatically, you create an M-file or a
MEX-file that contains the block’s system functions (see Writing S-Functions).
The resulting file is called an S-function. You then associate the S-function
with instances of the Simulink S-Function block in your model. You can add
a parameter dialog to your S-Function block by wrapping it in a Subsystem
block and adding the parameter dialog to the Subsystem block. See Chapter
21, “Creating Custom Blocks” for more information.

Systems and Subsystems

A Simulink block diagram can consist of layers. Each layer is defined by a
subsystem. A subsystem is part of the overall block diagram and ideally has
no impact on the meaning of the block diagram. Subsystems are provided
primarily to help in the organization aspects of a block diagram. Subsystems
do not define a separate block diagram.

The Simulink software differentiates between two different types of
subsystems: virtual and nonvirtual. The main difference is that nonvirtual
subsystems provide the ability to control when the contents of the subsystem
are evaluated.

Flattening the Model Hierarchy

While preparing a model for execution, internal “systems” are generated that
are collections of block methods (equations) that are evaluated together. The
semantics of time-based block diagrams doesn’t require creation of these
systems. These internal systems are created as a means to manage the
execution of the model. Roughly speaking, there will be one system for the
top-level block diagram which is referred to as the root system, and several
lower-level systems derived from nonvirtual subsystems and other elements
in the block diagram. You will see these systems in the Simulink Debugger.
The act of creating these internal systems is often referred to as flattening
the model hierarchy.

Conditionally Executed Subsystems

You can create conditionally executed subsystems that are executed only
when a transition occurs on a triggering, function-call, action, or enabling
input (see Chapter 4, “Creating Conditional Subsystems”). Conditionally

2-11

2 How Simulink® Works

2-12

executed subsystems are atomic, i.e., the equations that they define are
evaluated as a unit.

Atomic Subsystems

Unconditionally executed subsystems are virtual by default. You can,
however, designate an unconditionally executed subsystem as atomic (see the
Atomic Subsystem block for more information). This is useful if you need to
ensure that the equations defined by a subsystem are evaluated as a unit.

Signals

The term signal refers to a time varying quantity that has values at all
points in time. You can specify a wide range of signal attributes, including
signal name, data type (e.g., 8-bit, 16-bit, or 32-bit integer), numeric type
(real or complex), and dimensionality (one-dimensional, two-dimensional, or
multidimensional array). Many blocks can accept or output signals of any
data or numeric type and dimensionality. Others impose restrictions on the
attributes of the signals they can handle.

On the block diagram, signals are represented with lines that have an
arrowhead. The source of the signal corresponds to the block that writes to the
signal during evaluation of its block methods (equations). The destinations of
the signal are blocks that read the signal during the evaluation of the block’s
methods (equations).

A good way to understand the definition of a signal is to consider a classroom.
The teacher is the one responsible for writing on the white board and the
students read what is written on the white board when they choose to. This
is also true of Simulink signals: a reader of the signal (a block method) can
choose to read the signal as frequently or infrequently as so desired.

For more information about signals, see Chapter 8, “Working with Signals”.

Block Methods

Blocks represent multiple equations. These equations are represented as
block methods. These block methods are evaluated (executed) during the
execution of a block diagram. The evaluation of these block methods is

Modeling Dynamic Systems

performed within a simulation loop, where each cycle through the simulation
loop represent evaluation of the block diagram at a given point in time.

Method Types

Names are assigned to the types of functions performed by block methods.
Common method types include:

¢ Qutputs

Computes the outputs of a block given its inputs at the current time step
and its states at the previous time step.

e Update

Computes the value of the block’s discrete states at the current time step,
given its inputs at the current time step and its discrete states at the
previous time step.

® Derivatives

Computes the derivatives of the block’s continuous states at the current
time step, given the block’s inputs and the values of the states at the
previous time step.

Method Naming Convention

Block methods perform the same types of operations in different ways for
different types of blocks. The Simulink user interface and documentation uses
dot notation to indicate the specific function performed by a block method:

BlockType.MethodType

For example, the method that computes the outputs of a Gain block is referred
to as

Gain.Outputs

The Simulink debugger takes the naming convention one step further and
uses the instance name of a block to specify both the method type and the
block instance on which the method is being invoked during simulation, e.g.,

g1.0utputs

2-13

2 How Simulink® Works

2-14

Model Methods

In addition to block methods, a set of methods is provided that compute the
model’s properties and its outputs. The Simulink software similarly invokes
these methods during simulation to determine a model’s properties and its
outputs. The model methods generally perform their tasks by invoking block
methods of the same type. For example, the model Outputs method invokes
the Outputs methods of the blocks that it contains in the order specified by
the model to compute its outputs. The model Derivatives method similarly
invokes the Derivatives methods of the blocks that it contains to determine
the derivatives of its states.

Simulating Dynamic Systems

Simulating Dynamic Systems

In this section...

“Model Compilation” on page 2-15
“Link Phase” on page 2-16
“Simulation Loop Phase” on page 2-16
“Solvers” on page 2-18

“Zero-Crossing Detection” on page 2-20

“Algebraic Loops” on page 2-31

Model Compilation

The first phase of simulation occurs when you choose Start from the Model
Editor’s Simulation menu, with the system’s model open. This causes the
Simulink® engine to invoke the model compiler. The model compiler converts
the model to an executable form, a process called compilation. In particular,
the compiler

Evaluates the model’s block parameter expressions to determine their
values.

Determines signal attributes, e.g., name, data type, numeric type, and
dimensionality, not explicitly specified by the model and checks that each
block can accept the signals connected to its inputs.

A process called attribute propagation is used to determine unspecified
attributes. This process entails propagating the attributes of a source
signal to the inputs of the blocks that it drives.

Performs block reduction optimizations.

Flattens the model hierarchy by replacing virtual subsystems with the
blocks that they contain (see “Solvers” on page 2-18).

Determines the block sorted order (see “Controlling and Displaying the
Sorted Order” on page 6-36 for more information).

Determines the sample times of all blocks in the model whose sample times
you did not explicitly specify (see “Sample Time Propagation” on page 2-47).

2-15

2 How Simulink® Works

2-16

Link Phase

In this phase, the Simulink Engine allocates memory needed for working
areas (signals, states, and run-time parameters) for execution of the block
diagram. It also allocates and initializes memory for data structures that
store run-time information for each block. For built-in blocks, the principal
run-time data structure for a block is called the SimBlock. It stores pointers
to a block’s input and output buffers and state and work vectors.

Method Execution Lists

In the Link phase, the Simulink engine also creates method execution lists.
These lists list the most efficient order in which to invoke a model’s block
methods to compute its outputs. The block sorted order lists generated during
the model compilation phase is used to construct the method execution lists.

Block Priorities

You can assign update priorities to blocks (see “Assigning Block Priorities” on
page 6-39). The output methods of higher priority blocks are executed before
those of lower priority blocks. The priorities are honored only if they are
consistent with its block sorting rules.

Simulation Loop Phase

Once the Link Phase completes, the simulation enters the simulation loop
phase. In this phase, the Simulink engine successively computes the states
and outputs of the system at intervals from the simulation start time to the
finish time, using information provided by the model. The successive time
points at which the states and outputs are computed are called time steps.
The length of time between steps is called the step size. The step size depends
on the type of solver (see “Solvers” on page 2-18) used to compute the system’s
continuous states, the system’s fundamental sample time (see “Modeling

and Simulating Discrete Systems” on page 2-40), and whether the system’s
continuous states have discontinuities (see “Zero-Crossing Detection” on page
2-20).

The Simulation Loop phase has two subphases: the Loop Initialization phase
and the Loop Iteration phase. The initialization phase occurs once, at the
start of the loop. The iteration phase is repeated once per time step from the
simulation start time to the simulation stop time.

Simulating Dynamic Systems

At the start of the simulation, the model specifies the initial states and
outputs of the system to be simulated. At each step, new values for the
system’s inputs, states, and outputs are computed, and the model is updated
to reflect the computed values. At the end of the simulation, the model reflects
the final values of the system’s inputs, states, and outputs. The Simulink
software provides data display and logging blocks. You can display and/or log
intermediate results by including these blocks in your model.

Loop Iteration
At each time step, the Simulink Engine:

1 Computes the model’s outputs.

The Simulink Engine initiates this step by invoking the Simulink model
Outputs method. The model Outputs method in turn invokes the model
system Outputs method, which invokes the Outputs methods of the blocks
that the model contains in the order specified by the Outputs method
execution lists generated in the Link phase of the simulation (see “Solvers”
on page 2-18).

The system Outputs method passes the following arguments to each block
Outputs method: a pointer to the block’s data structure and to its SimBlock
structure. The SimBlock data structures point to information that the
Outputs method needs to compute the block’s outputs, including the
location of its input buffers and its output buffers.

2 Computes the model’s states.

The Simulink Engine computes a model’s states by invoking a solver. Which
solver it invokes depends on whether the model has no states, only discrete
states, only continuous states, or both continuous and discrete states.

If the model has only discrete states, the Simulink Engine invokes the
discrete solver selected by the user. The solver computes the size of the
time step needed to hit the model’s sample times. It then invokes the
Update method of the model. The model Update method invokes the
Update method of its system, which invokes the Update methods of each of
the blocks that the system contains in the order specified by the Update
method lists generated in the Link phase.

2-17

2 How Simulink® Works

2-18

If the model has only continuous states, the Simulink Engine invokes the
continuous solver specified by the model. Depending on the solver, the
solver either in turn calls the Derivatives method of the model once or
enters a subcycle of minor time steps where the solver repeatedly calls
the model’s Outputs methods and Derivatives methods to compute the
model’s outputs and derivatives at successive intervals within the major
time step. This is done to increase the accuracy of the state computation.
The model Outputs method and Derivatives methods in turn invoke their
corresponding system methods, which invoke the block Outputs and
Derivatives in the order specified by the Outputs and Derivatives methods
execution lists generated in the Link phase.

3 Optionally checks for discontinuities in the continuous states of blocks.

A technique called zero-crossing detection is used to detect discontinuities
in continuous states. See “Zero-Crossing Detection” on page 2-20 for more
information.

4 Computes the time for the next time step.

Steps 1 through 4 are repeated until the simulation stop time is reached.

Solvers

A dynamic system is simulated by computing its states at successive time
steps over a specified time span, using information provided by the model. The
process of computing the successive states of a system from its model is known
as solving the model. No single method of solving a model suffices for all
systems. Accordingly, a set of programs, known as solvers, are provided that
each embody a particular approach to solving a model. The Configuration
Parameters dialog box allows you to choose the solver most suitable for your
model (see “Choosing a Solver Type” on page 14-11).

Fixed-Step Solvers Versus Variable-Step Solvers
The solvers provided in the Simulink software fall into two basic categories:
fixed-step and variable-step.

Fixed-step solvers solve the model at regular time intervals from the beginning
to the end of the simulation. The size of the interval is known as the step size.
You can specify the step size or let the solver choose the step size. Generally,

Simulating Dynamic Systems

decreasing the step size increases the accuracy of the results while increasing
the time required to simulate the system.

Variable-step solvers vary the step size during the simulation, reducing the
step size to increase accuracy when a model’s states are changing rapidly and
increasing the step size to avoid taking unnecessary steps when the model’s
states are changing slowly. Computing the step size adds to the computational
overhead at each step but can reduce the total number of steps, and hence
simulation time, required to maintain a specified level of accuracy for models
with rapidly changing or piecewise continuous states.

Continuous Versus Discrete Solvers
The Simulink product provides both continuous and discrete solvers.

Continuous solvers use numerical integration to compute a model’s continuous
states at the current time step from the states at previous time steps and the
state derivatives. Continuous solvers rely on the model’s blocks to compute
the values of the model’s discrete states at each time step.

Mathematicians have developed a wide variety of numerical integration
techniques for solving the ordinary differential equations (ODEs) that
represent the continuous states of dynamic systems. An extensive set

of fixed-step and variable-step continuous solvers are provided, each
implementing a specific ODE solution method (see “Choosing a Solver Type”
on page 14-11).

Discrete solvers exist primarily to solve purely discrete models. They compute
the next simulation time step for a model and nothing else. They do not
compute continuous states and they rely on the model’s blocks to update the
model’s discrete states.

Note You can use a continuous solver, but not a discrete solver, to solve a
model that contains both continuous and discrete states. This is because a
discrete solver does not handle continuous states. If you select a discrete
solver for a continuous model, your selection is disregarded and uses a
continuous solver instead when solving the model.

2-19

2 How Simulink® Works

2-20

Two discrete solvers are provided: A fixed-step discrete solver and a
variable-step discrete solver. The fixed-step solver by default chooses a step
size and hence simulation rate fast enough to track state changes in the
fastest block in your model. The variable-step solver adjusts the simulation
step size to keep pace with the actual rate of discrete state changes in your
model. This can avoid unnecessary steps and hence shorten simulation time
for multirate models (see “Determining Step Size for Discrete Systems” on
page 2-46 for more information).

Minor Time Steps

Some continuous solvers subdivide the simulation time span into major and
minor time steps, where a minor time step represents a subdivision of the
major time step. The solver produces a result at each major time step. It
uses results at the minor time steps to improve the accuracy of the result at
the major time step.

States Shape Preservation

Usually the integration step size is only related to the current step size and
the current integration error. However, for signals who’s derivative changes
rapidly more accurate integration results can be obtained by including the
derivative input information at each time step. This is done by activating the
State Shapes Preservation option in the Solver pane of the Configuration
Parameter dialog.

Zero-Crossing Detection

A variable-step solver dynamically adjusts the time step size, causing it to
increase when a variable is changing slowly and to decrease when the variable
changes rapidly. This behavior causes the solver to take many small steps in
the vicinity of a discontinuity because the variable is rapidly changing in this
region. This improves accuracy but can lead to excessive simulation times.

The Simulink software uses a technique known as zero-crossing detection to

accurately locate a discontinuity without resorting to excessively small time

steps. Usually this technique improves simulation run time, but it can cause
some simulations to halt before the intended completion time.

Simulating Dynamic Systems

Two algorithms are provided in the Simulink software: Non-Adaptive and
Adaptive. For information about these techniques, see “Zero Crossing
Algorithms” on page 2-25.

Demonstrating Effects of Excessive Zero Crossing Detection

The Simulink software comes with two demos that illustrate zero crossing
behavior.

¢ Run the bounce demo to see how excessive zero crossings can cause a
simulation to halt before the intended completion time.

¢ Run the doublebounce demo to see how the adaptive algorithm successfully
solves a complex system with two distinct zero crossing requirements.

The Bounce Demo.

1 Load the demo by typing bounce at the MATLAB® command prompt.

2 Once the block diagram appears, navigate to the Configuration
Parameters dialog. Confirm that the Zero crossing location algorithm
is set to Non-adaptive.

3 Run the model for a simulation time of 20 seconds.

4 After the simulation completes, click on the scope to display the results.

You may need to click on Autoscale to get a clear display.

Use the scope zoom controls to closely examine the last portion of the
simulation. You can see that the velocity is hovering just above zero at the
last time point.

5 Change the simulation run time to 25 seconds, and run the simulation
again.

6 This time the simulation halts with an error shortly after it passes the
simulated 20 second time point.

Excessive chattering as the ball repeatedly approaches zero velocity has
caused the simulation to exceed the default limit of 1000 for the number of
consecutive zero crossings allowed. Although this limit can be increased

2-21

2 How Simulink® Works

2-22

by adjusting the Number of consecutive zero crossings allowed
parameter in the Configuration Parameters dialog, doing so in this
case does not allow the simulation to simulate for 25 seconds.

7 Navigate to the Configuration Parameters dialog and select the
Adaptive zero crossing location algorithm from the Zero crossing
location algorithm pull down.

8 Change the simulation time to 25 seconds, and run the simulation again.

9 This time the simulation runs to completion because the adaptive algorithm
prevented an excessive number of zero crossings from occurring.

The Doublebounce Demo.
1 Load the demo by typing doublebounce at the MATLAB command prompt.

2 In the demo, click the Non-adaptive button. This causes the demo to run
with the Non-adaptive zero crossing location algorithm. This is the default
setting used by the Simulink software for all models.

3 Notice that the two balls hit the ground and recoil at different times.

4 The simulation halts after 14 seconds because the ball on the left has
exceeded the number of zero crossings limit. The ball on the right is left
hanging in mid air.

5 Click on the error message to clear it.

6 Click on the Adaptive button to run the simulation with the Adaptive zero
crossing location algorithm.

7 Notice that this time the simulation runs to completion, even when the
ground shifts out from underneath the ball on the left after 20 seconds.

How the Simulator Can Miss Zero Crossing Events

The bounce and doublebounce demos show that high-frequency fluctuations
about a discontinuity (chattering’) can cause a simulation to prematurely halt.

It is also possible for the solver to entirely miss zero crossings if the solver
error tolerances are too large. This is possible because the zero crossing

Simulating Dynamic Systems

detection technique checks to see if the value of a signal has changed sign
after a major time step. A sign change indicates that a zero crossing has
occurred, and the zero crossing algorithm will then hunt for the precise
crossing time. However, if a zero crossing occurs within a time step, but the
values at the beginning and end of the step do not indicate a sign change, the
solver steps over the crossing without detecting it.

The following figure shows a signal that crosses zero. In the first instance,
the integrator steps over the event because the sign has not changed between
time steps. In the second, the solver detects change in sign and so detects
the zero crossing event.

not detected
detected

Preventing Excessive Zero Crossings

Use this table to help you prevent excessive zero crossing errors in your model.

Make this How to make this Rational for making this
change... change... change...

Increase the Increase the value of the This may give your model
number of Number of consecutive | enough time to resolve the
allowed zero zero crossings allowed. | zero crossing.

crossings option on the Solver pane

in the Configuration
Parameters dialog.

2-23

2 How Simulink® Works

2-24

Make this How to make this Rational for making this
change... change... change...
Relax the Decrease the value of The solver requires less
zero crossing the Consecutive zero time to precisely locate the
threshold crossings relative zero crossing. This can
tolerance option on reduce simulation time
the Solver pane in and eliminate excessive
the Configuration number of consecutive zero
Parameters dialog. crossings errors. However,
relaxing the zero crossing
threshold may reduce
accuracy.
Use the Select Adaptive from the | This algorithm

Adaptive Zero
crossing location
algorithm

Zero crossing location
algorithm pull down
on the Solver pane

in the Configuration
Parameters dialog.

dynamically adjusts the
zero crossing threshold,
which improves accuracy
and reduces the number of
consecutive zero crossings
detected. With this
algorithm you have the
option of specifying a zero
crossing tolerance

Disable
zero-crossing
detection for a
specific block

1 Uncheck the Enable
zero crossing
detection option on
the block’s parameter
dialog box, and

2 Select Use local
settings from the Zero
crossing control pull
down on the Solver pane
of the Configuration
Parameters dialog box.

Locally disabling
zero-crossing detection
prevents a specific

block from stopping the
simulation because of
excessive consecutive zero
crossings. All other blocks
continue to benefit from the
increased accuracy that
zero-crossing detection
provides.

Simulating Dynamic Systems

Make this How to make this Rational for making this
change... change... change...
Disable Select Disable all from This prevents zero

zero-crossing
detection for the
entire model

the Zero crossing control
pull down on the Solver
pane of the Configuration
Parameters dialog box.

crossings from being
detected anywhere in your
model. A consequence is
that your model no longer
benefits from the increased
accuracy that zero-crossing
detection provides.

If using the
od15s solver,
consider
adjusting the
order of the
numerical
differentiation
formulas

Select a value from the
Maxim order pulldown
in the Solver pane

of the Configuration
Parameters dialog box.

For more information, see
“Maximum order”.

Reduce the
maximum step
size

Enter a value for the
Max step size option
in the Solver pane

of the Configuration
Parameters dialog box.

This can insure the solver
takes steps small enough
to resolve the zero crossing.
However, reducing the
step size can increase
simulation time, and

is seldom necessary

when using the Adaptive
algorithm.

Zero Crossing Algorithms
The Simulink software includes two zero crossing detection algorithms:
Non-Adaptive and Adaptive.

To choose the algorithm, either use the Zero crossing location algorithm
option in the Solver pane of the Configuration Parameter dialog, or use
the ZeroCrossAlgorithm command. The command can either be set to
"Non-adaptive' or 'Adaptive’.

2-25

2 How Simulink® Works

2-26

The Non-Adaptive algorithm is provided for backwards compatibility with
older versions of Simulink and is the default. It brackets the zero crossing
event and uses increasingly smaller time steps to pinpoint when the zero
crossing has occurred. Although adequate for many types of simulations, the
Non-Adaptive algorithm can result in very long simulation times when a high
degree of 'chattering’ (high frequency oscillation around the zero crossing
point) is present.

The Adaptive algorithm dynamically turns the bracketing on and off, and
is a good choice when:

¢ The system contains a large amount of chattering.

* You wish to specify a guard band (tolerance) around which the zero crossing
is detected.

The Adaptive algorithm turns off zero crossing bracketing (stops iterating) if
either of the following are satisfied:

® The zero crossing error is exceeded. This is determined by the value
specified in the Zero crossing location threshold option in the Solver
pane of the Configuration Parameter dialog. This can also be set with the
ZcDetectionTol command. The default is Auto, but you can enter any real
number greater than zero for the tolerance.

® The system has exceeded the number of consecutive zero crossings specified
in the Number of consecutive zero crossings allowed option in the
Solver pane of the Configuration Parameter dialog. Alternatively, this can
be set with the MaxConsecutiveZCs command.

Understanding Zero Crossing Threshold

The Adaptive algorithm automatically sets a tolerance for zero crossing
detection. Alternatively, you can set the tolerance by entering a real number
greater than or equal to zero in the Configuration Parameters Solver pane,
Zero crossing location threshold pull down. This option only becomes
active when the Zero crossing algorithm is set to Adaptive.

This graphic shows how the Zero crossing threshold sets a window region
around the zero crossing point. Signals falling within this window are
considered as being at zero.

Simulating Dynamic Systems

_]Cly_____ ________

—] _f Zero Crossing
______ fF——a— = —— Threshold

Tn-1 tn

The zero crossing event is bracketed by time steps T, ; and T . The solver
iteratively reduces the time steps until the state variable lies within the band
defined by the zero crossing threshold, or until the number of consecutive zero
crossings equals or exceeds the value in the Configuration Parameters Solver
pane, Number of consecuitive zero crossings allowed pull down.

It is evident from the figure that increasing the zero crossing threshold
increases the distance between the time steps which will be executed. This
often results in faster simulation times, but could reduce accuracy.

How Blocks Work with Zero-Crossing Detection

A block can register a set of zero-crossing variables, each of which is a function
of a state variable that can have a discontinuity. The zero-crossing function
passes through zero from a positive or negative value when the corresponding
discontinuity occurs. The registered zero-crossing variables are updated at
the end of each simulation step, and any variable that has changed sign is
identified as having had a zero crossing event.

If any zero crossings are detected, the Simulink software interpolates between
the previous and current values of each variable that changed sign to estimate

the times of the zero crossings (that is, the discontinuities).

Blocks that Register Zero Crossings. The following table lists blocks that
register zero crossings and explains how the blocks use the zero crossings:

2-27

2 How Simulink® Works

2-28

Block Description of Zero Crossing

Abs One: to detect when the input signal crosses zero in
either the rising or falling direction.

Backlash Two: one to detect when the upper threshold is engaged,

and one to detect when the lower threshold is engaged.

Compare To Zero

One: to detect when the signals equals zero.

Dead Zone

Two: one to detect when the dead zone is entered (the
input signal minus the lower limit), and one to detect
when the dead zone is exited (the input signal minus

the upper limit).

From Workspace

One: to detect when the input signal has a discontinuity
in either the rising or falling direction

Hit Crossing

One: to detect when the input crosses the threshold.

If

One: to detect when the If condition is met.

Integrator If the reset port is present, to detect when a reset
occurs. If the output is limited, there are three zero
crossings: one to detect when the upper saturation limit
is reached, one to detect when the lower saturation limit
is reached, and one to detect when saturation is left.

MinMax One: for each element of the output vector, to detect
when an input signal is the new minimum or maximum.

Relay One: if the relay is off, to detect the switch on point. If
the relay is on, to detect the switch off point.

Relational One: to detect when the output changes.

Operator

Saturation Two: one to detect when the upper limit is reached or
left, and one to detect when the lower limit is reached
or left.

Sign One: to detect when the input crosses through zero.

Signal Builder One: to detect when the input signal has a discontinuity
in either the rising or falling direction

Stateflow® One: to detect if there is a valid state transition

Simulating Dynamic Systems

Block Description of Zero Crossing

Step One: to detect the step time.

Subsystem For conditionally executed subsystems: one for the
enable port if present, and one for the trigger port, if
present.

Switch One: to detect when the switch condition occurs.

Switch Case One: to detect when the case condition is met.

Implementation Example: Saturation Block. An example of a Simulink
block that registers zero crossings is the Saturation block. Zero crossing
detection identifies these state events in the Saturation block:

¢ The input signal reaches the upper limit.

¢ The input signal leaves the upper limit.

¢ The input signal reaches the lower limit.

¢ The input signal leaves the lower limit.

Simulink blocks that define their own state events are considered to have
intrinsic zero crossings. Use the Hit Crossing block to receive explicit

notification of a zero-crossing event. See “Blocks that Register Zero Crossings”
on page 2-27 for a list of blocks that incorporate zero crossings.

The detection of a state event depends on the construction of an internal
zero-crossing signal. This signal is not accessible by the block diagram. For
the Saturation block, the signal that is used to detect zero crossings for the
upper limit is zcSignal = UpperLimit - u, where u is the input signal.

Zero-crossing signals have a direction attribute, which can have these values:

® rising — A zero crossing occurs when a signal rises to or through zero, or
when a signal leaves zero and becomes positive.

® falling — A zero crossing occurs when a signal falls to or through zero, or
when a signal leaves zero and becomes negative.

® c¢ither — A zero crossing occurs if either a rising or falling condition occurs.

2-29

2 How Simulink® Works

For the Saturation block’s upper limit, the direction of the zero crossing is
either. This enables the entering and leaving saturation events to be detected
using the same zero-crossing signal.

2-30

Simulating Dynamic Systems

Algebraic Loops

Some Simulink blocks have input ports with direct feedthrough. This means
that the output of these blocks cannot be computed without knowing the
values of the signals entering the blocks at these input ports. Some examples
of blocks with direct feedthrough inputs are as follows:

¢ Math Function block

¢ Gain block

¢ Integrator block’s initial condition ports

® Product block

e State-Space block when there is a nonzero D matrix

e Sum block

e Transfer Fen block when the numerator and denominator are of the same
order

e Zero-Pole block when there are as many zeros as poles

An algebraic loop generally occurs when an input port with direct feedthrough
is driven by the output of the same block, either directly, or by a feedback path
through other blocks with direct feedthrough. An example of an algebraic
loop is this simple scalar loop.

u

— e+ |
Mathematically, this loop implies that the output of the Sum block is an
algebraic state z constrained to equal the first input ¥ minus z (i.e., z = u - 2).

The solution of this simple loop is z = /2, but most algebraic loops cannot be
solved by inspection.

2-31

2 How Simulink® Works

It is easy to create vector algebraic loops with multiple algebraic state
variables z1, z2, etc., as shown in this model.

22
>+
21 22+21-1 Solve 21 Ijl
-+ piie 10 e >
- Algebraic Constraint Display =1
Sum
21 _
22 zl-z1-1 Solve z2
-+ w0 > !
1 -{— Algebraic Constraintd Dizplay z2
Constant Sum

The Algebraic Constraint block is a convenient way to model algebraic
equations and specify initial guesses. The Algebraic Constraint block
constrains its input signal F(z) to zero and outputs an algebraic state z. This
block outputs the value necessary to produce a zero at the input. The output
must affect the input through some direct feedback path, i.e., the feedback
path solely contains blocks with direct feedthrough. You can provide an
initial guess of the algebraic state value in the block’s dialog box to improve
algebraic loop solver efficiency.

A scalar algebraic loop represents a scalar algebraic equation or constraint of
the form F(z) = 0, where z is the output of one of the blocks in the loop and
the function F consists of the feedback path through the other blocks in the
loop to the input of the block. In the simple one-block example shown on

the previous page, F(z) =z - (u - z). In the vector loop example shown above,
the equations are

z2 + z1 - 1 =
z2 - z1 - 1 =

|
S O

Algebraic loops arise when a model includes an algebraic constraint F(z) = 0.
This constraint might arise as a consequence of the physical interconnectivity
of the system you are modeling, or it might arise because you are specifically
trying to model a differential/algebraic system (DAE).

2-32

Simulating Dynamic Systems

When a model contains an algebraic loop, a loop solving routine is called at
each time step. The loop solver performs iterations to determine the solution
to the problem (if it can). As a result, models with algebraic loops run slower
than models without them.

To solve F(z) = 0, the Simulink loop solver uses Newton’s method with weak
line search and rank-one updates to a Jacobian matrix of partial derivatives.
Although the method is robust, it is possible to create loops for which the loop
solver will not converge without a good initial guess for the algebraic states z.
You can specify an initial guess for a line in an algebraic loop by placing an IC
block (which is normally used to specify an initial condition for a signal) on
that line. As shown above, another way to specify an initial guess for a line in
an algebraic loop is to use an Algebraic Constraint block.

Whenever possible, use an IC block or an Algebraic Constraint block to specify
an initial guess for the algebraic state variables in a loop.

Highlighting Algebraic Loops
You can highlight algebraic loops when you update, simulate, or debug a

model. Use the ashow command to highlight algebraic loops when debugging
a model.

For example, the following figure shows the block diagram of the hydcyl demo
model in its original colors.

The following figure shows the diagram after updating when the Algebraic
loop diagnostic is set to Error.

Eliminating Algebraic Loops

The Simulink software can eliminate some algebraic loops that include any of
the following types of blocks:

® Atomic Subsystem
¢ Enabled Subsystem
® Model

2-33

2 How Simulink® Works

To enable automatic algebraic loop elimination for a loop involving a particular
instance of an Atomic Subsystem or Enabled Subsystem block, select the
Minimize algebraic loop occurrences parameter on the block’s parameters
dialog box. To enable algebraic loop elimination for a loop involving a Model
block, select the Minimize algebraic loop occurrences parameter on the
Model Referencing Pane of the Configuration Parameters dialog box
(see “Model Referencing Pane”) of the model referenced by the Model block.

If a loop includes more than one instance of these blocks, you should enable
algebraic loop elimination for all of them, including nested blocks.

Note The Simulink software does not minimize algebraic loops on
signals that are test points, even if you select Minimize algebraic loop
occurrences

Algebraic loop minimization is off by default because it is incompatible with
conditional input branch optimization in Simulink (see “Optimization Pane”)
and with single output/update function optimization in Real-Time Workshop®.
If you need these optimizations for an atomic or enabled subsystem or
referenced model involved in an algebraic loop, you must eliminate the
algebraic loop yourself.

The Minimize algebraic loop solver diagnostic allows you to specify the
action Simulink should take, for example, display a warning, if it is unable
to eliminate an algebraic loop involving a block for which algebraic loop
elimination is enabled. See “Diagnostics Pane: Solver” for more information.

2-34

Simulating Dynamic Systems

As an example of the ability of the Simulink software to eliminate algebraic
loops, consider the following model.

- @
I 1 >
Inl . Outl
Gain Integrator
\\\\~\ s
= 7
7
“~\~‘ 7
1 P1inl oun &<
Constant

Atomic Subsystem

Gain

2-35

2 How Simulink® Works

Simulating this model with the solver’s Algebraic Loop diagnostic set to error
(see “Diagnostics Pane: Solver” for more information) reveals that this model
contains an algebraic loop involving its atomic subsystem.

1 algebraic_loop_elim_ex o] |

View Fonk Size

lMeszage Source Feported by SLmmEky
 Wiodel errar |algebraic | |Simulink Elock diagram ‘algehraic_loop_...
@ Blockerrar Atomic Sub... Simulink Algebraic loop error with ‘algehr...
@ Blockerrar Gain Sirnulink Algebraic loop error with ‘algehr...
@ Blockerror Sum Simulink Algebraic loop error with ‘alaehr...

@ todel error Unknown Simulink This algebraic loop may be resa...

Rl |

|© aloebraic_loop_elim_ex |
Block diagram 'algehraic loop elim ex contains an algebraic loop. The
algebraic loop solver is disabled because ofthe current setting for Algehraic
[oop option in the Diagnostics page ofthe Configuration Parameters Dialog.

Open | Helg | Close |

2-36

Simulating Dynamic Systems

Checking the atomic subsystem’s Minimize algebraic loop occurrences
parameter eliminates the algebraic loop from the compiled version of the

model.
1 P1inl \ Outl &’
Constant Atomic Subsystem
=
Subsystem

Select the settings for the subsystem block.

Parameters

v Show port labels

Read/wiite permissions: | Readwrit ﬂ

Wame of error callback function:

Permit hierarchical rezolution: VAl ﬂ

v Treat az atomic unit

¥ Minimize algebraic loop ocoumences

Sample time [-1 for inherited):

|1

Fieal-Time wWorkshop zystem code: | Auto ﬂ

(1]4 | Cancel

2-37

2 How Simulink® Works

As a result, the model now simulates without error.

1 Outl

In1

Constant Atomic Subsystem

_ioix
SE L0 ARE W ~

-5

e - - - - - - --——-—---
el - - - ----------

. - - - - - - -------
 lecoccoocoocoad

0 10

Titme offset: 0O

Note that the Simulink software is able to eliminate the algebraic loop
involving this model’s atomic subsystem because the atomic subsystem
contains a block with a port that does not have direct feedthrough, i.e., the
Integrator block.

2-38

Simulating Dynamic Systems

If you remove the Integrator block from the atomic subsystem, the algebraic
loop cannot be eliminated. Hence, attempting to simulate the model results

in an error.

D)
Inl Gain Outl

1 Pfin1 Outl

Constant

Atomic Subsystem

Gain

1 algebraic_loop _no_elim_ex =10 ﬂ

View Fonk Size

Meszsage Source Reported by Summary
Model error Jalgebraic_|... |Simulink Block diagram ‘algehraic_loop_ &
@ Blockerror Atomic Sub... Simulink Alnebraic loop errorwith ‘algebr
@ Blockerrar Gain Simulink Alnebraic loop errorwith ‘algebr
ﬂ Plarl arrmr ik Sirenalinle Llrohrair Innn arenr with 'rlnﬂl‘

/;i algebraic_loop_no_elim_ex
Block diagram ‘algehraic [oop no elitn ex' contains an algebraic loop. The
algehraic loop solver is dizabled hecause of the current setting for Algebraic
loop option in the Diagnostics page ofthe Configuration Parameters Dialog.

Cipen | Help | Close |

2-39

2 How Simulink® Works

2-40

Modeling and Simulating Discrete Systems

In this section...

“Multirate and Hybrid Systems” on page 2-40

“Specifying Sample Time” on page 2-41

“Purely Discrete Systems” on page 2-44

“Multirate Systems” on page 2-44

“Determining Step Size for Discrete Systems” on page 2-46
“Sample Time Propagation” on page 2-47

“Propagating Sample Times Back to Source Blocks” on page 2-48
“Constant Sample Time” on page 2-49

“Mixed Continuous and Discrete Systems” on page 2-52

Multirate and Hybrid Systems

The Simulink® product has the ability to simulate discrete (sampled data)
systems, including systems whose components operate at different rates
(multirate systems) and systems that mix discrete and continuous components
(hybrid systems). This capability stems from two key Simulink features:

¢ SampleTime block parameter

Some Simulink blocks have a SampleTime parameter that you can use to
specify the block’s sample time, i.e., the rate at which it executes during
simulation. All blocks have either an explicit or implicit sample time
parameter. Continuous blocks are examples of blocks that have an implicit
(continuous) sample time. It is possible for a block to have multiple sample
times as provided with blocksets such as the Signal Processing Blockset™
product, or created by a user using the S-Function block.

® Sample-time inheritance

Most standard Simulink blocks can inherit their sample time from

the blocks connected to their inputs. Exceptions include blocks in the
Continuous library and blocks that do not have inputs (e.g., blocks from the
Sources library). In some cases, source blocks can inherit the sample time
of the block connected to their output.

Modeling and Simulating Discrete Systems

The ability to specify sample times on a block-by-block basis, either directly
through the SampleTime parameter or indirectly through inheritance, enables
you to model systems containing discrete components operating at different
rates and hybrid systems containing discrete and continuous components.

Specifying Sample Time

You can specify the sample time of any block that has a SampleTime
parameter. You can use the block’s parameter dialog box to set this parameter.
You do this by entering the sample time in the Sample time field on the
dialog box. You can enter either the sample time alone or a vector whose first
element is the sample time and whose second element is an offset: [T, T,I.
Various values of the sample time and offset have special meanings.

The following table summarizes valid values for this parameter and how the
Simulink software interprets them to determine a block’s sample time.

Sample Time Usage

[Ty, T,1 Specifies that updates occur at simulation times
0 < Ts < Tsim

[T,| < T, t,=n*T, + |T|

where n is an integer in the range 0. .T /T and T
is the length of the simulation. Blocks that have a
sample time greater than 0 are said to have a discrete
sample time.

The offset allows you to specify that the block be
updated later in the sample interval than other
blocks operating at the same rate.

[0, 0], O Specifies that updates occur at every major and minor
time step. A block that has a sample time of 0 is said
to have a continuous sample time.

2-41

2 How Simulink® Works

Sample Time Usage

[0, 1] Specifies that updates occur only at major time
steps, skipping minor time steps (see “Minor Time
Steps” on page 2-20). This setting avoids unnecessary
computations for blocks whose sample time cannot
change between major time steps. The sample time of
a block that executes only at major time steps is said
to be fixed in minor time step.

[-1, 0], -1 If the block is not in a triggered subsystem,

this setting specifies that the block inherits its
sample time from the block connected to its input
(inheritance) or, in some cases, from the block
connected to its output (back inheritance). If the
block is in a triggered subsystem, you must set the
SampleTime parameter to this setting.

Note that specifying sample-time inheritance for
a source block can cause the Simulink software to
assign an inappropriate sample time to the block
if the source drives more than one block. For this
reason, you should avoid specifying sample-time
inheritance for source blocks. If you do, a warning
message is displayed when you update or simulate
the model.

2-42

Modeling and Simulating Discrete Systems

Sample Time Usage

[-2, T,] Specifies that a block has a variable sample time, that
is, computes its output only at times specified by the
block. Every block with variable sample time has a
unique T, determined by the Simulink software. The
only built-in Simulink block that can have variable
sample time is the Pulse Generator block.

inf The meaning of this sample time depends on whether
the active model configuration’s inline parameters
optimization (see “Inline parameters”) is enabled.

If the inline parameters optimization is enabled, inf
signifies that the block’s output can never change (see
“Constant Sample Time” on page 2-49). This speeds
up simulation and the generated code by eliminating
the need to recompute the block’s output at each
time step. If the inline parameters optimization is
disabled or the block with inf sample time drives an
output port of a conditionally executed subsystem,
inf is treated as -1, i.e., as inherited sample time.
This allows you to tune the block’s parameters during
simulation.

Changing a Block’s Sample Time

You cannot change the SampleTime parameter of a block while a simulation
is running. If you want to change a block’s sample time, you must stop and
restart the simulation for the change to take effect.

Compiled Sample Time

During the compilation phase of a simulation, the sample time of the block
is determined from its SampleTime parameter (if it has a SampleTime
parameter), sample-time inheritance, or block type (Continuous blocks
always have a continuous sample time). It is this compiled sample time that
determines the sample rate of a block during simulation. You can determine
the compiled sample time of any block in a model by first updating the model
and then getting the block’s CompiledSampleTime parameter, using the
get_param command.

2-43

2 How Simulink® Works

2-44

Purely Discrete Systems

Purely discrete systems can be simulated using any of the solvers; there is
no difference in the solutions. To generate output points only at the sample
hits, choose one of the discrete solvers.

Multirate Systems

Multirate systems contain blocks that are sampled at different rates. These
systems can be modeled with discrete blocks or with both discrete and
continuous blocks. For example, consider this simple multirate discrete model.

=+0.1 C
0.2 7
DTF1 vl
Constant z+H1 .1 | {::
=02
LDTF2 ¥2)

For this example the DTF1 Discrete Transfer Fcn block’s Sample time is set
to [1 0.1], which gives it an offset of 0.1. The DTF2 Discrete Transfer Fcn
block’s Sample time is set to 0.7, with no offset.

Modeling and Simulating Discrete Systems

Starting the simulation and plotting the outputs using the stairs function

[t,x,y] = sim('multirate', 3);
stairs(t,y)

produces this plot

1.4
| —
124 o / i
y(2) <
1 i
0.8F g
y(1)
0.6F g
0.4F g
021 g
O Il Il Il Il Il
0 0.5 1 15 2 2.5 3

See “Running a Simulation Programmatically” on page 14-74 for information
on the sim command.

For the DTF1 block, which has an offset of 0.1, there is no output until t =
0.1. Because the initial conditions of the transfer functions are zero, the
output of DTF1, y(1), is zero before this time.

2-45

2 How Simulink® Works

2-46

Determining Step Size for Discrete Systems

Simulating a discrete system requires that the simulator take a simulation
step at every sample time hit, that is, at integer multiples of the system’s
shortest sample time. Otherwise, the simulator might miss key transitions
in the system’s states. This is avoided by choosing a simulation step size

to ensure that steps coincide with sample time hits. The step size that the
Simulink software chooses depends on the system’s fundamental sample time
and the type of solver used to simulate the system.

The fundamental sample time of a discrete system is the greatest integer
divisor of the system’s actual sample times. For example, suppose that a
system has sample times of 0.25 and 0.5 second. The fundamental sample
time in this case is 0.25 second. Suppose, instead, the sample times are 0.5
and 0.75 second. In this case, the fundamental sample time is again 0.25
second.

You can direct the Simulink software to use either a fixed-step or a
variable-step discrete solver to solve a discrete system. A fixed-step solver
sets the simulation step size equal to the discrete system’s fundamental
sample time. A variable-step solver varies the step size to equal the distance
between actual sample time hits.

The following diagram illustrates the difference between a fixed-step and
a variable-size solver.

5 1 & & &t &

St

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Fixed-Step Solver

G

S S

Q.00 0.25 0.50 0.75 1.00 1.25 1.50

Variable-Step Solver

Modeling and Simulating Discrete Systems

In the diagram, arrows indicate simulation steps and circles represent sample
time hits. As the diagram illustrates, a variable-step solver requires fewer
simulation steps to simulate a system, if the fundamental sample time is
less than any of the actual sample times of the system being simulated. On
the other hand, a fixed-step solver requires less memory to implement and

is faster if one of the system’s sample times is fundamental. This can be an
advantage in applications that entail generating code from a Simulink model
(using Real-Time Workshop®).

Sample Time Propagation

When updating a model’s diagram, for example, at the beginning of a
simulation, a process called sample time propagation is used to determine the
sample times of blocks that inherit their sample times. The figure below
illustrates a Discrete Filter block with a sample time of Ts driving a Gain
block.

1
— 1
142z 1

Discrete Filter ain

Because the Gain block’s output is simply the input multiplied by a constant,
its output changes at the same rate as the filter. In other words, the Gain
block has an effective sample rate equal to that of the filter’s sample rate.
This is the fundamental mechanism behind sample time propagation in the
Simulink product.

An inherited sample time is assigned to a block based on the sample times of
the blocks connected to its inputs, using the following rules.

e [f all the inputs have the same sample time, that sample time is assigned
to the block.

¢ Ifthe inputs have different sample times and if all the input sample times
are integer multiples of the fastest input sample time, the block is assigned
the sample time of the fastest input.

¢ [f the inputs have different sample times and some of the input sample
times are not integer multiples of the fastest sample time and a
variable-step solver is being used, the block is assigned continuous sample
time.

2-47

2 How Simulink® Works

2-48

¢ If the inputs have different sample times and some of the input sample
times are not integer multiples of the fastest sample time and a fixed-step
solver is being used, and the greatest common divisor of the sample times
(the fundamental sample time) can be computed, the block is assigned the
fundamental sample time; otherwise, in this case, the block is assigned
continuous sample time.

Note A Model block can inherit its sample time from its inputs only if
the inputs and outputs of the model that it references do not depend on
the sample time

Propagating Sample Times Back to Source Blocks

When you update or simulate a model that specifies a source block’s sample
time as inherited (- 1), the source block’s sample time may be back propagated,
i.e., it sets the source block’s sample time to be the same as the sample time
specified or inherited by the block to which the source block is connected. This
only happens if it can be done without changing the results of simulating the
model. For example, in the model below, the Simulink software recognizes
that the Sine Wave block is driving a Discrete-Time Integrator block whose
sample time is 1, so it assigns the Sine Wave block a sample time of 1.

z-1

ﬁluj > P{l

l) : . Outl
Sine Wave Discrete-Time Gain Ts=-1
Ts=-1 Integrator Ts=-1
Ts=1

You can verify this by selecting Sample Time Colors from the Simulink
Format menu and noting that all blocks are colored red. Because the
Discrete-Time Integrator block only looks at its input at its sample times, this
change does not affect the outcome of the simulation but does result in a
performance improvement.

Replacing the Discrete-Time Integrator block with a continuous Integrator
block, as shown below, and recoloring the model by choosing Update
diagram from the Edit menu cause the Sine Wave and Gain blocks to change
to continuous blocks, as indicated by their being colored black.

Modeling and Simulating Discrete Systems

> L >
\/ ° Outl

Sine Wave Integrator Gain Ts=-1
Ts=-1 Ts=-1

Note Back propagation makes the sample times of a model’s sources
dependent on block connectivity. If you change the connectivity of a model
whose sources inherit sample times, you can inadvertently change the source
sample times. For this reason, when you update or simulate a model, by
default the Simulink software displays warnings at the command line if the
model contains sources that inherit their sample times. See “Source block
specifies -1 sample time” for more information.

Constant Sample Time

A block whose output cannot change from its initial value during a simulation
is said to have constant sample time. A block has constant sample time if it
satisfies both of the following conditions:

e All of its parameters are nontunable, either because they are inherently
nontunable or because they have been inlined (see “Inline parameters”).

® The block’s sample time has been declared infinite (inf) or its sample time
is declared to be inherited and it inherits a constant sample time from
another block to which it is connected.

When the Simulink software updates a model, for example, at the beginning
of a simulation, it determines which blocks, if any, have constant sample time,
and computes the initial values of the output ports. During the simulation,
the initial values are used whenever the outputs of blocks with constant
sample time are required, thus avoiding unnecessary computations.

You can determine which blocks have constant sample time by selecting

Sample Time Colors from the Format menu and updating the model.
Blocks with constant sample time are colored magenta.

2-49

2 How Simulink® Works

For example, in this model, both the Constant and Gain blocks have constant
sample time.

Inline Parameters = on

KTs
>
271 outl

Constant Gain Discrete-Time Ts=-1
Ts=inf Ts=-1 Integrator
Ts=1

The Gain block has constant sample time because it inherits its sample time
from the Constant block and all of the model’s parameters are inlined, i.e.,
nontunable.

Note The Simulink block library includes a few blocks, e.g., the S-Function,
Level-2 M-File S-Function, Rate Transition, and Model block, whose ports can
produce outputs at different sample rates. It is possible for some of the ports
of such blocks to inherit a constant sample time. The ports with constant
sample time produce output only once, at the beginning of the simulation. The
other ports produce outputs at their sample rates.

How Blocks with Infinite Sample Times and Tunable
Parameters are Treated

A block that has tunable parameters cannot have constant sample time even
if its sample time is specified to be infinite. This is because the fact that

a block has one or more tunable parameters means that you can change the
values of its parameters during simulation and hence the value of its outputs.
In this case, sample time propagation (see “Sample Time Propagation” on
page 2-47) is used to determine the block’s actual sample time.

2-50

Modeling and Simulating Discrete Systems

For example, consider the following model.

The fast-rate (1) discrete integrator back—propagates its sample time to the constant block

Inl1
A (: " outt
e n outl
-y
Sine Wave In3 KTs
1 out2

Discrete-Time
> Integrator

J/ Constant At Fast Rate

Notes— S
ODE3 Solver, 1sec fixed—-step, singletasking mode
inline parameters turned off .

g
Out2
Ts=-1

0 P

Constant Switch
Ts=inf

Ts=4

In this example, although the Constant block’s sample time is specified to be
infinite, it cannot have constant sample time because the inlined parameters

option is off for this model and therefore the block’s Constant value
parameter is tunable. Since the Constant block’s output can change during

the simulation, a sample time for the block has to be determined that ensures

accurate simulation results. It does this by treating the Constant block’s

2 How Simulink® Works

2-52

sample time as inherited and using sample time propagation to determine

its sample time. The first nonvirtual block in the diagram branch to which
the Constant block is connected is the Discrete-Time Integrator block. As a
result, the block inherits its sample time (1 sec) via back propagation from
the Discrete-Time Integrator block.

Mixed Continuous and Discrete Systems

Mixed continuous and discrete systems are composed of both sampled and
continuous blocks. Such systems can be simulated using any of the integration
methods, although certain methods are more efficient and accurate than
others. For most mixed continuous and discrete systems, the Runge-Kutta
variable-step methods, 0de23 and ode45, are superior to the other methods in
terms of efficiency and accuracy. Because of discontinuities associated with
the sample and hold of the discrete blocks, the ode15s and ode113 methods
are not recommended for mixed continuous and discrete systems.

Creating a Model

Creating an Empty Model (p. 3-3)
Selecting Objects (p. 3-5)

Specifying Block Diagram Colors
(p. 3-7)

Connecting Blocks (p. 3-13)

Aligning, Distributing, and Resizing
Groups of Blocks (p. 3-22)

Annotating Diagrams (p. 3-24)

Creating Subsystems (p. 3-35)

Modeling Control Flow Logic
(p. 3-42)

Using Callback Functions (p. 3-52)
Using Model Workspaces (p. 3-61)
Resolving Symbols (p. 3-69)
Working with Data Stores (p. 3-74)

Consulting the Model Advisor
(p. 3-80)

How to create a new model.
How to select objects in a model.

How to specify the colors of blocks,
lines, and annotations and the
background of the diagram.

How to draw connections between
blocks.

How to align, distribute, and resize
groups of blocks.

How to add annotations to a block
diagram.

How to create subsystems.

How to use control flow blocks to
model control logic.

How to use callback routines to
customize a model.

How to modify, save, and reload a
model’s private workspace.

How to use symbols to specify values
and definitions in a model

How to create and access data stores.

How to use the Model Advisor
to configure a model for efficient
simulation and code generation.

3 Creating a Model

Managing Model Versions (p. 3-95)

Model Discretizer (p. 3-110)

How to use version control systems
to manage and track development of
Simulink® models.

How to create a discrete model from
a continuous model.

Creating an Empty Model

Creating an Empty Model

To create an empty model, click the New button on the Library Browser’s
toolbar, or choose New from the library window’s File menu and select
Model. An empty model is created in memory and it is displayed in a new
model editor window.

F] untitled1 =10l]

File Edit View Simulation Format Tools Help

DeHE| 2R 222 » =foo [Nm =]|L

Ready 100% |ode4s A

Creating a Model Template

When creating a model, defaults are used for many of configuration
parameters. For instance, by default, new models have a white canvas, the
ode45 solver, and a visible toolbar. If these defaults are not to your liking,
use the Simulink® software model construction commands (see “Model
Construction”) to write a function that creates a model with the defaults you
prefer.

For example, the following function creates a model that has a green canvas
and a hidden toolbar and uses the ode3 solver:

function new_model(modelname)

% NEW_MODEL Create a new, empty Simulink model
NEW_MODEL ('MODELNAME') creates a new model with
the name 'MODELNAME'. Without the 'MODELNAME'

o°

o°

3 Creating a Model

% argument, the new model is named 'my_untitled'.
if nargin ==

modelname = 'my_untitled';
end

% create and open the model
open_system(new_system(modelname));

% set default screen color
set_param(modelname, 'ScreenColor', 'green');

% set default solver
set_param(modelname, 'Solver', 'ode3');

% set default toolbar visibility
set_param(modelname, 'Toolbar', 'off');

% save the model
save_system(modelname);

3-4

Selecting Obijects

Selecting Objects

In this section...

“Selecting an Object” on page 3-5

“Selecting Multiple Objects” on page 3-5

Selecting an Object

To select an object, click it. Small black square handles appear at the corners
of a selected block and near the end points of a selected line. For example, the
figure below shows a selected Sine Wave block and a selected line.

|

Sine Wawe

When you select an object by clicking it, any other selected objects are
deselected.

Selecting Multiple Objects

You can select more than one object either by selecting objects one at a time,
by selecting objects located near each other using a bounding box, or by
selecting the entire model.

Selecting Multiple Objects One at a Time

To select more than one object by selecting each object individually, hold down
the Shift key and click each object to be selected. To deselect a selected object,
click the object again while holding down the Shift key.

Selecting Multiple Objects Using a Bounding Box
An easy way to select more than one object in the same area of the window is
to draw a bounding box around the objects:

1 Define the starting corner of a bounding box by positioning the pointer at

one corner of the box, then pressing and holding down the mouse button.
Notice the shape of the cursor.

3-5

3 Creating a Model

-

)
- pll]

Sine Miawve

Scope

2 Drag the pointer to the opposite corner of the box. A dotted rectangle
encloses the selected blocks and lines.

)
- ol

Sine Miave

Scope

3 Release the mouse button. All blocks and lines at least partially enclosed
by the bounding box are selected.

—
EN
]
L)

L
Sine Wiave
Scope

Selecting All Obijects

To select all objects in the active window, select Select All from the Edit
menu. You cannot create a subsystem by selecting blocks and lines in this
way. For more information, see “Creating Subsystems” on page 3-35.

Specifying Block Diagram Colors

Specifying Block Diagram Colors

In this section...

“How to Specify Block Diagram Colors” on page 3-7
“Choosing a Custom Color” on page 3-8
“Defining a Custom Color” on page 3-8

“Specifying Colors Programmatically” on page 3-9

“Displaying Sample Time Colors” on page 3-10

How to Specify Block Diagram Colors

You can specify the foreground and background colors of any block or
annotation in a diagram, as well as the diagram’s background color. To set the
background color of a block diagram, select Screen color from the Format
menu. To set the background color of a block or annotation or group of such
items, first select the item or items. Then select Background color from the
Format menu. To set the foreground color of a block or annotation, first select
the item. Then select Foreground color from the Format menu.

In all cases, a menu of color choices is displayed. Choose the desired color
from the menu. If you select a color other than Custom, the background or
foreground color of the diagram or diagram element is changed to the selected
color.

3-7

3 Creating a Model

Choosing a Custom Color

If you choose Custom, The Simulink® Choose Custom Color dialog box is
displayed.

Choose Custom Color _ EIES
Basic colors:
o ol el
U
ErrEET ..
HEMrEEEEEN
.
EEENT .

Custarn colors:

[l -
i

Define Custorn Caolors > |

(] I Cancel |

The dialog box displays a palette of basic colors and a palette of custom colors
that you previously defined. If you have not previously created any custom
colors, the custom color palette is all white. To choose a color from either
palette, click the color, and then click the OK button.

Defining a Custom Color

To define a custom color, click the Define Custom Colors button on the
Choose Custom Color dialog box.

Specifying Block Diagram Colors

The dialog box expands to display a custom color definer.

Choose Custom Color HE

Basic colors:

[NI B B R

ET NN EN

ENEEEEEN

ERENE .

Customn colars:

N o He[TT el

N o s[5 Green 25
Defitie Euston Ealors = | Calord3alid Lum;lm Blge:lﬁ

ok I Cancel | Add to Cugtom Colors

The color definer allows you to specify a custom color by

- Hue-saturation cursor

Luminescence cursor

¢ Entering the red, green, and blue components of the color as values

between 0 (darkest) and 255 (brightest)

¢ Entering hue, saturation, and luminescence components of the color as

values in the range 0 to 255

® Moving the hue-saturation cursor to select the hue and saturation of the
desired color and the luminescence cursor to select the luminescence of

the desired color

The color that you have defined in any of these ways appears in the
Color | Solid box. To redefine a color in the Custom colors palette, select
the color and define a new color, using the color definer. Then click the Add to

Custom Colors button on the color definer.

Specifying Colors Programmatically

You can use the set_param command at the MATLAB® command line or in an
M-file program to set parameters that determine the background color of a

3 Creating a Model

3-10

diagram and the background color and foreground color of diagram elements.
The following table summarizes the parameters that control block diagram
colors.

Parameter Determines

ScreenColor Background color of block diagram
BackgroundColor Background color of blocks and annotations
ForegroundColor Foreground color of blocks and annotations

You can set these parameters to any of the following values:

® 'pblack', 'white', 'red’', 'green’', 'blue', 'cyan', 'magenta’, 'yellow',
‘gray', 'lightBlue', 'orange', 'darkGreen'

e '[r,g,b]"
where r, g, and b are the red, green, and blue components of the color

normalized to the range 0.0 to 1.0.

For example, the following command sets the background color of the
currently selected system or subsystem to a light green color:

set_param(gcs, 'ScreenColor', '[0.3, 0.9, 0.5]")

Displaying Sample Time Colors

The blocks and lines in your model can be color coded to indicate the sample
rates at which the blocks operate.

Color Use

Black Continuous sample time

Magenta Constant sample time

Red Fastest discrete sample time

Green Second fastest discrete sample time
Blue Third fastest discrete sample time
Light Blue Fourth fastest discrete sample time

Specifying Block Diagram Colors

Color Use

Dark Green Fifth fastest discrete sample time

Orange Sixth, seventh, eighth, etc., fastest discrete sample
time

Yellow Indicates a block with hybrid sample time, e.g.,

subsystems grouping blocks and Mux or Demux blocks
grouping signals with different sample times, Data
Store Memory blocks updated and read by different

tasks.

Cyan Blocks in triggered subsystems

Brown Variable sample time. See the Pulse Generator block
and “Specifying Sample Time” on page 2-41 for more
information

Gray Fixed in minor step

To enable the sample time colors feature, select Sample Time Colors from
the Format menu.

The Simulink software does not automatically recolor the model with each
change you make to it, so you must select Update Diagram from the Edit
menu to explicitly update the model coloration. To return to your original
coloring, disable sample time coloration by again choosing Sample Time
Colors.

The color that is assigned to each block depends on its sample time relative
to other sample times in the model. This means that the same sample time
may be assigned different colors in a top-level model and in models that it
references. (See Chapter 5, “Referencing a Model”.)

For example, suppose that a model defines three sample times: 1, 2, and 3.
Further, suppose that it references a model that defines two sample times: 2
and 3. In this case, blocks operating at the 2 sample rate appear as green in
the top-level model and as red in the referenced model.

It is important to note that Mux and Demux blocks are simply grouping
operators; signals passing through them retain their timing information. For

3-11

3 Creating a Model

3-12

this reason, the lines emanating from a Demux block can have different colors
if they are driven by sources having different sample times. In this case, the
Mux and Demux blocks are color coded as hybrids (yellow) to indicate that
they handle signals with multiple rates.

Similarly, Subsystem blocks that contain blocks with differing sample times
are also colored as hybrids, because there is no single rate associated with
them. If all the blocks within a subsystem run at a single rate, the Subsystem
block is colored according to that rate.

Connecting Blocks

Connecting Blocks

In this section...

“Automatically Connecting Blocks” on page 3-13
“Manually Connecting Blocks” on page 3-16

“Disconnecting Blocks” on page 3-21

Automatically Connecting Blocks

You can command the Simulink® software to connect blocks automatically.
This eliminates the need for you to draw the connecting lines yourself. When
connecting blocks, the lines are routed around intervening blocks to avoid
cluttering the diagram.

Connecting Two Blocks
To autoconnect two blocks:

1 Select the source block.

Sine Egave

1 —r>>

Con=tant Fain

-

1
=

Integrater

2 Hold down Ctrl and left-click the destination block.

3-13

3 Creating a Model

The source block is connected to the destination block, and the lines are
routed around intervening blocks if necessary.

[
W

Sine Tlawe

. 4@;\

Constant Fain

Integrator

When connecting two blocks, the Simulink software draws as many
connections as possible between the two blocks as illustrated in the following

example.
hatzl [
meth Q
thatz? [
Sub Sxr=tam Bub Sy=t em
Before autoconnect After autoconnedt

Connecting Groups of Blocks

The Simulink software can connect a group of source blocks to a destination
block or a source block to a group of destination blocks.

To connect a group of source blocks to a destination block:

1 Select the source blocks.

3-14

Connecting Blocks

Jine Tlawel

2 Hold down Ctrl and left-click the destination block.

Jine Tawe db

Sine Tawel

To connect a source block to a group of destination blocks:

1 Select the destination blocks.

Di=splayl

2 Hold down Ctrl and left-click the source block.

3-15

3 Creating a Model

3-16

Di=play

[o

Displayl

Manually Connecting Blocks

You can draw lines manually between blocks or between lines and blocks.
You might want to do this if you need to control the path of the line or to
create a branch line.

Drawing a Line Between Blocks
To connect the output port of one block to the input port of another block:

1 Position the cursor over the first block’s output port. It is not necessary to
position the cursor precisely on the port.

The cursor shape changes to crosshairs.

>

Constant &ain

2 Press and hold down the mouse button.

3 Drag the pointer to the second block’s input port. You can position the
cursor on or near the port or in the block. If you position the cursor in the
block, the line is connected to the closest input port.

The cursor shape changes to double crosshairs.

[—H>>

Constant &ain

Connecting Blocks

4 Release the mouse button. The port symbols are replaced by a connecting
line with an arrow showing the direction of the signal flow. You can create
lines either from output to input, or from input to output.

The arrow appears at the appropriate input port, and the signal is the same.

>

Gain

The Simulink software draws connecting lines using horizontal and vertical
line segments. To draw a diagonal line, hold down the Shift key while
drawing the line.

Drawing a Branch Line

A branch line is a line that starts from an existing line and carries its signal to
the input port of a block. Both the existing line and the branch line represent
the same signal. Using branch lines enables you to connect a signal to more
than one block.

This example connect the output of the Product block to both the Scope block
and the To Workspace block.

—»]
Froduct Scope
Ta Wortkspace

To add a branch line:

1 Position the pointer on the line where you want the branch line to start.

2 While holding down the Ctrl key, press and hold down the left mouse
button.

3 Drag the pointer to the input port of the target block, then release the
mouse button and the Ctrl key.

3-17

3 Creating a Model

3-18

You can also use the right mouse button instead of holding down the left
mouse button and the Ctrl key.

Drawing a Line Segment

You might want to draw a line with segments exactly where you want them
instead of where the Simulink software draws them. Or you might want to
draw a line before you copy the block to which the line is connected. You can
do either by drawing line segments.

To draw a line segment, you draw a line that ends in an unoccupied area of
the diagram. An arrow appears on the unconnected end of the line. To add
another line segment, position the cursor over the end of the segment and
draw another segment. The segments area drawn as horizontal and vertical
lines. To draw diagonal line segments, hold down the Shift key while you
draw the lines.

Moving a Line Segment
To move a line segment:

1 Position the pointer on the segment you want to move.

N .
Sine Wiave k Froduct
Constant

2 Press and hold down the left mouse button.

F\U '
Sine Wiave - Froduct
-

s
Constant

3 Drag the pointer to the desired location.

Connecting Blocks

=
v, . * -
Sine Wave ; Froduct
—
Constant

4 Release the mouse button.

i
7 I

Sine Wave

Constant

To move the segment connected to an input port, position the pointer over the
port and drag the end of the segment to the new location. You cannot move
the segment connected to an output port.

Moving a Line Vertex
To move a vertex of a line:

1 Position the pointer on the vertex, then press and hold down the mouse
button.

The cursor changes to a circle that encloses the vertex.

=

Constant

Scope

2 Drag the pointer to the desired location.

=
™~ st

Constant Scope

3-19

3 Creating a Model

3-20

3 Release the mouse button.

i =

Constant . Scope

Inserting Blocks in a Line

You can insert a block in a line by dropping the block on the line. The
Simulink software inserts the block for you at the point where you drop the
block. The block that you insert can have only one input and one output.

To insert a block in a line:

1 Position the pointer over the block and press the left mouse button.

3 Release the mouse button to drop the block on the line.

Connecting Blocks

The block is inserted where you dropped it.

e ;]

Sine Wizve EaEin Soope

Disconnecting Blocks
To disconnect a block from its connecting lines, hold down the Shift key, then
drag the block to a new location.

To disconnect a line from a block’s input port, position the mouse pointer over
the line’s arrowhead. The pointer turns into a circle. Drag the arrowhead
away from the block.

3-21

3 Creating a Model

Aligning, Distributing, and Resizing Groups of Blocks

The model editor’s Format menu includes commands that let you quickly
align, distribute, and resize groups of blocks. To align (or distribute or resize)

a group of blocks:

1 Select the blocks that you want to align.

File Edit View Simulation

Format Tools Help

Mk

DI@E%I&%EI@@{HS‘Q PII1I}.D INl:un'naI

Ready

Constant

|100%

g (=
Scope
\ode45

A

One of the selected blocks displays empty selection handles. The model

editor uses this block as the reference for aligning the other selected blocks.

If you want another block to serve as the alignment reference, click that

block.

2 Select one of the alignment options from the editor’s Format > Align
Blocks menu (or distribution options from the Format > Distribute
Blocks or resize options from the Format > Resize Blocks menu). For

3-22

Aligning, Distributing, and Resizing Groups of Blocks

example, selecting Align Top Edges aligns the top edges of the selected

blocks with the top edge of the reference block.

File Edit View Simulation

Format Tools Help

ML

O EE $BR|(E 492 mfioo [Noma

Ready |100%

0 - n 2 &)
= 2] [(=]
Constant Gain Scope
lode45

3-23

3 Creating a Model

Annotating Diagrams

In this section...

“How to Annotate Diagrams” on page 3-24

“Annotations Properties Dialog Box” on page 3-25

“Annotation Callback Functions” on page 3-28

“Associating Click Functions with Annotations” on page 3-29
“Annotations API” on page 3-31

“Using TeX Formatting Commands in Annotations” on page 3-31

“Creating Annotations Programmatically” on page 3-33

How to Annotate Diagrams

Annotations provide textual information about a model. You can add an
annotation to any unoccupied area of your block diagram.

This sample model)
shows a constant signal % 7 Annototions

heing input to a Scope. /
(I

o =

Constant

Scope

This block generates Thiz blodk displays its input
a.cnnstantsugnal graphically in a window that
with @ walue of 1. laaks like an ozcilloseope.

To create a model annotation, double-click an unoccupied area of the block
diagram. A small rectangle appears and the cursor changes to an insertion
point. Start typing the annotation contents. Each line is centered in the
rectangle that surrounds the annotation.

To move an annotation, drag it to a new location.

To edit an annotation, select it:

3-24

Annotating Diagrams

® To replace the annotation, click the annotation, then double-click or drag
the cursor to select it. Then, enter the new annotation.

® To insert characters, click between two characters to position the insertion
point, then insert text.

* To replace characters, drag the mouse to select a range of text to replace,
then enter the new text.

To delete an annotation, hold down the Shift key while you select the
annotation, then press the Delete or Backspace key.

To change an annotation’s font, select the annotation, then choose Font from
the Format menu. Select a font and size from the dialog box.

To change the text alignment (e.g., left, center, or right) of the annotation,
select the annotation and choose Text Alignment from model editor’s
Format or the context menu. Then choose one of the alignment options (e.g.,
Center) from the Text Alignment submenu.

Annotations Properties Dialog Box

The Annotation Properties dialog box allows you to specify the contents and
format of the currently selected annotation and to associate a click function
with the annotation.

3-25

3 Creating a Model

To display the Annotation Properties dialog box for an annotation, select the
annotation and then select Annotation Properties from model editor’s Edit
or the context menu.

The dialog box appears.

=] Annctation properties: van der Pol Equation x|
—Annotation

Annotations are freefloating text that can be used to describe models.

—Appearance
Tent:
van der Pol Equation

[T Drop shadow Foreground color: I Black TI
[T Enable TeX commands Background color: I White "I

Fort... Alignment: I Center LI

—ClickFen

The ClickFcn is called when a user single-clicks on this annotation. For example, to
browse a web site specified in the annotation texd tne
an = getCallback Annotation; web(an. Text);

[~ Use display text as click callback

OK Cancel

3-26

Annotating Diagrams

The dialog box includes the following controls.

Text

Displays the current text of the annotation. Edit this field to change the
annotation text.

Drop shadow

Checking this option causes a drop shadow to be displayed around the
annotation, giving it a 3-D appearance.

Enable TeX commands

Checking this option enables use of TeX formatting commands in this
annotation. See “Using TeX Formatting Commands in Annotations” in the
online Simulink® documentation for more information.

Font

Clicking this button displays a font chooser dialog box. Use the font chooser to
change the font used to render the annotation’s text.

Foreground color
Specifies the color of the annotation text.

Background color
Specifies the color of the background of the annotation’s bounding box.

Alignment
Specifies the alignment of the annotation’s text relative to its bounding box.

ClickFcn

Specifies MATLAB® code to be executed when a user single-clicks this
annotation. The Simulink software stores the code entered in this field with
the model. See “Associating Click Functions with Annotations” on page 3-29
for more information.

3-27

3 Creating a Model

3-28

Use display text as click callback

Checking this option causes the text in the Text field to be treated as the
annotation’s click function. The specified text must be a valid MATLAB
expression comprising symbols that are defined in the MATLAB workspace
when the user clicks this annotation. See “Associating Click Functions with
Annotations” on page 3-29 for more information. Note that selecting this
option disables the ClickFcn edit field.

Annotation Callback Functions

You can associate the following callback functions with annotations.

Click Function

A click function is an M function that the Simulink software invokes when a
user single-clicks an annotation. You can associate a click function with any of
a model’s annotations (see “Associating Click Functions with Annotations” on
page 3-29). the Simulink software uses the color blue to display the text of
annotations associated with click functions. This allows the user to see at a
glance which annotations are associated with click functions. Click functions
allow you to add hyperlinks and custom command “buttons” to your model’s
block diagram. For example, you can use click functions to allow a user to
display the values of workspace variables referenced by the model or to open
related models simply by clicking on annotations displayed on the block
diagram. (See Chapter 5, “Referencing a Model”.)

Load Function

This function is invoked when it loads the model containing the associated
annotation. To associate a load function with an annotation, set the LoadFcn
property of the annotation to the desired function (see “Annotations API”

on page 3-31).

Delete function

This function is invoked before deleting the associated annotation. To
associate a delete function with an annotation, set the DeleteFcn property of
the annotation to the desired function (see “Annotations API” on page 3-31).

Annotating Diagrams

Associating Click Functions with Annotations

Two ways are provided to associate a click function with an annotation via the
annotation’s properties dialog box (see “Annotations Properties Dialog Box” on
page 3-25). You can specify either the annotation itself as the click function
or a separately defined function. To specify the annotation itself as the click
function, enter a valid MATLAB expression in the dialog box’s Text field

and check the Use display text as callback option. To specify a separately
defined click function, enter the M-code that defines the click function in

the dialog box’s ClickFen edit field.

3-29

3 Creating a Model

3-30

The following model illustrates the two ways to associate click functions with

an annotation.

1

Constant

E! Ennckation praperties: doc sct param i |
—&nnokatian

x|

Arratetiona ore free-flaating besk that can be wsad bo descibe madels

—Bppaalanc
Teut
Jdac set_peren
W Dmp shadow Foregrourd :dunm
I~ Enabk TeX commands Eackground color: | Wwhite -
Fort... Nig'mart:ICerm—L[

— OickFen

The OickFch iz called when a uzer tingle-cick: on this annctation For e<ample, o
iowes aweb ske specied in the annotalion =t by
an = gatCalbackanatation; mablan. Test];

I Uze dizplay tevt &= cick calback

doc eel_paiam

=]

Cancel | Hem | epoy

Gain

/ /IShowhelpforset_param
\ =

Terminator

Eﬁnnutation propoikics: Show help tmn seb param il
—Annctaon
Binhotaliors ane frae-flosting test that can be ussd to deccriba modalk.

—AppEATEAC
Texl:
5w help for 7et_param
W Droo shadow Foregroud Dni:t:l Cusitom vl

I” Erable Tex commands

Faril... |

r—ClickFen

The CickFch it caled when a uzer tigle-dicks on thiz annotation For example. 1o
browze a web ske rpesilied nthe ammatation e by
1 = petCalbackdnnotation: weblan. T el

I Usa display texl a2 dick calback

Backgiound calor: | Whita -

A.Iil:rrnnd:l Certe "I

dac 2et_palam

[1

Coeel | Hep | eor

Annotation fext as the click function

Separately defined click function

Clicking either of the annotations in this model displays help for the

set_param command.

Annotating Diagrams

Note You can also use M-code to associate a click function with an
annotation. See “Annotations API” on page 3-31 for more information.

Selecting and Editing Annotations Associated with Click
Functions

Associating an annotation with a click function prevents you from selecting
the annotation by clicking on it. You must use drag select the annotation.
Similarly, you cannot make the annotation editable on the diagram by clicking
its text. To make the annotation editable on the diagram, first drag-select it,
then select Edit Annotation Text from model editor’s Edit or the context
menu.

Annotations API

An application program interface (API) is provided that enables you to use
M programs to get and set the properties of annotations. The API comprises
the following elements:

e Simulink.Annotation class

Allows M-code, e.g., annotation load functions (see “Load Function” on page
3-28), to set the properties of annotations

® getCallbackAnnotation function

Gets the Simulink.Annotation object for the annotation associated with
the currently executing annotation callback function

Using TeX Formatting Commands in Annotations

You can use TeX formatting commands to include mathematical and other
symbols and Greek letters in block diagram annotations.

3-31

3 Creating a Model

Linearization of Double Pendulum

81" = -19.6200781 + 392400762
2" = 202400781 122 6603782

thetat

uhere
thetad dot2 thetal dot
81 = pozition of top joint

B2 = pozition of bottom joint

-137.3400

Gain
1 Lm | .
. gk > 2)
thetaZ
thetaZz dot2 thetaz dot

To use TeX commands in an annotation:

1 Select the annotation.
2 Select Enable TeX Commands from model editor’s Format menu.

3 Enter or edit the text of the annotation, using TeX commands where needed
to achieve the desired appearance.

3-32

Annotating Diagrams

Linearization of Double Pendulum

‘thetat" = -189.6200™thetat + 39.2400™thetaz
itheta?2" = 30 2400™thetaq -132.6603™theta?

uhere

‘thetad = position of top joint
wtheta? = position of bottam joint

See “Mathematical Symbols, Greek Letters, and TeX Characters” in the
MATLAB documentation for information on the TeX formatting commands
which are supported.

4 Deselect the annotation by clicking outside it or typing Esc.

The formatted text is displayed.

Linearization of Double Pendulum

1" = 196200781 + 202400782
B2" = 30 2400781 -132 6603782

where

B1 = position of top joint
B2 = position of bottom joint

Creating Annotations Programmatically

You can use the add_block command to create annotations at the command
line or in an M-file program. Use the following syntax to create the annotation:

add_block('built-in/Note', 'path/text', 'Position’',
[center_x, 0, 0, center_y]);

where path is the path of the diagram to be annotated, text is the text of
the annotation, and [center_x, 0, 0, center_y] is the position of the center

of the annotation in pixels relative to the upper left corner of the diagram.
For example, the following sequence of commands

new_system('test')

3-33

3-34

3 Creating a Model

open_system('test')
add_block('built-in/Gain',

‘test/Gain', 'Position’,
[260, 125, 290, 155])

add_block('built-in/Note', 'test/programmatically created',
'"Position', [550 0 0 180])

creates the following model:

=[of x|
File Edit Wiew Simulation Format Tools Help

D EFH& LR a4 = » =fioo

INDrmaI j|

=

Gain

programmatically created

Ready [10d% [[

|odeds

4

To delete an annotation, use the find_system command to get the annotation’s
handle. Then use the delete function to delete the annotation, e.g.,
delete(find_system(gcs,

'FindAll', 'on', 'type', 'annotation'));

Creating Subsystems

Creating Subsystems

In this section...

“Why Subsystems are Advantageous” on page 3-35

“Creating a Subsystem by Adding the Subsystem Block” on page 3-36
“Creating a Subsystem by Grouping Existing Blocks” on page 3-36
“Model Navigation Commands” on page 3-38

“Window Reuse” on page 3-38

“Labeling Subsystem Ports” on page 3-39

“Controlling Access to Subsystems” on page 3-40

“Interconverting Subsystems and Block Diagrams” on page 3-41

“Emptying Subsystems and Block Diagrams” on page 3-41

Why Subsystems are Advantageous

A subsystem is a set of blocks that have been replaced by a single block called
a Subsystem block. As your model increases in size and complexity, you can
simplify it by grouping blocks into subsystems. Using subsystems has these
advantages:

¢ It helps reduce the number of blocks displayed in your model window.

¢ [t allows you to keep functionally related blocks together.

¢ [t enables you to establish a hierarchical block diagram, where a Subsystem
block is on one layer and the blocks that make up the subsystem are on
another.

You can create a subsystem in two ways:

® Add a Subsystem block to your model, then open that block and add the
blocks it contains to the subsystem window.

¢ Add the blocks that make up the subsystem, then group those blocks into a
subsystem.

3-35

3 Creating a Model

A subsystem can be execute conditionally or unconditionally. An
unconditionally executed subsystem always executes. A conditionally
executed subsystem may or may not execute, depending on the value of an
input signal. For information about conditionally executed subsystems, see
Chapter 4, “Creating Conditional Subsystems”.

Creating a Subsystem by Adding the Subsystem
Block

To create a subsystem before adding the blocks it contains, add a Subsystem
block to the model, then add the blocks that make up the subsystem:

1 Copy the Subsystem block from the Ports & Subsystems library into your
model.

2 Open the Subsystem block by double-clicking it.

The subsystem is opened in the current or a new model window, depending
on the model window reuse mode that you selected (see “Window Reuse” on
page 3-38).

3 In the empty Subsystem window, create the subsystem. Use Inport blocks
to represent input from outside the subsystem and Outport blocks to
represent external output.

For example, the subsystem shown includes a Sum block and Inport and
Outport blocks to represent input to and output from the subsystem.

1"\
o,

+
—»_)
3 I g
2 Sum ot

In1

Creating a Subsystem by Grouping Existing Blocks

If your model already contains the blocks you want to convert to a subsystem,
you can create the subsystem by grouping those blocks:

1 Enclose the blocks and connecting lines that you want to include in

the subsystem within a bounding box. You cannot specify the blocks to
be grouped by selecting them individually or by using the Select All

3-36

Creating Subsystems

command. For more information, see “Selecting Multiple Objects Using a
Bounding Box” on page 3-5.

For example, this figure shows a model that represents a counter. The Sum
and Unit Delay blocks are selected within a bounding box.

_.-+ - 1— | szimout

Constant | + z
Zum Unit Crelay Ta Wotspace

When you release the mouse button, the two blocks and all the connecting
lines are selected.

2 Choose Create Subsystem from the Edit menu. The selected blocks are
replaced with a Subsystem block.

This figure shows the model after you choose the Create Subsystem
command (and resize the Subsystem block so the port labels are readable).

In1 Out] b——] simout

Canstant To Mokspace

Subsystem

If you open the Subsystem block, the underlying system is displayed, as
shown below.

In ’->+ ™ z 1)

Sum Unit Delay Dutt

Notice that the Simulink® software adds Inport and Outport blocks to
represent input from and output to blocks outside the subsystem.

As with all blocks, you can change the name of the Subsystem block. You can

also use the masking feature to customize the block’s appearance and dialog
box. See Chapter 17, “Creating Block Masks”.

3-37

3 Creating a Model

3-38

Undoing Subsystem Creation

To undo creation of a subsystem by grouping blocks, select Undo from the
Edit menu. You can undo creation of a subsystem that you have subsequently
edited. However, the Undo command does not undo any nongraphical
changes that you made to the blocks, such as changing the value of a block
parameter or the name of a block. The Simulink software alerts you to this
limitation by displaying a warning dialog box before undoing creation of a
modified subsystem.

Model Navigation Commands

Subsystems allow you to create a hierarchical model comprising many layers.
You can navigate this hierarchy using the Model Browser (see “The Model
Browser” on page 13-28) and/or the following model navigation commands:

¢ Open Block

The Open Block command opens the currently selected subsystem. To
execute the command, select Open Block from either the Edit menu or
the subsystem’s context (right-click) menu, press Enter, or double-click
the subsystem.

¢ Open Block In New Window

Opens the currently selected subsystem regardless of the window reuse
settings (see “Window Reuse” on page 3-38). To execute the command,
select Open Block In New Window from the subsystem’s context
(right-click) menu.

¢ Go To Parent

The Go To Parent command displays the parent of the subsystem
displayed in the current window. To execute the command, press Esc or
select Go To Parent from the the Simulink software View menu.

Window Reuse

You can specify whether the Simulink software model navigation commands
use the current window or a new window to display a subsystem or its parent.
Reusing windows avoids cluttering your screen with windows. Creating a
window for each subsystem allows you to view subsystems side by side with
their parents or siblings. To specify your preference regarding window reuse,

Creating Subsystems

select Preferences from the File menu and then select one of the following
Window reuse type options listed in the Preferences dialog box.

Reuse Type | Open Action Go to Parent (Esc) Action

none Subsystem appears in a | Parent window moves to the
new window. front.

reuse Subsystem replaces the | Parent window replaces
parent in the current subsystem in current window
window.

replace Subsystem appears in Parent window appears.
a new window. Parent Subsystem window disappears.
window disappears.

mixed Subsystem appears in its | Parent window rises to front.

own window.

Subsystem window disappears.

Labeling Subsystem Ports

Simulink labels ports on a Subsystem block. The labels are the names of
Inport and Outport blocks that connect the subsystem to blocks outside the
subsystem through these ports.

You can hide (or show) the port labels by

¢ Selecting the Subsystem block, then choosing Hide Port Labels (or Show
Port Labels) from the Format menu

e Selecting an Inport or Outport block in the subsystem and choosing Hide
Name (or Show Name) from the Format menu

¢ Selecting the Show port labels option in the Subsystem block’s parameter

dialog

3-39

3 Creating a Model

3-40

This figure shows two models.

D g In1
In1 4>|>—@ Out1
W g

= & ain Out1 Inz
n

Sum Subsystem
Subsystem with Inport and Outport blocks Subsystemn with labeled parts

The subsystem on the left contains two Inport blocks and one Outport block.
The Subsystem block on the right shows the labeled ports.

Controlling Access to Subsystems

You can control user access to subsystems. For example, you can prevent a
user from viewing or modifying the contents of a library subsystem while still
allowing the user to employ the subsystem in a model.

To restrict access to a library subsystem, open the subsystem’s parameter
dialog box and set its Read/Write permissions parameter to either ReadOnly
or NoReadOrWrite. The first option allows a user to view the contents of

the library subsystem but prevents the user from modifying the reference
subsystem without first disabling its library link or changing its Read/Write
permissions parameter to ReadWrite. The second option prevents the user
from viewing the contents of the library subsystem, modifying the reference
subsystem, and changing the reference subsystem’s permissions. Note that
both options allow a user to use the library subsystem in models by creating
links (see Chapter 7, “Working with Block Libraries”). See the Subsystem
block in the Simulink Reference guide for more information on subsystem
access options.

Note You will not receive a response if you attempt to view the contents
of a subsystem whose Read/Write permissions parameter is set to
NoReadOrWrite. For example, when double-clicking such a subsystem, the
Simulink software neither opens the subsystem nor displays any messages.

Creating Subsystems

Interconverting Subsystems and Block Diagrams

These functions are provided that you can use to interconvert subsystems
and block diagrams:

Simulink.SubSystem.copyContentsToBlockDiagram

Copies the contents of a subsystem to an empty block diagram.
Simulink.BlockDiagram.copyContentsToSubSystem

Copies the contents of a block diagram to an empty subsystem.

For more information, see the reference documentation for these functions.
Emptying Subsystems and Block Diagrams
These functions are provided to empty subsystems and block diagrams:

Simulink.SubSystem.deleteContents
Deletes the contents of a subsystem.

Simulink.BlockDiagram.deleteContents
Deletes the contents of a block diagram.

For more information, see the reference documentation for these functions.

3-41

3 Creating a Model

Modeling Control Flow Logic

3-42

In this section...

“Equivalent C Language Statements” on page 3-42
“Modeling Conditional Control Flow Logic” on page 3-42

“Modeling While and For Loops” on page 3-45

Equivalent C Language Statements
You can use block diagrams to model control flow logic equivalent to the

following C programming language statements:
® for

e if-else

® switch

® while

Modeling Conditional Control Flow Logic
You can use the following blocks to model conditional control flow logic.

C Statement Equivalent Blocks
if-else If, If Action Subsystem
switch Switch Case, Switch Case Action Subsystem

Modeling If-Else Control Flow
The following diagram models if-else control flow.

Modeling Control Flow Logic

itut = - i
N + e if{}
; i T - Ifaction
alssifiz » o) Actian suhsg.rsném 1 blocks for
) ﬁ L. if condition
) zait {1 N
| :)
ese ﬁ Action subsystemn 2
dze {}

Action subsystem 3

Construct an if-else control flow diagram as follows:

¢ Provide data inputs to the If block for constructing if-else conditions.

Inputs to the If block are set in the If block properties dialog box. Internally,
they are designated as u1, u2,..., un and are used to construct output
conditions.

¢ Set output port if-else conditions for the If block.

Output ports for the If block are also set in its properties dialog box. You
use the input values u1, u2, ..., un to express conditions for the if,
elseif, and else condition fields in the dialog box. Of these, only the if field
is required. You can enter multiple elseif conditions and select a check box
to enable the else condition.

¢ Connect each condition output port to an Action subsystem.

Each if, elseif, and else condition output port on the If block is connected
to a subsystem to be executed if the port’s case is true. You create these
subsystems by placing an Action Port block in a subsystem. This creates
an atomic Action subsystem with a port named Action, which you then
connect to a condition on the If block. Once connected, the subsystem takes
on the identity of the condition it is connected to and behaves like an
enabled subsystem.

For more detailed information, see the If and Action Port blocks.

3-43

3 Creating a Model

Note All blocks in an Action subsystem driven by an If or Switch Case block
must run at the same rate as the driving block.

Modeling Switch Control Flow
The following diagram models switch control flow.

case[1]: /,.-’J ease {)
ast i) Casedction
—Pul casa[2] .
- ; Action subsysternn 1 blocks far
- e (] T case[1] condition
defat: T
l Action subsystem 2 -
Switzh ease defadt: {1

Action subsysterm 3

Construct a switch control flow statement as follows:

¢ Provide a data input to the argument input of the Switch Case block.

The input to the Switch Case block is the argument to the switch control
flow statement. This value determines the appropriate case to execute.
Noninteger inputs to this port are truncated.

® Add cases to the Switch Case block based on the numeric value of the
argument input.

You add cases to the Switch Case block through the properties dialog box of
the Switch Case block. Cases can be single or multivalued. You can also
add an optional default case, which is true if no other cases are true. Once
added, these cases appear as output ports on the Switch Case block.

¢ Connect each Switch Case block case output port to an Action subsystem.

Each case output of the Switch Case block is connected to a subsystem to be
executed if the port’s case is true. You create these subsystems by placing

3-44

Modeling Control Flow Logic

an Action Port block in a subsystem. This creates an atomic subsystem
with a port named Action, which you then connect to a condition on the
Switch Case block. Once connected, the subsystem takes on the identity of
the condition and behaves like an enabled subsystem. Place all the block
programming executed for that case in this subsystem.

For more detailed information, see Simulink® Reference for the Switch Case
and Action Port blocks.

Note After the subsystem for a particular case is executed, an implied break
is executed that exits the switch control flow statement altogether. The
Simulink software switch control flow statement implementations do not
exhibit “fall through” behavior like C switch statements.

Modeling While and For Loops

The following blocks allow you to model while and for loops.

C Statement Equivalent Blocks
do-while While Iterator Subsystem
for For Iterator Subsystem
while While Iterator Subsystem

Modeling While Loops

The following diagram illustrates a while loop.

3-45

3 Creating a Model

3-46

- B cord whilks |

) 1 .
In1 o T p—
Irthile § ..

While sub=systerm \\

N I blocks to execute (.

-
~
b

In this example, the Simulink software repeatedly executes the contents of
the While subsystem at each time step until a condition specified by the While
Iterator block is satisfied. In particular, for each iteration of the loop specified
by the While Iterator block, the Simulink software invokes the update and
output methods of all the blocks in the While subsystem in the same order that
the methods would be invoked if they were in a noniterated atomic subsystem.

Note Simulation time does not advance during execution of a While
subsystem’s iterations. Nevertheless, blocks in a While subsystem treat
each iteration as a time step. As a result, in a While subsystem, the output
of a block with states, i.e., a block whose output depends on its previous
input, reflects the value of its input at the previous iteration of the while
loop—not, as one might expect, its input at the previous simulation time step.
For example, a Unit Delay block in a While subsystem outputs the value of
its input at the previous iteration of the while loop—not the value at the
previous simulation time step.

Construct a while loop as follows:

¢ Place a While Iterator block in a subsystem.

The host subsystem’s label changes to while {...} to indicate that it is
modeling a while loop. These subsystems behave like triggered subsystems.

Modeling Control Flow Logic

This subsystem is host to the block programming you want to iterate with
the While Iterator block.

® Provide a data input for the initial condition data input port of the While
Iterator block.

The While Iterator block requires an initial condition data input (labeled
IC) for its first iteration. This must originate outside the While subsystem.
If this value is nonzero, the first iteration takes place.

® Provide data input for the conditions port of the While Iterator block.

Conditions for the remaining iterations are passed to the data input port
labeled cond. Input for this port must originate inside the While subsystem.

® You can set the While Iterator block to output its iterator value through
its properties dialog.

The iterator value is 1 for the first iteration and is incremented by 1 for
each succeeding iteration.

® You can change the iteration of the While Iterator block to do-while
through its properties dialog.

This changes the label of the host subsystem to do {...} while. With

a do-while iteration, the While Iteration block no longer has an initial
condition (IC) port, because all blocks in the subsystem are executed once
before the condition port (labeled cond) is checked.

® Create a block diagram in the subsystem that defines the subsystem’s
outputs.

Note The diagram must not contain blocks with continuous states, e.g.,
blocks from the Continuous block library, and the sample times of all the
blocks must be inherited (-1) or constant (inf).

For more information, see the While Iterator block.

3-47

3 Creating a Model

Modeling For Loops

The following diagram models a for loop:

-~
-~
- - » R
- r
ps - ltemtor
In
For hemtor

Il farf ..}
Forsubsystam e .

T blocks to execute —

In this example, the Simulink software executes the contents of the For
subsystem multiples times at each time step with the number of iterations
being specified by the input to the For Iterator block. In particular, for each
iteration of the for loop, the Simulink software invokes the update and output
methods of all the blocks in the For subsystem in the same order that the
methods would be invoked if they were in a noniterated atomic subsystem.

Note Simulation time does not advance during execution of a For subsystem’s
iterations. Nevertheless, blocks in a For subsystem treat each iteration as a
time step. As a result, in a For subsystem, the output of a block with states,
i.e., a block whose output depends on its previous input, reflects the value of
its input at the previous iteration of the for loop—not, as one might expect, its
input at the previous simulation time step. For example, a Unit Delay block
in a For subsystem outputs the value of its input at the previous iteration of
the for loop—not the value at the previous simulation time step.

Construct a for loop as follows:

® Drag a For Iterator Subsystem block from the Library Browser or Library
window into your model.

3-48

Modeling Control Flow Logic

® You can set the For Iterator block to take external or internal input for
the number of iterations it executes.

Through the properties dialog of the For Iterator block you can set it to take
input for the number of iterations through the port labeled N. This input
must come from outside the For Iterator Subsystem.

You can also set the number of iterations directly in the properties dialog.

® You can set the For Iterator block to output its iterator value for use in the
block programming of the For Iterator Subsystem.

The iterator value is 1 for the first iteration and is incremented by 1 for
each succeeding iteration.

® Create a block diagram in the subsystem that defines the subsystem’s
outputs.

Note The diagram must not contain blocks with continuous states, e.g.,
blocks from the Continuous block library, and the sample times of all the
blocks must be inherited (-1) or constant (inf).

The For Iterator block works well with the Assignment block to reassign
values in a vector or matrix. This is demonstrated in the following example.
Note the matrix dimensions in the data being passed.

3-49

3 Creating a Model

o) [RRERlRE i forg. oun[RRdE
ot
Constant
- Forsubsystam -
- -
- -~ e -
- -
- —
- - h-h"'\-
- T
- T
—_ - —
- - - —
T {7 =
(el U batre | doudle [2¢1] doutde [2x1] doud
tris e [oei] o . =N F=] o e [
In1 - Sekcor w| =in e L2 = YR,C ke 1)
L & Cutd
Selectar Trigc\nor.retri:
Funcztion
Far double c
ltemtor
Far
Assignment

The above example outputs the sine value of an input 2-by-5 matrix (2 rows,

5 columns) using a For subsystem containing an Assignment block. The
process is as follows:

1 A 2-by-5 matrix is input to the Selector block and the Assignment block.

2 The Selector block strips off a 2-by-1 matrix from the input matrix at the

column value indicated by the current iteration value of the For Iterator
block.

3 The sine of the 2-by-1 matrix is taken.

3-50

Modeling Control Flow Logic

4 The sine value 2-by-1 matrix is passed to an Assignment block.

5 The Assignment block, which takes the original 2-by-5 matrix as one of
its inputs, assigns the 2-by-1 matrix back into the original matrix at the
column location indicated by the iteration value.

The rows specified for reassignment in the property dialog for the
Assignment block in the above example are [1,2]. Because there are only
two rows in the original matrix, you could also have specified -1 for the
rows, i.e., all rows.

Note Experienced Simulink software users will note that the Trigonometric
Function block is already capable of taking the sine of a matrix. The above
example uses the Trigonometric Function block only as an example of
changing each element of a matrix with the collaboration of an Assignment
block and a For Iterator block.

3-51

3 Creating a Model

Using Callback Functions

3-52

In this section...
“About Callback Functions” on page 3-52

“Tracing Callbacks” on page 3-52
“Creating Model Callback Functions” on page 3-53
“Creating Block Callback Functions” on page 3-55

“Port Callback Parameters” on page 3-59

About Callback Functions

You can define MATLAB® expressions that execute when the block diagram or
a block is acted upon in a particular way. These expressions, called callback
functions, are specified by block, port, or model parameters. For example, the
function specified by a block’s NameChangeFcn parameter is executed when
you double-click that block’s name or its path changes.

Note Do not call the run command from within model or block callbacks.
Doing so can result in unexpected behavior (such as errors or incorrect
results) if a Simulink® model is loaded, compiled, or simulated from inside an
M-function.

Tracing Callbacks

Callback tracing allows you to determine the callbacks the Simulink software
invokes and in what order the it invokes them when you open or simulate a
model. To enable callback tracing, select the Callback tracing option on
the Preferences dialog box or execute set_param(0, 'CallbackTracing',
‘on'). This option causes the callbacks to be listed in the MATLAB Command
Window as they are invoked. This option applies to all Simulink models, not
just models that are open when the preference is enabled.

Using Callback Functions

Creating Model Callback Functions

You can create model callback functions interactively or programmatically.
Use the Callbacks pane of the model’s Model Properties dialog box (see
“Callbacks Pane” on page 3-100) to create model callbacks interactively. To
create a callback programmatically, use the set_param command to assign a
MATLAB expression that implements the function to the model parameter
corresponding to the callback (see “Model Callback Functions” on page 3-53).

For example, this command evaluates the variable testvar when the user
double-clicks the Test block in mymodel:

set_param('mymodel/Test', 'OpenFcn', testvar)

You can examine the clutch system (sldemo_clutch.mdl) for routines
associated with many model callbacks. This model defines the following
callbacks:

® PreLoadFcn

® PostLoadFcn

e StartFcn

® StopFcn

® CloseFcn

Model Callback Functions
The following table describes callback functions associated with models.

Parameter When Executed

CloseFcn Before the block diagram is closed. Any
ModelCloseFcn and DeleteFcn callbacks set on
blocks in the model are called prior to the model’s
CloseFcn. The DestroyFcn callback of any blocks in
the model is called after the model’s CloseFcn.

PostLoadFcn After the model is loaded. Defining a callback
routine for this parameter might be useful for
generating an interface that requires that the model
has already been loaded.

3-53

3 Creating a Model

Parameter

When Executed

InitFcn

Called at start of model simulation.

PostSaveFcn

After the model is saved.

PreLoadFcn

Before the model is loaded. Defining a callback
routine for this parameter might be useful for
loading variables used by the model.

Note In a PrelLoadFcn callback routine, the
get_param command does not return the model’s

parameter values because the model is not yet
loaded.

In a PreLoadFcn routine, get_param returns:

¢ The default value for a standard model parameter
such as solver

® An error message for a model parameter added

with add_param

In a PostLoadFcn callback routine, however,
get_param returns the model’s parameter values
because the model is loaded.

PreSaveFcn

Before the model is saved.

StartFcn

Before the simulation starts.

StopFcn

After the simulation stops. Output is written to
workspace variables and files before the StopFcn is
executed.

3-54

Using Callback Functions

Note Beware of adverse interactions between callback functions of models
referenced by other models. (See Chapter 5, “Referencing a Model”.) For
example, suppose that model A references model B and that model A’s OpenFcn
creates variables in the MATLAB workspace and model B’s CloseFcn clears
the MATLAB workspace. Now suppose that simulating model A requires
rebuilding model B. Rebuilding B entails opening and closing model B and
hence invoking model B’s CloseFcn, which clears the MATLAB workspace,
including the variables created by A’s OpenFcn.

Creating Block Callback Functions

You can create block callback functions interactively or programmatically.
Use the Callbacks pane of the block’s Block Properties dialog box (see
“Callbacks Pane” on page 6-25) to create block callbacks interactively. To
create a callback programmatically, use the set_param command to assign

a MATLAB expression that implements the function to the block parameter
corresponding to the callback (see “Block Callback Parameters” on page 3-55).

Note A callback for a masked subsystem cannot directly reference the
parameters of the masked subsystem (see “About Masks” on page 17-2). The
Simulink software evaluates block callbacks in the MATLAB base workspace
whereas the mask parameters reside in the masked subsystem’s private
workspace. A block callback, however, can use get_param to obtain the value
of a mask parameter, e.g., get_param(gcb, 'gain'), where gain is the name
of a mask parameter of the current block.

Block Callback Parameters

This table lists the parameters for which you can define block callback
routines, and indicates when those callback routines are executed. Routines
that are executed before or after actions take place occur immediately before
or after the action.

Parameter When Executed
ClipboardFcn When the block is copied or cut to the system
clipboard.

3-55

3 Creating a Model

3-56

Parameter

When Executed

CloseFcn

When the block is closed using the close_system
command. The CloseFcn is not called when you
interactively close the block, when you interactively
close the subsystem or model containing the block,
or when you close the subsystem or model containing
the block using close_system.

CopyFcn

After a block is copied. The callback is recursive for
Subsystem blocks (that is, if you copy a Subsystem
block that contains a block for which the CopyFcn
parameter is defined, the routine is also executed).
The routine is also executed if an add_block
command is used to copy the block.

DeleteChildFcn

After a block or line is deleted in a subsystem. If
the block has a DeleteFcn or DestroyFcn, those
functions are executed prior to the DeleteChildFcn.
Only Subsystem blocks have a DeleteChildFcn
callback.

DeleteFcn

After a block is graphically deleted, e.g., when you
graphically delete the block, invoke delete block
on the block, or close the model containing the block.
When the DeleteFcn is called, the block handle is
still valid and can be accessed using get_param.
The DeleteFcn callback is recursive for Subsystem
blocks. If the block is graphically deleted by invoking
delete block or by closing the model, after deletion
the block is destroyed from memory and the block’s
DestroyFcn is called.

DestroyFcn

When the block has been destroyed from memory,
e.g., when you invoke delete_block on either

the block or a subsystem containing the block or
close the model containing the block. If the block
was not previously graphically deleted, the block’s
DeleteFcn is called prior to the DestroyFcn. When
the DestroyFcn is called, the block handle is no
longer valid.

Using Callback Functions

Parameter

When Executed

InitFcn

Before the block diagram is compiled and before
block parameters are evaluated.

ErrorFcn

When an error has occurred in a subsystem. Only
Subsystem blocks have a ErrorFcn callback. The
callback function should have the following form:

errorMsg = errorHandler(subsys, errorType)

where errorHandler is the name of the callback
function, subsys is a handle to the subsystem in
which the error occurred, errorType is a Simulink
string indicating the type of error that occurred, and
errorMsg is a string specifying the error message to
be displayed to the user. The following command
sets the ErrorFcn of the subsystem subsys to call
the errorHandler callback function

set_param(subsys, 'ErrorFcn', ‘errorHandler')

Do not include the callback function’s input
arguments in the call to set_param. The Simulink
software displays the error message errorMsg
returned by the callback function.

LoadFcn

After the block diagram is loaded. This callback is
recursive for Subsystem blocks.

ModelCloseFcn

Before the block diagram is closed. When the model
is closed, the block’s Mode1lCloseFcn is called prior
to its DeleteFcn. This callback is recursive for
Subsystem blocks.

MoveFcn

When the block is moved or resized.

NameChangeFcn

After a block’s name and/or path changes. When a
Subsystem block’s path is changed, it recursively
calls this function for all blocks it contains after
calling its own NameChangeFcn routine.

3-57

3 Creating a Model

3-58

Parameter

When Executed

OpenFcn

When the block is opened. This parameter is
generally used with Subsystem blocks. The routine
is executed when you double-click the block or when
an open_system command is called with the block as
an argument. The OpenFcn parameter overrides the
normal behavior associated with opening a block,
which is to display the block’s dialog box or to open
the subsystem.

ParentCloseFcn

Before closing a subsystem containing the block or
when the block is made part of a new subsystem
using the new_system command (see new_system
in the online Simulink software reference) or the
Create Subsystem item in model editor’s Edit
menu. The ParentCloseFcn of blocks at the root
model level is not called when the model is closed.

PostSaveFcn

After the block diagram is saved. This callback is
recursive for Subsystem blocks.

PreCopyFcn

Before a block is copied. The callback is recursive for
Subsystem blocks (that is, if you copy a Subsystem
block that contains a block for which the PreCopyFcn
parameter is defined, that routine is also executed).
The block’s CopyFcn is called after all PreCopyFcn
callbacks are executed, unless the PreCopyFcn
invokes the error command either explicitly or via a
command used in any PreCopyFcn. The PreCopyFcn
is also executed if an add_block command is used to
copy the block.

PreDeleteFcn

Before a block is graphically deleted, e.g., when

the user graphically deletes the block or invokes
delete_block on the block. The PreDeleteFcn is
not called when the model containing the block is
closed. The block’s DeleteFcn is called after the
PreDeleteFcn unless the PreDeleteFcn invokes the
error command either explicitly or via a command
used in the PreDeleteFcn.

Using Callback Functions

Parameter When Executed

PreSaveFcn Before the block diagram is saved. This callback is
recursive for Subsystem blocks.

StartFcn After the block diagram is compiled and before the

simulation starts. In the case of an S-Function
block, StartFcn executes immediately before the
first execution of the block’s md1ProcessParameters
function. See “S-Function Callback Methods” in the
online Simulink software documentation for more
information.

StopFcn At any termination of the simulation. In the
case of an S-Function block, StopFcn executes
after the block’s md1Terminate function executes.
See “S-Function Callback Methods” in the online
Simulink software documentation for more
information.

UndoDeleteFcn When a block deletion is undone.

Port Callback Parameters

Block input and output ports have a single callback function parameter,
ConnectionCallback. This parameter allows you to set callbacks on ports
that are triggered every time the connectivity of these ports changes.
Examples of connectivity changes include adding a connection from the port
to a block, deleting a block connected to the port, and deleting, disconnecting,
or connecting branches or lines to the port.

Use get_param to get the port handle of a port and set_param to set the
callback on the port. The callback function must have one input argument
that represents the port handle, but the input argument is not included in
the call to set_param. For example, suppose the currently selected block has
a single input port. The following code fragment sets foo as the connection
callback on the input port.

phs = get_param(gcb, 'PortHandles');
set_param(phs.Inport, 'ConnectionCallback', 'foo');

where, f00 is defined as:

3-59

3 Creating a Model

function foo(portHandle)

3-60

Using Model Workspaces

Using Model Workspaces

In this section...

“About Model Workspaces” on page 3-61
“Changing Model Workspace Data” on page 3-62
“Model Workspace Dialog Box” on page 3-64

About Model Workspaces

Each model is provided with its own workspace for storing variable values.
The model workspace is similar to the base MATLAB® workspace except that

Variables in a model’s workspace are visible only in the scope of the model.

If both the MATLAB workspace and a model workspace define a variable
of the same name, and the variable does not appear in any intervening
masked subsystem or model workspaces, the Simulink® software uses
the value of the variable in the model workspace. A model’s workspace
effectively provides it with its own name space, allowing you to create
variables for the model without risk of conflict with other models.

When the model is loaded, the workspace is initialized from a data source.

The data source can be the model’s MDL-file, a MAT-file, or M-code stored
in the model file (see “Data source” on page 3-65 for more information).

You can interactively reload and save MAT-file and M-code data sources.

Only Simulink.Parameter and Simulink.Signal objects for which the
storage class is set to Auto can reside in a model workspace. You must
create all other Simulink software data objects in the base MATLAB
workspace to ensure the objects are unique within the global Simulink
context and accessible to all models.

Note Subclasses of Simulink.Parameter and Simulink.Signal classes,
including mpt.Parameter and mpt.Signal objects (Real-Time Workshop®
Embedded Coder license required), can reside in a model workspace only
if their storage class is set to Auto.

3-61

3 Creating a Model

3-62

® In general, parameter variables in a model workspace are not tunable.

However, you can tune model workspace variables declared as model
arguments for referenced models (see “Using Model Arguments” on page
5-28 for more information).

Note When resolving references to variables used in a referenced model, the
referenced model’s variables are resolved as if the parent model did not exist.
For example, suppose a referenced model references a variable that is defined
in both the parent model’s workspace and in the MATLAB workspace but not
in the referenced model’s workspace. In this case, the MATLAB workspace

is used. (See Chapter 5, “Referencing a Model”.)

Note When you use a workspace variable as a block parameter, the Simulink
software creates a copy of the variable during the compilation phase of the
simulation and stores the variable in memory. This can cause your system to
run out of memory during simulation, or in the process of generating code.
Your system might run out of memory if

® You have large models with many parameters

® You have a model with parameters that have a large number of elements

This issue does not affect the amount of memory that is used to represent
parameters in generated code.

Changing Model Workspace Data

The procedure for modifying a workspace depends on the workspace’s data
source.

Changing Workspace Data Whose Source Is the Model File
If a model workspace’s data source is data stored in the model, you can
use Model Explorer (see “The Model Explorer” on page 13-2) or MATLAB
commands to change the model’s workspace (see “Using MATLAB®
Commands to Change Workspace Data” on page 3-63).

Using Model Workspaces

For example, to create a variable in a model workspace, using Model Explorer,
first select the workspace in Model Explorer’s Model Hierarchy pane. Then
select MATLAB Variable from Model Explorer’s Add menu or toolbar.

You can similarly use the Add menu or Model Explorer’s toolbar to add a
Simulink.Parameter object to a model workspace.

To change the value of a model workspace variable, select the workspace,
then select the variable in Model Explorer’s Contents pane and edit the value
displayed in the Contents pane or in Model Explorer’s object Dialog pane. To
delete a model workspace variable, select the variable in the Contents pane
and select Delete from Model Explorer’s Edit menu or toolbar. To save the
changes, save the model.

Changing Workspace Data Whose Source Is a MAT-File

You can also use Model Explorer or MATLAB commands to modify workspace
data whose source is a MAT-file. In this case, if you want to make the changes
permanent, you must save the changes to the MAT-file, using the Save To
Source button on the Model Workspace dialog box (see “Model Workspace
Dialog Box” on page 3-64). To discard changes to the workspace, use the
Reinitialize From Source button on the Model Workspace dialog box.

Changing Workspace Data Whose Source Is M-Code

The safest way to change data whose source is M-code is to edit and reload the
source, i.e., edit the M-code and then clear the workspace and reexecute the
code, using the Reinitialize From Source button on the Model Workspace
dialog box. You can use the Export to MAT-File and Import From MAT-file
buttons to save and reload alternative versions of the workspace that result
from editing the M code source or the workspace variables themselves.

Using MATLAB® Commands to Change Workspace Data

To use MATLAB commands to change data in a model workspace, first get the
workspace for the currently selected model:

hws = get_param(bdroot, 'modelworkspace');
This command returns a handle to a Simulink.ModelWorkspace object

whose properties specify the source of the data used to initialize the model
workspace. Edit the properties to change the data source. Use the workspace’s

3-63

3 Creating a Model

methods to list, set, and clear variables, evaluate expressions in, and save and
reload the workspace.

For example, the following MATLAB sequence of commands creates variables
specifying model parameters in the model’s workspace, saves the parameters,
modifies one of them, and then reloads the workspace to restore it to its
previous state.

hws = get_param(bdroot, 'modelworkspace');
hws.DataSource = 'MAT-File';

hws.FileName = 'params';
hws.assignin('pitch', -10);
hws.assignin('roll', 30);
hws.assignin('yaw', -2);

hws.saveToSource;

hws.assignin('roll', 35);

hws.reload;

Model Workspace Dialog Box

The Model Workspace dialog box enables you to specify a model workspace’s
source and model reference arguments (See Chapter 5, “Referencing a
Model”.) To display the dialog box, select the model workspace in Model
Explorer’s Model Hierarchy pane. To use MATLAB commands to change
data in a model workspace, see “Using MATLAB® Commands to Change
Workspace Data” on page 3-63.

3-64

Using Model Workspaces

= Model Explorer 10| =]
File Edit Yiew Tools Add Help
Dzt meax BHc%f0 Do/ 4R waza
HSealch: Iby Block Type j Type: IAssignmenl LI Search |
kaodel Hierarchy | Contentz of: Model Wark zpace Model Workspace
E--@Simulink Root I Mame I Walue I DataT_l,JpeI Workepace ol
g----ﬁBase Workspace Data source: I MOLFile [readvrite) ﬂ
E--Emodws

i Model

ace

@ Ciode for untitled
@ Advice for untitled

é;‘&Eluznr'ufigL,lration [Active]

Contents |§earch Fesults |

Import From M.-’-‘«T-Filel Export To MaT -File EIearWnlkspacel

todel arguments [for referencing this model):

Fiewvert

Help

Apply

The dialog box contains the following controls.

Data source
Specifies the source of this workspace’s data. The options are

Mdl-File

Specifies that the data source is the model itself. Selecting this option
causes additional controls to appear (see “MDL-File Source Controls” on

page 3-66).
MAT-File

Specifies that the data source is a MAT file. Selecting this option causes
additional controls to appear (see “MAT-File Source Controls” on page 3-66).

M-code

3-65

3 Creating a Model

Specifies that the data source is M code stored in the model file. Selecting
this option causes additional controls to appear (see “M-Code Source
Controls” on page 3-67).

MDL-File Source Controls

Selecting Md1-File as the Data source for a workspace causes the Model
Workspace dialog box to display additional controls.

Model Work zpace
Workspace data

[rata source: | R OL-File LI

| rpart From M.-‘-‘-.T-Filel Ewpart To M T-File Clear Wnrkspacel

Import From MAT-File. This button lets you import data from a MAT-file.
Selecting the button causes a file selection dialog box to be displayed. Use the
dialog box to select the MAT file that contains the data you want to import.

Export To MAT-File. This button lets you save the selected workspace as a
MAT-file. Selecting the button displays a file selection dialog box. Use the
dialog box to select the MAT file to contain the saved data.

Clear Workspace. This button clears all data from the selected workspace.

MAT-File Source Controls

Selecting MAT-File as the Data source for a workspace causes the Model
Workspace dialog box to display additional controls.

3-66

Using Model Workspaces

—Wiorkzpace data

Data source: | AT -File LI

File name: I

Reinitialize Fram Su:uur-:el Save ToSource |

Import From MAT -File | Export To M.-“-‘-.T-Filel Clear 'W'l:urkspacel

File name. File name or path name of the MAT file that is the data source
for the selected workspace. If a file name, the name must reside on the
MATLAB path.

Reinitialize From Source. Clears the workspace and reloads the data from
the MAT-file specified by the File name field.

Save To Source. Save the workspace in the MAT-file specified by the File
name field.

Import From MAT-File. Loads data from a specified MAT file into the
selected model workspace without first clearing the workspace. Selecting this
option causes a file selection dialog box to be displayed. Use the dialog box to
enter the name of the MAT-file that contains the data to be imported.

Export To MAT-File. Saves the data in the selected workspace in a MAT-file.
Selecting the button causes a file selection dialog box to be displayed. Use the
dialog box to select the MAT file to contain the saved data.

Clear Workspace. Clears the selected workspace.

M-Code Source Controls

Selecting M-Code as the Data source for a workspace causes the Model
Workspace dialog box to display additional controls.

3-67

3 Creating a Model

3-68

—wiorkzpace data

Data zource: | M-Code LI
t-Code:

Reinitialize From Source |

Irpart From MAT -File | Ewpart To Ma&T -File Clear Wnrkspacel

M-Code. Specifies M-code that initializes the selected workspace. To change
the initialization code, edit this field, then select the Reinitialize from
source button on the dialog box to clear the workspace and execute the
modified code.

Reinitialize from Source. Clears the workspace and executes the contents
of the M-Code field.

Import From MAT-File. Loads data from a specified MAT file into the
selected model workspace without first clearing the workspace. Selecting this
option causes a file selection dialog box to be displayed. Use the dialog box to
enter the name of the MAT-file that contains the data to be imported.

Export To MAT-File. Saves the data in the selected workspace in a MAT-file.
Selecting the button causes a file selection dialog box to be displayed. Use the
dialog box to select the MAT file to contain the saved data.

Clear Workspace. Clears the selected workspace.

Model Arguments

This field allows you to specify arguments that can be passed to instances
of this model referenced by another model. See Chapter 5, “Referencing a
Model” and “Using Model Arguments” on page 5-28 for more information.

Resolving Symbols

Resolving Symbols

In this section...

“About Symbol Resolution” on page 3-69

“Hierarchical Symbol Resolution” on page 3-70
“Specifying Numeric Values with Symbols” on page 3-71
“Specifying Other Values with Symbols” on page 3-71
“Limiting Signal Resolution” on page 3-72

“Explicit and Implicit Resolution” on page 3-72

“Programmatic Symbol Resolution” on page 3-73

About Symbol Resolution

When you create a Simulink® model, you can use symbols to provide values
and definitions for many types of entities in the model. Model entities that
can be defined with symbols include block parameters, configuration set
parameters, data types, signals, signal properties, and bus architecture.

A symbol that provides a value or definition must be a legal MATLAB®
identifier. Such an identifier starts with an alphabetic character, followed by
up to 63 alphanumeric or underscore characters. A symbol provides a value or
definition in a Simulink model by corresponding to some item that:

¢ Exists in an accessible workspace

® Has a name that matches the symbol

® Provides the required information

The process of searching for and finding an item that corresponds to a symbol
is called resolving the symbol. The matching item can provide the needed

information directly, or it can itself be a symbol, which must then resolve to
some other item that provides the information.

When the Simulink software compiles a model, it tries to resolve every symbol
in the model, except symbols in M-code that runs in a callback or as part of

3-69

3 Creating a Model

3-70

mask initialization. Depending on the particular case, the item to which a
symbol resolves can be a variable, object, or function.

Hierarchical Symbol Resolution

The Simulink software attempts to resolve a symbol by searching through
the accessible workspaces in hierarchical order for a MATLAB variable or
Simulink object whose name is the same as the symbol. The search path
is identical for every symbol. The search begins with the block that uses
the symbol, or creates a signal that is named by the symbol, and proceeds
upward. Except when simulation occurs via the sim command, the search
order is the following:

1 Any mask workspaces, in order from the block upwards (see “Mask
Workspace” on page 17-4)

2 The model workspace of the model that contains the block (see “Using
Model Workspaces” on page 3-61)

3 The MATLAB base workspace (See “MATLAB Workspace”)

If the Simulink software finds a matching item in the course of this search,
the search terminates successfully at that point, and the symbol resolves to
the matching item. The result is the same as if the value of that item had
appeared literally instead of the symbol that resolved to the item. An object
defined at a lower level shadows any object defined at a higher level.

If no matching item exists on the search path, the Simulink software attempts
to evaluate the symbol as a function. If the function is defined and returns
an appropriate value, the symbol resolves to whatever the function returned.
Otherwise, the symbol remains unresolved, and an error occurs. Evaluation as
a function occurs as the final step whenever a hierarchical search terminates
without having found a matching workspace item.

If the model that contains the symbol is a referenced model, and the search
reaches the model workspace but does not succeed there, the search jumps
directly to the base workspace without trying to resolve the symbol in the
workspace of any parent model. Thus a given symbol will resolve to the
same item irrespective of whether the model that contains the symbol is a

Resolving Symbols

referenced model. See Chapter 5, “Referencing a Model” for information about
model referencing.

Specifying Numeric Values with Symbols

Any block parameter that requires a numeric value can be specified by
providing a literal value, a symbol, or an expression, which can contain
symbols and literal values. Each is symbol evaluated separately, as if none
of the others existed. Different symbols in an expression can thus resolve to
items on different workspaces, and to different types of item.

When a single symbol appears and resolves successfully, its value provides the
value of the parameter. When an expression appears, and all symbols resolve
successfully, the value of the expression provides the value of the parameter.
If any symbol cannot be resolved, or resolves to a value of inappropriate type,
an error occurs.

For example, suppose that the Gain parameter of a Gain block is given as
cos(j*(k+2)). The symbol cos will resolve to the MATLAB cosine function,
and j and k must resolve to numeric values, which could be obtained from the
same or different types of items in the same or different workspaces. If the
symbols resolve to numeric values, the value returned by the cosine function
becomes the value of the Gain parameter.

Specifying Other Values with Symbols

Most symbols and expressions that use them provide numeric values, but the
same techniques that provide numeric values can provide any type of value
that is appropriate for its context. Another common use of symbols is to name
objects that provide definitions of some kind. For example, a signal name can
resolve to a signal object (Simulink.Signal) that defines the properties of
the signal, and a Bus Creator block’s Bus object parameter can name a bus
object (Simulink.Bus) that defines the properties of the bus. Symbols can be
used when defining data types, can specify input data sources and logged data
destinations, and can serve many other purposes.

From the standpoint of hierarchical symbol resolution, all of these different
uses of symbols, whether singly or in expressions, are the same: each symbol
is resolved, if possible, independently of any others, and the result becomes
available where the symbol appeared. The only difference between one symbol

3-71

3 Creating a Model

3-72

and another is the specific item to which the symbol resolves and the use
made of that item. The only requirement is that every symbol must resolve to
something that can legally appear at the location of the symbol.

Limiting Signal Resolution

Hierarchical symbol resolution traverses the complete search path by default.
You can truncate the search path by using the Permit Hierarchical
Resolution option of any subsystem. This option controls what happens if
the search reaches that subsystem without resolving to a workspace variable.
The Permit Hierarchical Resolution values are:

e All

Continue searching up the workspace hierarchy trying to resolve the
symbol. This is the default value.

® None

Do not continue searching up the hierarchy. Attempt to resolve the symbol
as a function.

® ExplicitOnly

Continue searching up the hierarchy only if the symbol specifies a block
parameter value, data store memory (where no block exists), or a signal
or state that explicitly requires resolution. Do not continue searching for
an implicit resolution. See “Explicit and Implicit Resolution” on page 3-72
for more information.

If the search does not find a match in the workspace, and terminates because
the value is ExplicitOnly or None, the Simulink software evaluates the
symbol as a function. The search succeeds or fails depending on the result of
the evaluation, as previously described.

Explicit and Implicit Resolution

Models and some types of model entities have associated parameters that can
affect symbol resolution. For example, suppose that a model includes a signal
named Amplitude, and that a Simulink.Signal object named Amplitude
exists in an accessible workspace. If the Amplitude signal’s Signal name

Resolving Symbols

must resolve to Simulink signal object option is checked, the signal will
resolve to the object. See “Signal Properties Dialog Box” for more information.

If the option is not checked, the signal may or may not resolve to the object,
depending on the value of Configuration Parameters > Data Validity >
Signal resolution. This parameter can suppress resolution to the object
even though it is available, or it can specify that resolution occurs on the basis
of the name match alone. See “Diagnostics Pane: Data Validity” > “Signal
resolution” for more information.

Resolution that occurs because an option like Signal name must resolve
to Simulink signal object requires it is called explicit symbol resolution.
Resolution that occurs on the basis of name match alone, without an explicit
specification, is called implicit symbol resolution.

Programmatic Symbol Resolution

When you use the sim command to run a simulation programmatically, you
have an option that does not exist with interactive simulation: you can specify
a workspace other than the MATLAB base workspace as the last workspace
searched in hierarchical symbol resolution.

Most simulation is interactive, so most Simulink documentation does

not mention this possibility. For information about substituting another
workspace for the base workspace during programmatic simulation, see the
sim command reference page.

3-73

3 Creating a Model

Working with Data Stores

3-74

In this section...

“About Data Stores” on page 3-74
“Defining Data Stores” on page 3-74
“Accessing Data Stores” on page 3-76

“Data Store Examples” on page 3-77

About Data Stores

Data stores are signals that are accessible at any point in a model hierarchy
at or below the level in which they are defined. Because they are accessible
across model levels, data stores allow subsystems and referenced models to
share data without having to use I/O ports to pass the data from level to level.

See Chapter 5, “Referencing a Model” for information about referenced
models, and “Data Store Examples” on page 3-77 for examples of using data
stores to share data among subsystems and model references.

Defining Data Stores

Defining a data store entails creating an object whose properties specify the
properties of the data store. You can use either Data Store Memory blocks
or instances of Simulink.Signal class to define data stores. Each approach
has advantages. Data Store Memory blocks give you more control over the
scope of data stores within a model and allow initialization of data stores.
Simulink.Signal objects avoid cluttering a model with blocks and allows
data stores to be visible across model reference boundaries.

Using Data Store Memory Blocks to Define Data Stores

To use a Data Store Memory block to define a data store, drag an instance of
the block into the model at the topmost level from which you want the data
store to be visible. For example, to define a data store that is visible at every
level in a model (except in model references), drag the Data Store Memory
block into the root level of the model. To define a data store that is visible
only in a particular subsystem (and the subsystems that it contains), drag
the block into the subsystem. Once you have created the Data Store Memory

Working with Data Stores

block, use its parameter dialog box to define the data stores properties,
including its name, data type, complexity.

Using Signal Objects to Define Data Stores

To use a signal object to define a data store, create an instance of
Simulink.Signal object in a workspace that is visible to every model that
needs to access the data store. For example, to define a data store that is
visible to a top model and all the models that it references, use Model Explorer
or MATLAB® commands to create the signal object in the base (i.e., MATLAB)
workspace. To define a data store that is visible only in a particular model,
create the signal object in the model’s workspace (see “Changing Model
Workspace Data” on page 3-62). You can use Simulink.Signal objects to
define data stores that are visible in only one model (a local data store) or in a
top model and the models that the top model references (a global data store).

When creating the object, assign it to a workspace variable whose name is
the name you want to be assigned to the data store. Once you have created
the object, use Model Explorer or MATLAB commands to set the following
properties of the signal object to the values that you want the corresponding
data store property to have.

® DataType

® Dimensions

e Complexity

® SampleTime

e SamplingMode

® StorageClass

For example, the following commands define a data store named Error in the
MATLAB workspace:

Error = Simulink.Signal;

Error.Description = 'Use to signal that subsystem output
is invalid';

Error.DataType = 'boolean';

Error.Complexity = 'real';

Error.Dimensions = 1;

3-75

3 Creating a Model

3-76

Error.SamplingMode="'Sample based';
Error.SampleTime = 0.1;

Note A signal object that defines a local store, i.e., that resides in a model
workspace, must inherit the value of its StorageClass property, i.e., the value
must be auto (the default). In the case of a signal object that defines a global
store, i.e., that resides in the base workspace, the only properties that can
inherit their values are StorageClass and SampleTime. You must specify
explicit values for all of the other relevant properties of the object. In either
case, when using a signal object to define a data store, you must specify the
object’s SamplingMode as 'Sample based'.

Accessing Data Stores

To set the value of a data store at each time step, create an instance of a Data
Store Write block at the level of your model that computes the value, set its
Data store name parameter to the name of the data store to be updated, and
connect the output of the block that computes the value to the input of the
Data Store Write block, e.g.,

=02 [——f Errar

Campare [rata Store
Tao Constant irite

33in

To get the value of a data store at each time step, create an instance of a
Data Store Read block at the level of your model that needs the value, set the
block’s Data store name parameter to the name of the data store to be read,
and connect the output of the data store read block to the input of the block
that need’s the data store’s value, e.g.,

Working with Data Stores

Errar [Scope] >
Crata Store From
—{In1 Out1
[Scope]
A
Zato >
|.n.| Errar .,_| : I >
LUJ Scope
Sine Wave [rata Store
Read
—F'_I
Switch
——]In1 Out1

When connected to a global data store, a data store access block displays the
word Global above the data store’s name.

[Seope]

Foto

|J'|.|
L]

Sine Mfawe

“Global” indicates that Error is
defined by a signal objet in the
MATLAB workspace.

[ata Store
Fead

b

B

Out1

Sitch

This is done to remind you that the data store is defined by a signal object in
the MATLAB workspace rather than by a Data Store Memory block.

Data Store Examples

The following examples illustrate the use of these constructs to define and
access data stores.

3-77

3 Creating a Model

3-78

Local Data Store Example
The following model illustrates creation and access of a local data store, i.e., a
data store that is visible only in a model or particular subsystem.

Data Store
Wirite

Compare
To Constant

o int Ot

Errar

Data Store

Sine WWave
Read

In1 Outi

2 P
. . In1 Outl

This model uses a data store to permit subsystem A to signal that its output
is invalid. If subsystem A’s output is invalid, the model uses the output
of subsystem B.

¥

Global Data Store Example

The following model replaces the subsystems of the previous example with
functionally identical submodels to illustrate use of a global data store to
share data in a model reference hierarchy.

Working with Data Stores

a

—]in1 Outt —

[Seope]

2\

Seope

Data Store

Read 1 E! Model Properties ﬂ
b Switch Main | Callbacks I Histary | Description -
Ljpe] 101 Outd

Model callbacks Model pre-load functian:

; @8 | Eror = Simulink. Signal;
Error. Description = 'l se to signal that subspstem outp
Eror.DataType = boolean';

When the model is loaded, this code creates a Eror Complesity = eal”
Errar. Dimensions = 1;

signal object in the MATLAB workspace that Ener Samplinghode='S ample based
defines the global data store Error used to indicate —» | -~ ="~ " | EnorSampleTime =01, _lﬂ
| B

that submodel A's output is invalid. l
Ok I Cancel | Help | Apply |

Sine Wave

In this example, the top model uses a signal object in the MATLAB workspace
to define the error data store. This is necessary because data stores are

visible across model boundaries only if they are defined by signal objects
in the MATLAB workspace.

3-79

3 Creating a Model

Consulting the Model Advisor

3-80

In this section...

“About the Model Advisor” on page 3-80

“Starting Model Advisor” on page 3-80

“Model Advisor Window” on page 3-81
“Navigating Model Advisor Checks” on page 3-83
“Model Advisor Result Explorer” on page 3-90
“Model Advisor Reports” on page 3-92

“Checking Code-Generation Targets” on page 3-94
“Model Advisor Demo” on page 3-94

“Running the Model Advisor Programmatically” on page 3-94

About the Model Advisor

The Model Advisor checks a model or subsystem for conditions and
configuration settings that can result in inaccurate or inefficient simulation
of the system represented by the model or in generation of inefficient code
from the model. It produces a report that lists all the suboptimal conditions
or settings that it finds, suggesting better model configuration settings
where appropriate. See “Model Advisor Checks” in the Simulink® Reference
documentation for more information on individual checks.

Starting Model Advisor
You can use any of the following methods to start the Model Advisor.

e Select Model Advisor from Model Editor’s Tools menu.

¢ In the Contents pane of the Model Explorer (see “The Model Explorer”
on page 13-2), select Advice for model, where model is the name of the
model that you want to check.

e At the MATLAB® prompt, enter modeladvisor (model), where model is
a handle or name of the model or subsystem you want to check (see the
modeladvisor function reference page for more information).

Consulting the Model Advisor

® Select Model Advisor from the context (right-click) menu of a subsystem
that you want to check.

Note The Model Advisor uses the Simulink project (slprj) directory (see
“Simulation Targets” on page 5-16 for more information) in the current
directory to store reports and other information. If such a directory does

not exist in the current directory, the Model Advisor creates it. For this
reason, you should, before starting the Model Advisor, ensure that the current
directory is writable. If the directory is not writable, an error message is
displayed when you start the Model Advisor.

Model Advisor Window

When you start the Model Advisor, the Model Advisor window is displayed.
Expanding the folders displays the available checks.

3-81

3 Creating a Model

F& Model Advisor - vdp [_ O]
File Edit Run %ew Help
Task Hierarchy: wdp Model Advisor Task Manager

To enable or disable a check, select or clear the check box next ko the check name.

=l IC=1By Product
= IE3) Simulink
- W []Check mode "Deselect All",
- W [~ |1dentify unc
- [W [~]Check root 1 For a list of all possible actions, right-click an object in the Task Hierarchy,

To enable or disable all checks within a folder, right-click the Folder and then click "select al* or

- W [| Check optir
- W [~ |Check for p. ~Legend
- W [| Check Far in | Mok Run
- W [| Check For o) (2 Passed
- W [| Check For D) Failed
- [[=] Identify dis: /0 warning
- [T [| 1dentify par
- W [~ | 1dentify unr
- [[=]~Check Far
- [[=] ~Check For
- [[]~Identify bl
- [T [=]~Check Far
=I5By Task,
-- “S15imulation Performe
- [-= Simulation Runtime
-- IModel Referencing
.. IUpgrading ko the O
.. T1Managing Library Li
.. SiModeling Standards

* I I LI Help |

&

“ Running this check trigoers an Update Diagrarnm,

The left pane lists the checks that the Model Advisor performs. By default,
the Model Advisor groups the checks by product. Select By Task to display

3-82

Consulting the Model Advisor

checks related to specific tasks, such as updating the model to be compatible
with the current Simulink version.

The right pane provides instructions on how to view, enable, and disable
checks, and provides a legend explaining the displayed symbols.

You can select some or all of the checks and then run an individual check or
all selected checks. Some checks have input parameters where you can specify
information provided for the check to run (see “Check for proper Merge block
usage” for an example). The results of the checks are displayed in the Model
Advisor window. Additionally, the Model Advisor generates an HTML report
of the check results, which you can opt to view in a separate browser window.

Note When you open the Model Advisor on a model that you have previously
checked, the Model Advisor tool initially displays the check results generated

the last time you checked the model. If you recheck the model, the new results
replace the previous results in the Model Advisor window. You can also reset

the status of the checks to not run by right-clicking the Model Advisor Task
Manager folder and selecting Reset from the folder context menu.

Navigating Model Advisor Checks

The following procedure demonstrates how to use the Model Advisor to
perform checks on your model and view the check results.

1 Open the vdp demo model by entering vdp on the MATLAB command line.

2 Open the Model Advisor by selecting Model Advisor from the Model
Editor’s Tools menu. The Model Advisor window starts and displays
checks for the vdp demo model, as shown in “Model Advisor Window” on
page 3-81. By default, most of the checks are selected.

3 Select By Product in the left pane. This changes the right pane to a By
Product view.

3-83

3 Creating a Model

F& Model Advisor - vdp

File Edit Run %ew Help

I [=] B3

Task Hierarchy: wdp
El,,:] Model Advisor Task Manage
=+ /=1By Product

= [E3) Simulink

- [[| Check mode
- W [~ |1dentify unc
- [[~ |Check root 1
- [[| Check optim
- W [~ |Check for p
- W [| Check Far i
- [[| Check For of
- W [~ |Check for Di
- [[=] 1dentify disz
- [[~ |1dentify par
- W [~ | 1dentify unr
- [[=]~Check Far
[[] ~Check Far
- [[]~ Identify bl
- [[]~Check Far
- S)Ey Task

i

By Product
Maodel Advisar I

— Analysis

Fun Selecked Checks |

[Show report afker run

—FReport

Report: Chworkislprfimodeladyisorivdphreport 1, hkml
DatefTime: Mok Applicable
SUmmEky 0 Passi 0 @ Fail: 0

A Warning: 0| MNok Run: 15

To process all enabled items in this folder and generate a new report, click "Run Selected
Checks",

Right-click ta select ar deselect all items in this Folder,
To auktamatically display the repark after processing, select "Show report after run®,
To display the last repart generated, click the "Repart” path link.

For a list of all possible actions, right-click an ikem in the Task Higrarchey.,

Help

4 Select the Show report after run check box. This option causes an HTML
report of check results to be displayed after the checks run.

3-84

Consulting the Model Advisor

5 Run the selected checks by clicking the Run Selected Checks button.
After the checks run, an HTML report of the check results is displayed
in a browser window.

Tip While you can use Model Advisor reports to fix checks, you should use
the Model Advisor window for interactive check fixing. Use Model Advisor
reports to view a summary of checks rather than to fix checks.

3-85

3 Creating a Model

3-86

Model Advisor -- Cwork' slprjmodeladvisor', wdph report_1.html

- oM

Report name: Model Advisor - By Product
Simulink version: 7.1 Model version: 1.5
System: vdp Current run: 19-Dec-2007 10:30:42

Run Summary
Pass Fail Warning Not Run Total

@; Qg Mo =l g 15

By Product

Simulink

OChEEk model, local libraries, and referenced models for known upygrade issues

Pazzed

OIdentify unconnected lines, input ports, and output ports

Fassed

@ Check root model Inport block specifications

Pazzed

M\Check optimization settings
ou should turn on the following optimization(s):

+ Block reduction

Dane

Consulting the Model Advisor

6 Return to the Model Advisor window, which has been updated with the
check results.

F& mModel Advisor - vdp [_ O]
File Edit Run Yiew Help
Task Hierarchy: wdp Simulink
=l [C)Model Advisar Task Manager Madel Advisar |
EI‘_EI,E,F Product — Ainalysis
=

v ﬁcheck model Run Selected Checks |
= ﬁldentihf unic [~ show report after run
- W @@ Check raot 1
-V A Check optim -~ Repart
[ﬁcheck For p: Repork: Cworkislpritmodeladvisorivdpireport 2, bkl
.l .&Check For i DatefTime: 19-Dec-2007 10:30:42

- v @Check For of SurnMmary: 0 Pass: 7 @ Fail: O A Warning: 2 [|Mak Run: &
¥ ﬁcheck Far D

- [[1dentify diss To process all enabled items in this Folder and generate a new repart, click "Run Selected
- [|1dentify par Checks".

W ﬁldentify unir
o[[]~Check For Right-click ko select or deselect all items in this Folder.
- =]~ Check For
To automatically display the repark after processing, select "Show report after run®,
[T [)~1dentify bl ¥ ClspRay e TR & & P
- checkfar -+ g display the last report generated, click the "Report” path link,
[H-[T)By Task

Far a list of all possible actions, right-click an item in the Task Hierarchey,

g I I ﬂ Help

3-87

3 Creating a Model

7 Select an individual check to open a detailed view of the results in the right
pane. For example, selecting Check optimization settings changes the
right pane to the following view. Unose this view to examine and exercise
a check individually.

3-88

Consulting the Model Advisor

F& Model Advisor - vdp

Filz Edit

Run Miew Help

I [=] B3

Task Hierarchy: wdp

E||i| Model Advisor Task Manage
=-ICABy Product
-l Simulink

ard acheck rmode
- [v @ 1dentify unc
- [v @@ Check roat ¢

IZ:|'|E=|:l=:. opkinn
- W @@ Check for pe
W A Check For i
- aCheck For of
- [v @@ Check: for Di
- [[=] 1dentify disz
- [[~ |1dentify par
- [W @@ Identify unr
- [[=]~Check Far
[[] ~Check Far
- []~ Identify bl
- [[]~Check Far

- S)Ey Task

Check optimization settings

— fAnalysis

Hawing unselected optimizations can lead to nonoptimal results

Run This Checkl

Result: /A% Warning

You should turn on the Following optimizations):

Block reduction
Inline parameters
Implement logic signals as boolean data

Help

ARl

3-89

3 Creating a Model

3-90

Model Advisor Result Explorer

Some checks in the Model Advisor have an Explore Result button that starts
the Model Advisor Result Explorer. The Model Advisor Result Explorer allows
you to quickly locate, view, and change elements of a model.

In the example below, a default Inport block is added to the vdp model. If
you run Check root model Inport block specifications, the result is a
warning, which enables the Explore Result button. Clicking the button
opens the Model Advisor Result Explorer window.

Consulting the Model Advisor

F& Model Advisor Result Explorer - Result 1 [_ O]

JJShu:uw: IResuIt 1 ;I For: ICurrent syskem and below ;I

Model Hierarchsy I

i""ﬂvdp*

Mame | BlockType | MaskType | OutMin | QutMacx | OutDataTypestr

I I T |

Source Block Parameters: Inl

— Inpork

Provide an input port For a subs:
For Triggered Subsystems, 'Lakc
value of the subsyskem inpuk at
For Function-call Subsystems, 'L
Inport block's oukput to a buffer
executed,

The ather parameters can be us

Flain | Signal .ﬁ.ttril:uutesl

Port number:

Icon display: IF‘:::rt number

[T Latch input by delaying outsic

™| Latch input by copying inside
¥ Interpolate data

dl |

Rewverk | Help

» i

The Model Advisor Result Explorer is a reduced version of the Model Explorer
to assist you in modifying only the items that are necessary for the Model

3-91

3 Creating a Model

3-92

Advisor check. See “The Model Explorer” on page 13-2 for more information
about using this window.

Model Advisor Reports

When the Model Advisor runs checks, it generates an HTML report of check
results. Each folder in the Model Advisor Task Hierarchy contains a report for
all of the items in that folder. You can access any report by selecting a folder
and clicking the link in the Report box.

Tip While you can use Model Advisor reports to fix checks, you should use the
Model Advisor window for interactive check fixing. Use Model Advisor reports
to view a summary of checks rather than to fix checks.

As you run checks, the reports are updated with the latest information for
each check within the folder. A message appears in the report when the
checks are run at different times. The timestamps in the report indicate when
checks have been run. All checks have either run during the current run
timestamp, indicated in the top right of the report, or during previous runs,
indicated by a timestamp following the check name.

Consulting the Model Advisor

Model Advisor -- C:hwork' slpritmodeladyisor', vdp' report_2.html

o« oM

Report name: Model Advisor - Simulink

Simulink version: 7.1 Model version: 1.5
System: vdp Current run: 19-Dec-2007 17:57:.00

@ 3 iterns with = tirnestamp different than 19-Dec-2007 17:57:00

Run Summary

Pass Fail Warning Not Run Total
@1 Qo Aj 11 15
Simulink

@ cCheck model, local libraries, and referenced models for known upgrade issues (159-0ec-2007
17:56:55)

Paszszed

&Identify unconnected lines, input ports, and output ports

The fallowing unconnected lines andfor ports are likely to cause problems propagating signal attributes
(e.q., data type, sample time, dimensions). Maote that ports connected to ground/terminator blocks pass

this check.

vdp/ini

% Check root model Inport block specifications (19-Dec-2007 14:42:49)

| »

Dane

3-93

3 Creating a Model

3-94

Checking Code-Generation Targets

If Real-Time Workshop® software is installed on your system, before running
the Model Advisor on a model, select the target you plan to use in the
Real-Time Workshop pane of the Configuration Parameters dialog box (see
“Configuration Parameters Dialog Box”). The Model Advisor works most
effectively with ERT and ERT-based targets (targets based on the Real-Time
Workshop® Embedded Coder™ software).

Model Advisor Demo

Enter sldemo_mdladv at the MATLAB command line to run a demo that
illustrates usage of the Model Advisor:

If Real-Time Workshop software is installed on your system, the following
models illustrate usage of the Model Advisor:

®* rtwdemo_advisori
®* rtwdemo_advisor2
®* rtwdemo_advisor3

You can also run these demos from the MATLAB command line. For example,
the command

modeladvisor('rtwdemo_advisorit')

starts the rtwdemo_advisor1 model. Note that demo models
rtwdemo_advisor2 and rtwdemo_advisor3 require Stateflow® and
Fixed-Point Toolbox™ software.

Running the Model Advisor Programmatically

You can create M-file programs that run the Model Advisor programmatically.
For example, you can create an M-file program to check that your model passes
a specified set of the Model Advisor checks every time you open the model or
start a simulation or generate code from the model. For more information, see
the Simulink.ModelAdvisor class in the Simulink online reference.

Managing Model Versions

Managing Model Versions

In this section...

“How Simulink® Helps You Manage Model Versions” on page 3-95
“Model File Change Notification” on page 3-96

“Specifying the Current User” on page 3-97

“Model Properties Dialog Box” on page 3-99

“Creating a Model Change History” on page 3-107

“Version Control Properties” on page 3-108

How Simulink® Helps You Manage Model Versions

The Simulink® software has these features to help you to manage multiple
versions of a model:

¢ Model File Change Notification helps you manage work with source control
operations and multiple users

® As you edit a model, the Simulink software generates version control
information about the model, including a version number, who created and
last updated the model, and an optional change history. The Simulink
software automatically saves these Version Control Properties with
the model

¢ The Model Properties dialog box lets you edit some of the version control
information stored in the model and select various version control options

¢ The Model Info block lets you display version control information, including
information maintained by an external version control system, as an
annotation block in a model diagram

¢ The Simulink software version control parameters let you access version
control information from the MATLAB® command line or an M-file

¢ The Source Control submenu of the File menu allows you to check
models into and out of your source control system. See “Source Control
Interface” in the online MATLAB documentation for more information.

3-95

3 Creating a Model

3-96

Model File Change Notification

You can use the Simulink Preferences window to specify whether to notify if
the model has changed on disk when updating, simulating, editing, or saving
the model. This can occur, for example, with source control operations and
multiple users.

Note To programmatically check whether the model has changed on disk
since it was loaded, use the function s1IsFileChangedOnDisk.

To access the Simulink Preferences window,

¢ Select File > Preferences in the Simulink product.

¢ Select File > Preferences in MATLAB to open the MATLAB Preferences,
then select Simulink in the left pane, and click the button Launch
Simulink Preferences.

Madel File Chanage Motification

Makify if model has changed on disk when:

[Updating or simulating the modet

Ackion: | Warning LI
[+ First editing the model
[+ Saving the rmodel
The Model File Change Notification options are in the right pane. You can use
the three independent options as follows:

® If you select the Updating or simulating the model check box, you can
choose what form of notification you want from the Action list:

= Warning — in the MATLAB command window.

Managing Model Versions

= Error — in the MATLAB command window if simulating from the
command line, or if simulating from a menu item, in the Simulation
Diagnostics window.

= Reload model (if unmodified) — if the model is modified, you see the
prompt dialog. If unmodified, the model is reloaded.

= Show prompt dialog — in the dialog, you can choose to close and reload,
or ignore the changes.

¢ If you select the First editing the model check box, and the file has
changed on disk, and the block diagram is unmodified in Simulink:

= Any command-line operation that causes the block diagram to be
modified (e.g., a call to set_param) will result in a warning:

Warning: Block diagram 'mymodel' is being edited but file has
changed on disk since it was loaded. You should close and
reload the block diagram.

= Any graphical operation that modifies the block diagram (e.g., adding a
block) causes a warning dialog to appear.

¢ If you select the Saving the model check box, and the file has changed
on disk:

= The save_system function displays an error, unless the
OverwriteIfChangedOnDisk option is used.

= Saving the model by using the menu (File > Save) or a keyboard
shortcut causes a dialog to be shown. In the dialog, you can choose to
overwrite, save with a new name, or cancel the operation.

Specifying the Current User

When you create or update a model, your name is logged in the model for
version control purposes. The Simulink software assumes that your name

is specified by at least one of the following environment variables: USER,
USERNAME, LOGIN, or LOGNAME. If your system does not define any of these
variables, the Simulink software does not update the user name in the model.

3-97

3 Creating a Model

3-98

UNIX® systems define the USER environment variable and set its value to the
name you use to log on to your system. Thus, if you are using a UNIX system,
you do not have to do anything to enable the Simulink software to identify
you as the current user.

Windows® systems, on the other hand, might define some or none of the
“user name” environment variables that the Simulink software expects,
depending on the version of Windows installed on your system and whether it
is connected to a network. Use the MATLAB command getenv to determine
which of the environment variables is defined. For example, enter

getenv('user')

at the MATLAB command line to determine whether the USER environment
variable exists on your Windows system. If not, you must set it yourself.

On Windows, use the Environment variables pane of the System Properties
dialog box to set the USER environment variable (if it is not already defined).
For Windows XP, access the Environment variables pane by clicking the
Environment Variables button on the Advanced pane of the System
Properties dialog box.

Managing Model Versions

Environment Variables 7| x|

—User variables for paulk

Variable Value i

APTLMHOST itripoli. mathworks. com
AFTPATH D:\applications\Arbortext-5, 0\Epic
TEMP C:\Temp
THP C:\Temp
|ISER paulk
Mew Edit | Delete |

—System variables

Variable | Value | :l
PROCESSOR_A... xB6

PROCESSOR_ID.., x86 Family 15 Model 2 Stepping 2, Genu...
PROCESSOR._LE... 15

PROCESSOR_R... 0209 (==
TEMP C:\TEMP |
Mew | Edit | Delete |

To display the System Properties dialog box, select

Start > Settings > Control Panel to open the Control Panel. Double-click
the System icon. To set the USER variable, enter USER in the Variable field
and enter your login name in the Value field. Click Set to save the new
environment variable. Then click OK to close the dialog box.

Model Properties Dialog Box

The Model Properties dialog box allows you to set various version control
parameters and model callback functions. To display the dialog box, choose
Model Properties from the File menu.

3-99

3 Creating a Model

x

IEaIII:uau:ks | Histaory | Crescription |

Model Information for: vdp
Source hle: CAMATLAR Swork wdp.mdl
Last Saved: ‘Wed.Jul 26 03:51:00 2006
Created On: Fri Aug 18 16:03:19 2000
Iz Modified: no
Model Yerzion: 16

k. Cancel Help Amply

The dialog box includes the following panes.

Main Pane

The Main pane summarizes information about the current version of this
model.

Callbacks Pane

The Callbacks pane lets you specify functions to be invoked at specific points
in the simulation of the model.

3-100

Managing Model Versions

x|

tain | iCalbacks: IHistu:ur_l,l | D ezcription I

Model callbacks | Model pre-load function:

- PreLoadFch
- PostLoadFoh
- [nitFch
- StartFcn
- StopFon
- PreSaveFon
- PoztSaveFon

- ClazeFcn

k. Cancel Help Apply

In the left pane, select the callback. In the right pane, enter the name of
the function you want to be invoked for the selected callback. See “Creating
Model Callback Functions” on page 3-53 for information on the callback
functions listed on this pane.

History Pane

The History pane allows you to enable, view, and edit this model’s change
history.

3-101

3 Creating a Model

3-102

x
I ain | Callbacks | I Crescription |
todel information
Created by: IThe b athiadarks [he. Last zaved by Isc:n:nwan
Created arn: I-'ri Aug 18 16:03:19 2000 Last saved an: Ied Jul 26 03:51:00 2006
[+ Fead Only bodel version: |1.E
kodel higtary:
Frompt to update model histu:ur_l,l:l Mewver ;I
k. Cancel | Help | Amply

The History pane has two control groups: the Model information group
and the Model History group.

Model Information Controls

The contents of the Model information control group depend on the state of
the Read Only check box.

Read Only Check Box Selected. When Read Only is selected, the dialog
box shows the following fields grayed out.

¢ Created by

Name of the person who created this model. The Simulink software sets
this property to the value of the USER environment variable when you
create the model.

Managing Model Versions

¢ Created on
Date and time this model was created.
¢ Last saved by

Name of the person who last saved this model. The Simulink software sets
the value of this parameter to the value of the USER environment variable
when you save a model.

¢ Last saved on

Date that this model was last saved. The Simulink software sets the value
of this parameter to the system date and time whenever you save a model.

e Model version

Version number for this model.

Read Only Check Box Deselected. When Read Only is deselected, the
dialog box shows the format strings or values for the following fields. You can
edit all but the Created on field, as described.

3-103

3 Creating a Model

m Model Properties ilil

[ET I Calbacks | Hiztary IDescriptinn

—Model information

Created by IThe b athidorks [ne. Last zaved b |2<.-’-'-.uh:|>

Createdorc [Fridug 1816:03192000 Lastsavedaon: |%chutos

[~ Fead Only Model version: |1.Z<ﬂutnlncrement:2>

kodel histary:

Prompt to update model histon: I M ever

QK Ear-“:e' | : H E|P Epply

¢ Created by

Name of the person who created this model. The Simulink software sets
this property to the value of the USER environment variable when you
create the model. Edit this field to change the value.

¢ Created on

3-104

Managing Model Versions

Date and time this model was created. Do not edit this field.
Last saved by

Enter a format string describing the format used to display the Last saved
by value in the History pane and the ModifiedBy entry in the history log
and Model Info blocks. The value of this field can be any string. The string
can include the tag %<Auto>. The Simulink software replaces occurrences
of this tag with the current value of the USER environment variable.

Last saved on

Enter a format string describing the format used to display the Last saved
on date in the History pane and the ModifiedOn entry in the history log
and the in Model Info blocks. The value of this field can be any string.
The string can contain the tag %<Auto>. The Simulink software replaces
occurrences of this tag with the current date and time.

Model version

Enter a format string describing the format used to display the model
version number in the Model Properties pane and in Model Info blocks.
The value of this parameter can be any text string. The text string can
include occurrences of the tag $<AutoIncrement:#> where # is an integer.
The Simulink software replaces the tag with an integer when displaying
the model’s version number. For example, it displays the tag

1.%<AutoIncrement:2>

as

1.2

The Simulink software increments # by 1 when saving the model. For
example, when you save the model,

1.%<AutoIncrement:2>

becomes

1.%<AutoIncrement:3>

and the model version number is reported as 1.3.

3-105

3 Creating a Model

3-106

Model History Controls

The model history controls group contains a scrollable text field and an option
list. The text field displays the history for the model in a scrollable text field.
To change the model history, edit the contents of this field. The option list
allows you to enable or disable the Simulink software model history feature.
To enable the history feature, select When saving model from the Prompt to
update model history list. This causes the Simulink software to prompt you
to enter a comment when saving the model. Typically you would enter any
changes that you have made to the model since the last time you saved it. This
information is stored in the model’s change history log. See “Creating a Model
Change History” on page 3-107 for more information. To disable the change
history feature, select Never from the Prompt to update model history list.

Model Description Controls

This pane allows you to enter a description of the model. When typing help
followed by the model name at the MATLAB prompt, the contents of the
Model description field appear in the Command Window.

Managing Model Versions

x

b odel description:

The wan der Pol Equation

Thiz iz a simulation of a nonlinear second order spstem,

k. Cancel | Help | Amply

Creating a Model Change History

You can create and store a record of changes to a model in the model itself.
The Simulink software compiles the history automatically from comments
that you or other users enter when they save changes to a model.

Logging Changes

To start a change history, select When saving model from the Prompt to
update model history list on the History pane on the Model Properties
dialog box. The next time you save the model, a Log Change dialog box
is displayed.

3-107

3 Creating a Model

3-108

|Log Change: vdp_modelinfo

tadified Comment;
FPaulk, - Mon Jul 27 17:22:51 1933

¥ Show this dialog box nest time when save

¥ Include "Modified Commentz" in “Modified Histary'"

Save

To add an item to the model’s change history, enter the item in the Modified
Comments edit field and click Save. If you do not want to enter an item for

this session, clear the Include "Modified Contents" in "Modified History"
option. To discontinue change logging, clear the Show this dialog box next
time when save option.

Version Control Properties

Version control information is stored as model parameters in a model. You can
access this information from the MATLAB command line or from an M-file,
using the Simulink get_param command. The following table describes the
model parameters used by Simulink to store version control information.

Property Description

Created Date created.

Creator Name of the person who created this
model.

Managing Model Versions

Property

Description

LastModifiedBy

User name of the person who last modified
this model.

Modified By

Person who last modified this model.

ModifiedByFormat

Format of the ModifiedBy parameter.
Value can be any string. The string can
include the tag %<Auto>. The Simulink
software replaces the tag with the current
value of the USER environment variable.

ModifiedDate

Date modified.

ModifiedDateFormat

Format of the ModifiedDate parameter.
Value can be any string. The string can
include the tag %<Auto>. The Simulink
software replaces the tag with the current
date and time when saving the model.

ModifiedComment

Comment entered by user who last
updated this model.

ModifiedHistory

History of changes to this model.

ModelVersion

Version number.

ModelVersionFormat

Format of model version number. Can be
any string. The string can contain the
tag %<AutoIncrement:#> where # is an
integer. The Simulink software replaces
the tag with # when displaying the version
number. It increments # when saving the
model.

Description

Description of model.

LastModificationDate

Date last modified.

3-109

3 Creating a Model

Model Discretizer

3-110

In this section...

“What is the Model Discretizer?” on page 3-110

“Requirements” on page 3-110

“How to Discretize a Model from the Model Discretizer GUI” on page 3-111
“Viewing the Discretized Model” on page 3-120

“How to Discretize Blocks from the Simulink® Model” on page 3-123

“How to Discretize a Model from the MATLAB® Command Window” on
page 3-134

What is the Model Discretizer?

Model Discretizer selectively replaces continuous Simulink® blocks with

d
d

iscrete equivalents. Discretization is a critical step in digital controller
esign and for hardware in-the-loop simulations.

Model Discretizer enables you to

Identify a model’s continuous blocks.
Change a block’s parameters from continuous to discrete.

Apply discretization settings to all continuous blocks in the model or to
selected blocks.

Create configurable subsystems that contain multiple discretization
candidates along with the original continuous block(s).

Switch among the different discretization candidates and evaluate the
resulting model simulations.

Requirements

To use Model Discretizer, you must have Control System Toolbox™, Version

5

.2 or later, installed.

Model Discretizer

How to Discretize a Model from the Model Discretizer
GUI

To discretize a model:

e Start the Model Discretizer

Specify the Transform Method

Specify the Sample Time

Specify the Discretization Method
Discretize the Blocks

3-111

3 Creating a Model

The f14 model, shown below, demonstrates the steps in discretizing a model.

ooono
s

Pl Sk Input +Flc'.-: torce (gl
[

o Mz pilat

¥

w

u Aoy A Ean
Sk Inpist {in)
1
I alpha rad] Ekevator Command ideg] [I Elcvatior Deficcion d ide gl Mz Pilat (g}
Tas=+1 w
] o (radisec) verical Vialodey wilses] —
C Achuar
an brallar Mad el
e T Wertcal Gust wiEust (B |

Maghe aff

Adtachk

Fitch Rate g {radse)

wiust "
g L T Rotary Gust giGust radsed] = 1Ua _p@

o] alpha {rad |
Qg
Amraft
Drepden Wind ‘h“““-.,_ Dymamics
Gus t Modeds I Big Madal

F-14 Flight Carmml
{anupdated vaman af Fes dema = avalab e

by running ‘sidema_f14)

Capyright 1990.2005 Tha MathWarks nc

Start Model Discretizer
To open the tool, select Tools > Control Design > Model Discretizer from
the model editor’s menu bar.

3-112

Model Discretizer

The Simulink Model Discretizer appears.

QZEimulink Model Discretizer
File

Wiews Discretize Help

=101 %]

W | HEo| o P

Contains continuous block
W4

-4 Actuator Model
-2 Aircraft Dynamics hic
#- 2+ Controller

- Diryden Wind Gust W

Kl | o

rDiscretization settings

Current selection: 14

Transform method: |zer|:|-|:|r|:|er hold

[1.0

Sample time:

Critical frequency: |1.III

Feplace current selection with:

=l

|Di5crete hlocks (Enter parameters in s-domain)

Lacation for black it configurahle subsystenm:

= ®

24

|New discrete subsystem

Store Settings | Dizeard Seﬁingsl

rDiscretization status

Continuous blocks in model: 12
Total blocks transformed: 0
Continuous hlocks in current selection: 12

Blocks transformed in current selection: 0

ISimuIink hModel Discretizer

Alternatively, you can open Model Discretizer from the MATLAB® Command
Window using the slmdldiscui function.

3-113

3 Creating a Model

3-114

The following command opens the Simulink Model Discretizer window
with the f14 model:

slmdldiscui('f14"')

To open a new model or library from Model Discretizer, select Load model
from the File menu.

Specify the Transform Method

The transform method specifies the type of algorithms used in the
discretization. For more information on the different transform methods,
see “Linear, Time-Invariant Models” in the Control System Toolbox
documentation.

The Transform method drop-down list contains the following options:

® zero-order hold
Zero-order hold on the inputs.
e first-order hold
Linear interpolation of inputs.
® tustin
Bilinear (Tustin) approximation.
® tustin with prewarping
Tustin approximation with frequency prewarping.
® matched pole-zero

Matched pole-zero method (for SISO systems only).

Specify the Sample Time

Enter the sample time in the Sample time field.

You can specify an offset time by entering a two-element vector for discrete
blocks or configurable subsystems. The first element is the sample time and
the second element is the offset time. For example, an entry of [1.0 0.1]

Model Discretizer

would specify a 1.0 second sample time with a 0.1 second offset. If no offset is
specified, the default is zero.

You can enter workspace variables when discretizing blocks in the s-domain.
See “Discrete blocks (Enter parameters in s-domain)” on page 3-115.

Specify the Discretization Method

Specify the discretization method in the Replace current selection with
field. The options are
® “Discrete blocks (Enter parameters in s-domain)” on page 3-115

Creates a discrete block whose parameters are retained from the
corresponding continuous block.

® “Discrete blocks (Enter parameters in z-domain)” on page 3-116

Creates a discrete block whose parameters are “hard-coded” values placed
directly into the block’s dialog.

® “Configurable subsystem (Enter parameters in s-domain)” on page 3-117

Create multiple discretization candidates using s-domain values for the

current selection. A configurable subsystem can consist of one or more
blocks.

¢ “Configurable subsystem (Enter parameters in z-domain)” on page 3-118

Create multiple discretization candidates in z-domain for the current
selection. A configurable subsystem can consist of one or more blocks.

Discrete blocks (Enter parameters in s-domain). Creates a discrete block
whose parameters are retained from the corresponding continuous block.

The sample time and the discretization parameters are also on the block’s
parameter dialog box.

The block is implemented as a masked discrete block that uses c2d to
transform the continuous parameters to discrete parameters in the mask

initialization code.

These blocks have the unique capability of reverting to continuous behavior if
the sample time is changed to zero. Entering the sample time as a workspace

3-115

3 Creating a Model

3-116

variable ('Ts', for example) allows for easy changeover from continuous to
discrete and back again. See “Specify the Sample Time” on page 3-114.

Note Parameters are not tunable when Inline parameters is selected in
the model’s Configuration Parameters dialog box.

Block Parameter

r Transter Fen

tatrix exprezsion for numeratar, vectar expression for denominator.
Output width equals the number of rows in the numerator. Coefficients are
for descending powers of 5.

P
F

Mumeratar:
]
Denominatar:
Jo

Absolute talerance:

Iauto

Ok Cancel Help Apply

help cad

Block Paramete

The following figure shows a continuous Transfer Function block next to a
Transfer Function block that has been discretized in the s-domain. The Block
Parameters dialog box for each block appears below the block.

r— DizcretizedT ransferFon [mask] (link]

Transfer function block inside.

Continuous mask uses c2d ta transfarm parameters onta the Dizcrete

P

MNumerator [enter in s-domair:]

]

Denominator [enter in s-domairn:]

i1

Sample time:

1

Method | tustin

|

oK | Cancel |

Help | Aoply

For more help on the c2d function, type the following in the Command
Window:

Discrete blocks (Enter parameters in z-domain). Creates a discrete block
whose parameters are “hard-coded” values placed directly into the block’s
dialog box. Model Discretizer uses the c2d function to obtain the discretized
parameters, if needed.

Model Discretizer

The following figure shows a continuous Transfer Function block next to a
Transfer Function block that has been discretized in the z-domain. The Block
Parameters dialog box for each block appears below the block.

1
=+1 z+0.5

Block Parameters: T] Block Parameter: E3|
r Transfer Fen r~ Digcrete Transfer Fon
M ahix expression for numeratar, vectar expression for denominator. b atriz expression for numeratar, vector expression for denominator. Output
Output width equals the number of rows in the numerator. Coefficients are width equals the number of rows in the numerator. Coefficients are for
for dezcending powers of . dezcending powers of 2.
—P " R
Mumeratar: Murmeratar:
Jm]
Dienominatar: Denominatar:
J 1 [iros]
Abzolute tolerance: Sample time [-1 for inherited]:
Iaulu |1
Ok Cancel Help Apply Ok Cancel Help Apply

Note If you want to recover exactly the original continuous parameter values
after the Model Discretization session, you should enter parameters in the
s-domain.

Configurable subsystem (Enter parameters in s-domain). Create
multiple discretization candidates using s-domain values for the current
selection. A configurable subsystem can consist of one or more blocks.

The Location for block in configurable subsystem field becomes active
when this option is selected. This option allows you to either create a new
configurable subsystem or overwrite an existing one.

Note The current directory must be writable in order to save the library or
libraries for the configurable subsystem option.

3-117

3 Creating a Model

3-118

Configurable subsystem (Enter parameters in z-domain). Create
multiple discretization candidates in z-domain for the current selection. A
configurable subsystem can consist of one or more blocks.

The Location for block in configurable subsystem field becomes active
when this option is selected. This option allows you to either create a new
configurable subsystem or overwrite an existing one.

Note The current directory must be writable in order to save the library or
libraries for the configurable subsystem option.

Configurable subsystems are stored in a library containing the discretization
candidates and the original continuous block. The library will be named
<model name>_disc_lib and it will be stored in the current directory. For
example a library containing a configurable subsystem created from the f14
model will be named f14_disc_1lib.

If multiple libraries are created from the same model, then the filenames
will increment accordingly. For example, the second configurable subsystem
library created from the 14 model will be named f14_disc_1lib2.

You can open a configurable subsystem library by right-clicking on the
subsystem in the model and selecting Link options > Go to library block
from the pop-up menu.

Discretize the Blocks

To discretize blocks that are linked to a library, you must either discretize the
blocks in the library itself or disable the library links in the model window.

You can open the library from Model Discretizer by selecting Load model
from the File menu.

You can disable the library links by right-clicking on the block and selecting
Link options -> Disable link from the pop-up menu.

There are two methods for discretizing blocks.

Model Discretizer

Select Blocks and Discretize.

1 Select a block or blocks in the Model Discretizer tree view pane.

To choose multiple blocks, press and hold the Ctrl button on the keyboard
while selecting the blocks.

Note You must select blocks from the Model Discretizer tree view. Clicking
blocks in the editor does not select them for discretization.

2 Select Discretize current block from the Discretize menu if a single
block is selected or select Discretize selected blocks from the Discretize
menu if multiple blocks are selected.

You can also discretize the current block by clicking the Discretize button,
shown below.

54

Store the Discretization Settings and Apply Them to Selected Blocks
in the Model.

1 Enter the discretization settings for the current block.
2 Click Store Settings.

This adds the current block with its discretization settings to the group
of preset blocks.

3 Repeat steps 1 and 2, as necessary.

4 Select Discretize preset blocks from the Discretize menu.

3-119

3 Creating a Model

3-120

Deleting a Discretization Candidate from a Configurable
Subsystem

You can delete a discretization candidate from a configurable subsystem by
selecting it in the Location for block in configurable subsystem field and
clicking the Delete button, shown below.

x|

Undoing a Discretization
To undo a discretization, click the Undo discretization button, shown below.

=
Alternatively, you can select Undo discretization from the Discretize
menu.

This operation undoes discretizations in the current selection and its children.
For example, performing the undo operation on a subsystem will remove
discretization from all blocks in all levels of the subsystem’s hierarchy.

Viewing the Discretized Model

Model Discretizer displays the model in a hierarchical tree view.

Viewing Discretized Blocks

The block’s icon in the tree view becomes highlighted with a “z” when the
block has been discretized.

Model Discretizer

The following figure shows that the Aircraft Dynamics Model subsystem has

been discretized into a configurable subsystem with three discretization
candidates.

" Simulink Model Discretizer O] x|
File ‘iew Discretize Help

= | HE o o ?

Contains continuous hlock: FRiscretization settings

W 14 Current selection: Aircraft Dynamics Model

- Actuator Model

'E---i}j Aircraft Dynamics Mo | Transform method: |zer|:|-|:|r|:|er hold ;l
----- & Transfer Fen.1 .
_____ G Transfer Fenz | | Sample time: [1.00.1]

=3 Controller Crifical freguency: 1.0 |Hz =]

----- & Alpha-sensor Lo
..... i Pitch Rate Lead F| | Replace current selection with:
----- & Proportional plus
----- & Stick Prefilter

=13+ Dryden Wind Gust W | Location for block in configurable subsystem:

----- & Q-gust model
Aircraft Dynamics Model discrete wersion 1 -
----- & W-gust model Y R

=] Mz pilot calculation || |Mew discrete subsystem -
----- 0 Derivative Aircraft Dynamics Model discrete wersion 1 Zd
""" & Derivative1 —aircraft Dynamics Model discrete version 2

""" 0 Pilot [|mircraft Dwynamics Model discrete wersion 3
Continuous blocks in modal: T2

Configurable subsystem (Parameters in s-dnmain};l

Total blocks transformed: 2
Continuous hlocks in current selection: 2
Blacks transformed in current selection: 2

] | b

ISimuIink Model Discretizer

The other blocks in this f14 model have not been discretized.

3-121

3 Creating a Model

The following figure shows the Aircraft Dynamics Model subsystem of the f14
demo model after discretization into a configurable subsystem containing the
original continuous model and three discretization candidates.

_laix]

File Edit Wiew Simulation Format Tools Help

DID’“E%I%EI@@?IDQl} IIBD INDrmaI jl@t

— :
Stick Input cPlllo'lg e i
- PFilot G force
Mz pilot Scope
calculation
1 -
— - aleha rah Eleuator Command kg Has | Ekuator Detiection o ik Mz Pilot (9
] e Tas+ e rtical Ve ko iyw itzec) |2
Aotuator
Cantraller Wodel Open Block
—e{ 2w verl Open Block In Mew Window
Explore
1y [HGt 1 Rot EUt
Py
; qGust alpha (rad)
g L Delete
Oryden Wiind
Gust hiadels L—e{ hilg Aircraft Dynamics Model
Aircraft Dynamics Model discrete version 1
SubSystem Parameters. .. Aircraft Dynamics Model discrete wersion 2
F-14 Flight Control Block Properties, .. v Aircraft Dynamics Model discrete version 3
(Oouble click on the ™ for more infa)
Model advisor. .
To start and stop the simulation, use the “5tart” and Corwert bo Model Black:
"Stop” selections in the “Simulation” pull-down menu.

Cr Requirements 4 E————

3-122

Model Discretizer

The following figure shows the library containing the Aircraft Dynamics
Model configurable subsystem with the original continuous model and three
discretization candidates.

ElLibrary: F14_disc_lib * _ ol x|
File Edit Yiew Format Help
O =E& 2R ey |0 nEE

A

Template

Bewator Deflection d (deq)
artical hislocity w (ftisec)

artical Gust wiGust (ftizec)

Pitch Rate q (adfzec)
Rotary Gust qGust (rad/zec)

Aircraft
Dynamics
Model
(Configurable Subsystem)
HAireraft Dynamics Model discrete wersion 3

Ready

Bewator Deflection d (deg)

wartical welocity w (ftfzec)

ertical Gust wiGust (ftisec

Pitch Rate q (radisec)
Rotary Gust qGust (radised|

Bewator Deflection d (deq)

artical hislocity w (ftisec)

artical Gust wiGust (ftizec)

Pitch Rate q (adfzec)
Rotary Gust qGust (rad/zec)

Bewator Deflection d (deq)

artical hislocity w (ftisec)

artical Gust wiGust (ftizec)

Pitch Rate q (adfzec)
Rotary Gust qGust (rad/zec)

Bewator Deflection d (deg)

wartical Welocity w (ftfzec)

ertical Gust wiGust (ftisec

Pitch Rate q (radisec)
Rotary Gust qGust (radised|

Aircraft
Dynamics
Model

Aircraft
Dynamics
Model
diserete version 1

Aircraft
Dynamics
Model
discrete wersion 2

Aircraft
Dynamics
Model
discrete version 3

100% Unlocked v

Refreshing Model Discretizer View of the Model

To refresh Model Discretizer’s tree view of the model when the model has been
changed, click the Refresh button, shown below.

2

Alternatively, you can select Refresh from the View menu.

How to Discretize Blocks from the Simulink® Model

You can replace continuous blocks in a Simulink software model with the
equivalent blocks discretized in the s-domain using the Discretizing library.

The procedure below shows how to replace a continuous Transfer Fcn block in

the Aircraft Dynamics Model subsystem of the f14 model with a discretized
Transfer Fcn block from the Discretizing Library. The block is discretized

3-123

3 Creating a Model

in the s-domain with a zero-order hold transform method and a two second
sample time.

1 Open the f14 model.

2 Open the Aircraft Dynamics Model subsystem in the f14 model.

E! Link: F14/Aircraft Dynamics Model/ Aircraft Dynamics Model discret - IEI Iil
File Edit Wiew Simulation Format Tools Help
OD@EH&| BB [E= 4 |2z p 5o homa || 57 e
Elewatar
Creflection
d(deq) —oh
o T
Vertical Gust = Vertical Velasity
i ust (fhize g Transfer Fon.2 w (fifsec)
.
-
Fotary Gust =Mq Pitch Rate
qGust radfsec) Transfer Fon qlradizec)
Ready [100% [[|ode4s v

3 Open the Discretizing library window.

Enter discretizing at the MATLAB command prompt.

3-124

Model Discretizer

The Library: discretizing window opens.

[S)Library: discretizing =10/ %]

File Edit Wwiew Format Help

nooo
/'t M il e

Dise retized Discretized _ Diszretized Dise retized
Ramp Repaating Sequence Sanal Genemtor Chip Signal

- tustin tustin
tustin L # = Ax+Bu 2i=-1)
durdt v = G D — = [

o =-1F
Diss etized Diss retized Dicretzed
Do rivativa RIS Dz mtized
State-Space
P Trnsfer Fon “am-Fok
tustin
S e ANAR T
Diise: i tized : -
Dig retized
Trnsporn Delay 2 LTI Systam
* b b
Dz ietized Discretzad
Vanabke Trnsport Delay

Trnsport Delay

Simulink Discretzer Libeny 1.0
Copynght o) 19902002 The hMathWors, Inc.

This library contains s-domain discretized blocks.

4 Add the Discretized Transfer Fcn block to the fl4/Aircraft Dynamics
Model window.

3-125

3 Creating a Model

a Click the Discretized Transfer Fen block in Library: discretizing
window.

b Drag it into the f14/Aircraft Dynamics Model window.

E! f14/Aircraft Dynamics Model * - IEI Iil

File Edit Wiew Simulation Format Tools Help

DeEgsERcotae(r s wd & HeB

O3
Elewatar
Creflection
dideg)
+ 1
O—»f »
+ Zhin
Werical Gust il Werical Welacity
G ust (ftize) Transfar Fen 2 w (ftize c)
1
& oo
hat
Rotary Gust = Fitch Rate
qFust (radisec) Transfer Fen. q (radfzec)
tustin
1
—_— b
=+1
Drizcretized
Transfer Fcn
[with initial states)
Ready [100% | | |ode4s v

5 Open the parameter dialog box for the Transfer Fen.1 block.

3-126

Model Discretizer

Double-click the Transfer Fen.1 block in the fl4/Aircraft Dynamics
Model window.

The Block Parameters: Transfer Fcn.1 dialog box opens.

Block Parameters: Transfer Fen.1 #

— Transfer Fzn

b atrix expression for numerator, vector expression for denominatar.
Output width equalz the number of rows in the numeratar, Coefficients are
for dezcending powers of 2.

— Parameters
Murneratar:

1]

D'enominator:
|[1.Mq]

Abzaolute talerance:

Iautu:u

k. I Cancel Help Apply

6 Open the parameter dialog box for the Discretized Transfer Fen block.

Double-click the Discretized Transfer Fen block in the fl4/Aircraft
Dynamics Model window.

3-127

3 Creating a Model

The Block Parameters: Discretized Transfer Fen dialog box opens.

Block Parameters: Discretized Transfer Fcn #

— DiscretizedT ranzferFon [maszk] [link]

Continuaus mazk uzes c2d to transfarm parameters onta the Dizcrete
Tranzfer funchion block, inzide.

— Parameters
Murneratar [enter in z-domain:]

o

Denominator [enter in s-domair: |

f111]

Absolute tolerance:

Iautl:u

Sample time:

|

b ethod: Itugtin j

] I Cancel Help Apply |

3-128

Model Discretizer

Copy the parameter information from the Transfer Fcn.1 block’s dialog box

to the Discretized Transfer Fen block’s dialog box.

Block Parameters: Discretized Transfer Fcn

— DiscretizedT ranzferFon [maszk] [link]

Continuaus mazk uzes c2d to transfarm parameters onta the Dizcrete
Tranzfer funchion block, inzide.

— Parameters
Murneratar [enter in z-domain:]

[

Denominator [enter in s-domair: |

[[1.-bq]

Abzolute tolerance:

Iautl:u

Sample time:

|

b ethod: Itugtin j

] I Cancel Help Apply

7 Enter 2 in the Sample time field.

8 Select zoh from the Method drop-down list.

3-129

3 Creating a Model

The parameter dialog box for the Discretized Transfer Fen. now looks like
this.

=] Function Block Parameters: Discretized Transfer Fen ¢ x|
—DizcretizedT ransferF crtwithlC [maszk] [link]

Continuous mazk uzes c2d to ranzform parameters onto the Dizcrete Transfer
furction block inside.

—Parameters
Murneratar [enter in z-domair:]
|1]

Denaminatar [enter in s-domain:]
[11.Ma]

|nitial conditians:

Iaut-:u

Sample time;

E

Methud:l zoh j

k., Cancel Help | Apply

9 Click OK.

3-130

Model Discretizer

The fl14/Aircraft Dynamics Model window now looks like this.

[1f14/nirceaft Dynamics Model =10 x|
File Edit Wiew Simulation Format Tools Help
D|E—”E§|Jﬁﬁ|f—‘!f& PIINDrmaI j|@|ﬁ||ﬁﬁ}®
O, .{m
Elevatar
Deflection
d [deg)
¥ 1
O— o L
Ve rtieal Gust = =-w Vartical Velbeity
wiEust (ftisec) Trnster Fon.2 w Iftisec)
1
® -
Rotary Gust =i Fitch Fate
qQGust (Rdfsac) T=nsfer Fon. i q (Edizec)
zoh
1
[
=s-hiig
Dise etized
Transfer Fon
Ready [100% | | |ode4s v

10 Delete the original Transfer Fcn.1 block.
a Click the Transfer Fen.1 block.
b Press the Delete key.

3-131

3 Creating a Model

The f14/Aircraft Dynamics Model window now looks like this.

E! f14/Aircraft Dynamics Model * - IEI Iil
File Edit Wiew Simulation Format Tools Help
DI@E%I%EI@@?ISQ 2 IIEEI INDrmaI j|
O3
Elewatar
Creflection
d(deqg)
+ 1
B o =
Werical Gust = =2 Werical Welacity
i ust (fiizec) Tranzfer Foen 2 w (ftise c)
------------------ ror (D)
Fatany Gust Fitch Rate
qrust (radfzec) q (radizec)
zoh
1
—_— b
=hig
Drizcretized
Transfer Fcn
[with initial states)
Ready [100% | | |ode4s v

11 Add the Discretized Transfer Fen block to the model.
a Click the Discretized Transfer Fen block.

b Drag the Discretized Transfer Fen block into position to complete the
model.

3-132

Model Discretizer

The f14/Aircraft Dynamics Model window now looks like this.

E! f14/Aircraft Dynamics Model * - IEI Iil
File Edit Wiew Simulation Format Tools Help
DI@E%I%EI@@?ISQ 2 IIEEI INDrmaI j|
O3
Elewatar
Creflection
drdeg)
+ 1
O o L
Werical Gust = =2 Werical Welacity
i ust (fiizec) Tranzfer Foen 2 w (ftise c)
zoh
1
G) Y o
=hig .
Fatany Gust Fitch Rate
qrust (radfzec) Discretized q (radizec)
Transfer Fen
fwith initial states)
Ready 100% |ode4s v

3-133

3 Creating a Model

3-134

How to Discretize a Model from the MATLAB®
Command Window

Use the sldiscmdl function to discretize Simulink software models from the
MATLAB Command Window. You can specify the transform method, the
sample time, and the discretization method with the sldiscmdl function.

For example, the following command discretizes the f14 model in the s-domain
with a 1-second sample time using a zero-order hold transform method:

sldiscmdl('f14',1.0,'zoh")

For more information on the sldiscmdl function, see “Model Construction” in
Simulink Reference.

Creating Conditional
Subsystems

About Conditional Subsystems
(p. 4-2)

Enabled Subsystems (p. 4-4)

Triggered Subsystems (p. 4-12)

Triggered and Enabled Subsystems

(p. 4-16)

Function-Call Subsystems (p. 4-21)

Conditional Execution Behavior
(p. 4-22)

Introduces conditionally executed
subsystems and lists the supported

types.

Defines enabled subsystems and
describes techniques for creating
and using them.

Defines triggered subsystems and
describes techniques for creating
and using them.

Describes techniques for creating
and using subsystems that are both
triggered and enabled.

Defines function-call subsystems
and describes techniques for creating
and using them.

Describes techniques for optimizing
the execution of conditional
subsystems.

4 Creating Conditional Subsystems

About Conditional Subsystems

A subsystem is a set of blocks that have been replaced by a single block called
a Subsystem block. This chapter describes a special kind of subsystem whose
execution can be externally controlled. For information that applies to all
subsystems, see “Creating Subsystems” on page 3-35.

A conditional subsystem, also known as a conditionally executed subsystem, is
a subsystem whose execution depends on the value of an input signal. The
signal that controls whether a subsystem executes is called the control signal.
The signal enters the Subsystem block at the control input.

Conditional subsystems can be very useful when you are building complex
models that contain components whose execution depends on other
components. The following types of conditional subsystems are supported:

® An enabled subsystem executes while the control signal is positive. It starts
execution at the time step where the control signal crosses zero (from the
negative to the positive direction) and continues execution while the control
signal remains positive. Enabled subsystems are described in more detail
in “Enabled Subsystems” on page 4-4.

® A triggered subsystem executes once each time a trigger event occurs. A
trigger event can occur on the rising or falling edge of a trigger signal,
which can be continuous or discrete. Triggered subsystems are described in
more detail in “Triggered Subsystems” on page 4-12.

® A triggered and enabled subsystem executes once on the time step when
a trigger event occurs if the enable control signal has a positive value at
that step. See “Triggered and Enabled Subsystems” on page 4-16 for more
information.

® A control flow subsystem executes one or more times at the current time
step when enabled by a control flow block that implements control logic
similar to that expressed by programming language control flow statements
(e.g., if-then, while, do, and for. See “Modeling Control Flow Logic”
on page 3-42 for more information.

About Conditional Subsystems

Note The Simulink® software imposes restrictions on connecting blocks
with a constant sample time to the output port of a conditional subsystem.
See “Using Blocks with Constant Sample Times in Enabled Subsystems”
on page 4-9 for more information.

4 Creating Conditional Subsystems

Enabled Subsystems

In this section...

“Creating an Enabled Subsystem” on page 4-5
“Blocks an Enabled Subsystem Can Contain” on page 4-7

“Using Blocks with Constant Sample Times in Enabled Subsystems” on
page 4-9

Enabled subsystems are subsystems that execute at each simulation step
where the control signal has a positive value.

An enabled subsystem has a single control input, which can be scalar or
vector valued.

¢ Ifthe input is a scalar, the subsystem executes if the input value is greater
than zero.

¢ Ifthe input is a vector, the subsystem executes if any of the vector elements
is greater than zero.

For example, if the control input signal is a sine wave, the subsystem is
alternately enabled and disabled, as shown in this figure. An up arrow
signifies enable, a down arrow disable.

The Simulink® software uses the zero-crossing slope method to determine
whether an enable is to occur. If the signal crosses zero and the slope is
positive, the subsystem is enabled. If the slope is negative at the zero crossing,
the subsystem is disabled.

Enabled Subsystems

Creating an Enabled Subsystem

You create an enabled subsystem by copying an Enable block from the Ports &
Subsystems library into a subsystem. An enable symbol and an enable control

input port is added to the Subsystem block.

n

Subsystem

Setting Output Values While the Subsystem Is Disabled

Although an enabled subsystem does not execute while it is disabled, the
output signal is still available to other blocks. While an enabled subsystem
is disabled, you can choose to hold the subsystem outputs at their previous

values or reset them to their initial conditions.

Open each Outport block’s dialog box and select one of the choices for the
Output when disabled parameter, as shown in the following dialog box:
® Choose held to cause the output to maintain its most recent value.

® Choose reset to cause the output to revert to its initial condition. Set the
Initial output to the initial value of the output.

Block Parameters: Outl

— Dutport
Provide an output port for a subspstem or model. The 'Output when
dizabled' and Initial output’ parameters only apply to conditionally executed
subsystems. When a conditionally executed subsystem iz dizabled, the
output iz either held at itz last walue or zet ta the 'Initial output’. The 'Initial
output' parameter can be specified as the empty matriv, [], in which caze
the initial output iz equal to the output of the block feeding the outpart.

— Parameter

Fart number:
I Select an option to set the Outport output while the
4= subsystem is disabled.

Output when dizabled:

held

Initial output:

| The initial condition and the value when reset.

aK I Cancel Help | Apply |

4 Creating Conditional Subsystems

Setting States When the Subsystem Becomes Reenabled

When an enabled subsystem executes, you can choose whether to hold
the subsystem states at their previous values or reset them to their initial
conditions.

To do this, open the Enable block dialog box and select one of the choices for
the States when enabling parameter, as shown in the dialog box following:

e Choose held to cause the states to maintain their most recent values.

® Choose reset to cause the states to revert to their initial conditions.

Block Parameters: Enable

Enable Part
’7F'Iace thiz block in a subsystem to create an enabled subsystem. ‘

Select an option to set the states when the subsystem is

Parameter
’7 Statez when enabling: Iheld j
reenabled.

[~ Show output part

oK I Cancel | Help | Al |

Outputting the Enable Control Signal

An option on the Enable block dialog box lets you output the enable control
signal. To output the control signal, select the Show output port check box.

Block Parameters: Enable] |
— Enable Port
Place thiz block in a subsystem to create an enabled subzystem.
— Parameters
States when enabling: Iheld j

k. I Carnicel | Help | Apply |

This feature allows you to pass the control signal down into the enabled
subsystem, which can be useful where logic within the enabled subsystem is
dependent on the value or values contained in the control signal.

Enabled Subsystems

Blocks an Enabled Subsystem Can Contain

An enabled subsystem can contain any block, whether continuous or discrete.
Discrete blocks in an enabled subsystem execute only when the subsystem
executes, and only when their sample times are synchronized with the
simulation sample time. Enabled subsystems and the model use a common
clock.

Note Enabled subsystems can contain Goto blocks. However, only state ports
can connect to Goto blocks in an enabled subsystem. See the demo model,
clutch, for an example of how to use Goto blocks in an enabled subsystem.

For example, this system contains four discrete blocks and a control signal.
The discrete blocks are

¢ Block A, which has a sample time of 0.25 second

¢ Block B, which has a sample time of 0.5 second

® Block C, within the enabled subsystem, which has a sample time of 0.125
second

¢ Block D, also within the enabled subsystem, which has a sample time of
0.25 second

The enable control signal is generated by a Pulse Generator block, labeled
Signal E, which changes from 0 to 1 at 0.375 second and returns to 0 at 0.875
second.

4 Creating Conditional Subsystems

J'|_|'|_|'[Signal E

Enable
Sime Wave Blpga Display C o = (1)
Te=025 In1 o T Cutd
Ts=0.125
{W - ! plinz Oz - 1] ;
v (2w - —»(2)
Random Block B Soope Inz z Outz
Humber Ts=0.5 Subsysterm ~ = = - _ blodk
el Ts=0.25
The chart below indicates when the discrete blocks execute.
I I I 1 I I I I
1
- — I + — f : : —|— -
Signal E | | 4 e ——
ok L 1 1 I & _ I &_ | _I_ _ -Smf:uf;mium"
ra blac
Black € __|_|__-‘__*_-L_‘.-_|__|__
| | | | | |
Black B _ | _ _ _&_ _
ock I ¥ I [1 T
c
- —|= — = — 1t 1= -
I I I 1 I I I I
0 035 35 375 50 625 75 7S 1.0 -

Time [sec)

Blocks A and B execute independently of the enable control signal because
they are not part of the enabled subsystem. When the enable control signal
becomes positive, blocks C and D execute at their assigned sample rates until
the enable control signal becomes zero again. Note that block C does not
execute at 0.875 second when the enable control signal changes to zero.

Enabled Subsystems

Using Blocks with Constant Sample Times in Enabled
Subsystems

Certain restrictions are placed on connecting blocks with constant sample
times (see “Constant Sample Time” on page 2-49) to the output port of a
conditional subsystem.

¢ An error is displayed if you connect a Model or S-Function block with
constant sample time to the output port of a conditional subsystem.

¢ The sample time of any built-in block with a constant sample time is
converted to a different sample time, such as the fastest discrete rate in
the conditional subsystem.

To avoid the error or conversion, either manually change the sample time of
the block to a non-constant sample time or use a Signal Conversion block.
The example below shows how to use the Signal Conversion block to avoid
these errors.

Consider the following model m1.md1.

1

Fulze
zenearator

-

n —_

Dutt Enable
Enabled ~ -
Sub
ub=ystem ~ - 1 :
RN _ Outt
~ Constant with

1 T ~ | constant zample time

Outz
Canstant with

constant zample time

The two Constant blocks in this model have constant sample times. When
you simulate the model, the Simulink software converts the sample time of
the Constant block inside the enabled subsystem to the rate of the Pulse
Generator. If you simulate the model with sample time colors displayed (see
“Displaying Sample Time Colors” on page 3-10), The Pulse Generator and

4 Creating Conditional Subsystems

4-10

Enabled Subsystem in red. However, the Constant and Outport blocks outside
of the enabled subsystem are colored magenta, indicating that these blocks
still have a constant sample time.

Suppose the model above is referenced from a Model block inside an enabled

subsystem in a top-level model, as shown below. (See Chapter 5, “Referencing
a Model”.)

1

=1 R

Pulze - — /7 B
Generator Ot
Ot
Outz Enatle
Enabled N Outz — -
Subsystem N Ot
N Cut
N\
< ouz
AN r | Otz
AN Maodel

An error is invoked when you try to simulate the top model, indicating that
the second output of the Model block may not be wired directly to the enabled
subsystem’s output port because it has a constant sample time. See Chapter
5, “Referencing a Model”.

To avoid this error, insert a Signal Conversion block between the second
output of the Model block and the enabled subsystem’s Outport block, as
shown below.

Enabled Subsystems

Tt

=1 Pl

Fulze "
Zenarator Out1
Outl
Enabled N Dut2
Subsystem N
N
AN
AN
N

Enable

. |

1
Out1
oue »e

F Outz

hadel SIQI’IE'
Conwersion

This model is run with no errors. With sample time colors displayed, the
Model and Enabled Subsystem blocks are colored yellow, indicating that these
are hybrid systems, that is, systems that contain multiple sample times.

4-11

4 Creating Conditional Subsystems

Triggered Subsystems

In this section...

“Creating a Triggered Subsystem” on page 4-13

“Blocks That a Triggered Subsystem Can Contain” on page 4-15

Triggered subsystems are subsystems that execute each time a trigger event
occurs.

A triggered subsystem has a single control input, called the ¢rigger input, that
determines whether the subsystem executes. You can choose from three types
of trigger events to force a triggered subsystem to begin execution:

® rising triggers execution of the subsystem when the control signal rises
from a negative or zero value to a positive value (or zero if the initial value
is negative).

e falling triggers execution of the subsystem when the control signal falls
from a positive or a zero value to a negative value (or zero if the initial
value is positive).

® either triggers execution of the subsystem when the signal is either rising
or falling.

Note In the case of discrete systems, a signal’s rising or falling from zero is
considered a trigger event only if the signal has remained at zero for more

than one time step preceding the rise or fall. This eliminates false triggers

caused by control signal sampling.

For example, in the following timing diagram for a discrete system, a rising
trigger (R) does not occur at time step 3 because the signal has remained at
zero for only one time step when the rise occurs.

4-12

Triggered Subsystems

Time

o 1 2 3 4 5 & 7
1 1 1 1 1 1 1
| | | | | 1 1
| | | | | | I
| | 1 | | I

| | | |

: LT
F R F R E

Signal Level

A simple example of a triggered subsystem is illustrated.

n

Trigger
Signal

¥ a--"
+
E—}In Ot P simout
Sine Wiave) To Mokspace
Subsystern T T " = - oL

Trigger
1
In = aut
Unit Drelay

In this example, the subsystem is triggered on the rising edge of the square
wave trigger control signal.

Creating a Triggered Subsystem

You create a triggered subsystem by copying the Trigger block from the Ports
& Subsystems library into a subsystem. The Simulink® software adds a
trigger symbol and a trigger control input port to the Subsystem block.

X

Subsystem

To select the trigger type, open the Trigger block dialog box and select one
of the choices for the Trigger type parameter, as shown in the following

dialog box:

4-13

4 Creating Conditional Subsystems

4-14

Block Parameters: Trigger i |

— Trigger Part

Flace thiz black in a subspsten to create a triggered subspatem.

— Parameters

Trigger type: |

States when enabling: Iheld j

[~ Show output part

Hutput data type: Iau[g j

v Enable zera crossing detection

(1] I Cancel | Help | Apply |

Different symbols are used on the Trigger and Subsystem blocks to indicate
rising and falling triggers (or either). This figure shows the trigger symbols
on Subsystem blocks.

+ T LR
Subsystemn with Subsyste m with Subsystem with
Rizsing trigger Falling trigger Rising ar Falling
trigger

Outputs and States Between Trigger Events

Unlike enabled subsystems, triggered subsystems always hold their outputs
at the last value between triggering events. Also, triggered subsystems
cannot reset their states when triggered; states of any discrete blocks are
held between trigger events.

Outputting the Trigger Control Signal

An option on the Trigger block dialog box lets you output the trigger control
signal. To output the control signal, select the Show output port check box.

44— Select the trigger fype.

Triggered Subsystems

Block Parameters: Trigger

— Trigger Port

Flace this block in a subspstem to create a tiggered subspstemn.

— Parameters
Trigger tupe: |
Statez when enabling: Ihe|d j
[~ Show output part il
Dutput data type; Iauto j

¥ Enabls zemo crossing detection

[o |

Cancel | Help | Apply |

Select this check box to show the output port.

The Output data type field allows you to specify the data type of the output
signal as auto, int8, or double. The auto option causes the data type of the
output signal to be set to the data type (either int8 or double) of the port to

which the signal is connected.

Blocks That a Triggered Subsystem Can Contain

All blocks in a triggered subsystem must have either inherited (-1) or
constant (inf) sample time. This is to indicate that the blocks in the triggered
subsystem run only when the triggered subsystem itself runs, i.e., when it is
triggered. This requirement means that a triggered subsystem cannot contain

continuous blocks, such as the Integrator block.

4-15

4 Creating Conditional Subsystems

4-16

Triggered and Enabled Subsystems

In this section...

“Creating a Triggered and Enabled Subsystem” on page 4-17
“A Sample Triggered and Enabled Subsystem” on page 4-18
“Creating Alternately Executing Subsystems” on page 4-18

A third kind of conditional subsystem combines both types of conditional
execution. The behavior of this type of subsystem, called a ¢riggered and
enabled subsystem, is a combination of the enabled subsystem and the
triggered subsystem, as shown by this flow diagram.

Trigger event

I=
the enable
input signal
=07

Don't execute the subsystem

Execute the subsystem

A triggered and enabled subsystem contains both an enable input port and

a trigger input port. When the trigger event occurs, the enable input port is
checked to evaluate the enable control signal. If its value is greater than zero,
the subsystem is executed. If both inputs are vectors, the subsystem executes
if at least one element of each vector is nonzero.

The subsystem executes once at the time step at which the trigger event
occurs.

Triggered and Enabled Subsystems

Creating a Triggered and Enabled Subsystem

You create a triggered and enabled subsystem by dragging both the Enable
and Trigger blocks from the Ports & Subsystems library into an existing
subsystem. The Simulink® software adds enable and trigger symbols and
enable and trigger and enable control inputs to the Subsystem block.

n A+

Subsystem

You can set output values when a triggered and enabled subsystem is disabled
as you would for an enabled subsystem. For more information, see “Setting
Output Values While the Subsystem Is Disabled” on page 4-5. Also, you can
specify what the values of the states are when the subsystem is reenabled.
See “Setting States When the Subsystem Becomes Reenabled” on page 4-6.

Set the parameters for the Enable and Trigger blocks separately. The
procedures are the same as those described for the individual blocks.

4-17

4 Creating Conditional Subsystems

4-18

A Sample Triggered and Enabled Subsystem

A simple example of a triggered and enabled subsystem is illustrated in the
model below.

Enable

Trigger
Signal 49

Signal

mr i

- pin - ouf—— [0

Sine Wave Crizplay

Enable Trigger

1
In = Out
Unit Crelay

Creating Alternately Executing Subsystems

You can use conditional subsystems in combination with Merge blocks to
create sets of subsystems that execute alternately, depending on the current
state of the model.

Triggered and Enabled Subsystems

The following figure shows a model that uses two enabled blocks and a Merge
block to model a full-wave rectifier — a device that converts AC current to

pulsating DC current.

HU -
Sine Wave $ i
n Ercble
b Cut
i Y | |
Meme e
M Soope
Gain R
n rreme
I M Erble
— »’. (D)
Ttmen In Gimin Ot

The block labeled “pos” is enabled when the AC waveform is positive; it passes
the waveform unchanged to its output. The block labeled “neg” is enabled
when the waveform is negative; it inverts the waveform. The Merge block
passes the output of the currently enabled block to the Mux block, which
passes the output, along with the original waveform, to the Scope block.

4-19

4 Creating Conditional Subsystems

The Scope creates the following display.

lemlrcror ABB B & %

4-20

Function-Call Subsystems

Function-Call Subsystems

A function-call subsystem is a subsystem that another block can invoke
directly during a simulation. It is analogous to a function in a procedural
programming language. Invoking a function-call subsystem is equivalent to
invoking the output methods (see “Block Methods” on page 2-12) of the blocks
that the subsystem contains in sorted order (see “How Simulink® Determines
the Sorted Order” on page 6-36). The block that invokes a function-call
subsystem is called the function-call initiator. Stateflow®, Function-Call
Generator, and S-function blocks can all serve as function-call initiators.

To create a function-call subsystem, drag a Function-Call Subsystem
block from the Ports & Subsystems library into your model and connect

a function-call initiator to the function-call port displayed on top of the
subsystem. You can also create a function-call subsystem from scratch by
first creating a Subsystem block in your model and then creating a Trigger
block in the subsystem and setting the Trigger block’s Trigger type to
function-call.

You can configure a function-call subsystem to be triggered (the default) or
periodic by setting the Sample time type of its Trigger port to be triggered
or periodic, respectively. A function-call initiator can invoke a triggered
function-call subsystem zero, once, or multiple times per time step. The
sample times of all the blocks in a triggered function-call subsystem must be
set to inherited (-1).

A function-call initiator can invoke a periodic function-call subsystem only
once per time step and must invoke the subsystem periodically. If the initiator
invokes a periodic function-call subsystem aperiodically, the simulation is
halted and an error message displayed. The blocks in a periodic function-call
subsystem can specify a noninherited sample time or inherited (-1) sample
time. All blocks that specify a noninherited sample time must specify the
sample time, i.e., if one block specifies .1 as its sample time all other blocks
must specify a sample time of .1 or -1. If a function-call initiator invokes a
periodic function-call subsystem at a rate that differs from the sample time
specified by the blocks in the subsystem, the simulation is halted and an
error message is displayed.

For more information about function-call subsystems, see “Function-Call
Subsystems” in “Writing S-Functions” in the online documentation.

4-21

4 Creating Conditional Subsystems

4-22

Conditional Execution Behavior

In this section...

“Propagating Execution Contexts” on page 4-24
“Behavior for Switch Blocks” on page 4-25
“Displaying Execution Contexts” on page 4-25

“Disabling Conditional Execution Behavior” on page 4-26

“Displaying Execution Context Bars” on page 4-26

To speed simulation of a model, by default the Simulink® software avoids
unnecessary execution of blocks connected to Switch, Multiport Switch, and
of conditionally executed blocks, a behavior called conditional execution (CE)
behavior. You can disable this behavior for all Switch and Multiport Switch
blocks in a model, or for specific conditional subsystems. See “Disabling
Conditional Execution Behavior” on page 4-26.

The following model illustrates conditional execution behavior.

Conditional Execution Behavior

H+ -H-q: 0
. Gain block’s sorted order
hadhnsdhns (1:2) is second (2) in the
Geﬁz}fgior / enabled subsystem’s
Pulse Type = Sample based R execution context (1).

Period = 100
Pulse Width = 50
Phase = 50
Sample Time = 0.01

A 4
1:0 n
1 Ppin N
Constant -
Pl Enabled \
P Subsystem

.” Propagate exec context s on
-

g T

- \

Enable

Inl

utl
Initial output = []
Output when disabled = held

The outputs of the Constant block and Gain blocks are computed only while
the enabled subsystem is enabled (that is, at time steps 0.5 to 1.0, 1.5 to 2.0,
and so on). This is because the output of the Constant block is required
and the input of the Gain block changes only while the enabled subsystem
is enabled. When CE behavior is off, the outputs of the Constant and Gain
blocks are computed at every time step, regardless of whether the outputs
are needed or change.

In this example, the enabled subsystem is regarded as defining an execution
context for the Constant and Gain blocks. Although the blocks reside
graphically in the model’s root system, the Simulink software invokes the
blocks’ methods during simulation as if the blocks reside in the enabled
subsystem. This is indicated in the sorted order labels displayed on the
diagram for the Constant and Gain blocks. The notations list the subsystem’s
(id = 1) as the execution context for the blocks even though the blocks exist
graphically at the model’s root level (id = 0).

4-23

4 Creating Conditional Subsystems

4-24

Propagating Execution Contexts

In general, the Simulink software defines an execution context as a set of
blocks to be executed as a unit. At model compilation time, the Simulink
software associates an execution context with the model’s root system and with
each of its nonvirtual subsystems. Initially, the execution context of the root
system and each nonvirtual subsystem is simply the blocks that it contains.

When compiling, each block in the model is examined to determine whether it
meets the following conditions:

® Its output is required only by a conditional subsystem or its input changes
only as a result of the execution of a conditionally executed.

* The subsystem’s execution context can propagate across its boundaries.

® The output of the block is not a testpoint (see “Working with Test Points” on
page 8-70).

e The block is allowed to inherit its conditional execution context.

The Simulink software does not allow some built-in blocks, e.g., the
Delay block, ever to inherit their execution context. Also, S-Function
blocks can inherit their execution context only if they specify the
SS_OPTION_CAN BE_CALLED CONDITIONALLY option.

e The block is not a multirate block.

e Its sample time is inherited (-1).

If a block meets these conditions and execution context propagation is
enabled for the associated conditional subsystem (see “Disabling Conditional
Execution Behavior” on page 4-26), the Simulink software moves the block
into the execution context of the subsystem. This ensures that the block’s
methods are executed during the simulation loop only when the corresponding
conditional subsystem executes.

Note Execution contexts are not propagated to constant sample time blocks.

Conditional Execution Behavior

Behavior for Switch Blocks

This behavior treats the input branches of a Switch or Multiport Switch block
as invisible, conditional subsystems, each of which has its own execution
context that is enabled only when the switch’s control input selects the
corresponding data input. As a result, switch branches execute only when
selected by switch control inputs.

Displaying Execution Contexts

To determine the execution context to which a block belongs, select Sorted
order from the model window’s Format menu. The sorted order index for
each block in the model is displayed in the upper-right corner of the block. The
index has the format s:b, where s specifies the subsystem to whose execution
context the block belongs and b is an index that indicates the block’s sorted
order in the subsystem’s execution context, e.g., 0:0 indicates that the block is
the first block in the root subsystem’s execution context.

If a bus is connected to the block’s input, the block’s sorted order is displayed
as s:B, e.g., 0:B indicates that the block belongs to the root system’s execution
context and has a bus connected to its input.

The sorted order index of conditional subsystems is expanded to include
the system ID of the subsystem itself in curly brackets as illustrated in the
following figure.

+H Y
A+
Puls
Genemator ?‘
] n D]
1 —{Ini Ot Scope
Constant Enabled Gain

Subsystem

In this example, the sorted order index of the enabled subsystem is 0:1{1}.
The 0 indicates that the enabled subsystem resides in the model’s root
system. The first 1 indicates that the enabled subsystem is the second block

4-25

4 Creating Conditional Subsystems

4-26

on the root system’s sorted list (zero-based indexing). The 1 in curly brackets
indicates that the system index of the enabled subsystem itselfis 1. Thus any
block whose system index is 1 belongs to the execution context of the enabled
subsystem and hence executes when it does. For example, the Constant
block’s index, 1:0, indicates that it is the first block on the sorted list of the
enabled subsystem, even though it resides in the root system.

Disabling Conditional Execution Behavior

To disable conditional execution behavior for all Switch and Multiport Switch
blocks in a model, turn off the Conditional input branch execution
optimization on the Optimization pane of the Configuration Parameters
dialog box (see “Optimization Pane”). To disable conditional execution
behavior for a specific conditional subsystem, uncheck the Propagate
execution context across subsystem boundary option on the subsystem’s
parameter dialog box.

Even if this option is enabled, a subsystem’s execution context cannot
propagate across its boundaries under either of the following circumstances:

¢ The subsystem is a triggered subsystem with a latched input port.

¢ The subsystem has one or more output ports that specify an initial
condition, i.e., whose initial condition is other than []. In this case, a
block connected to the subsystem’s output cannot inherit the subsystem’s
execution context.

Displaying Execution Context Bars

The Simulink software can optionally display bars next to the ports of
subsystems across which execution contexts cannot propagate, i.e., on
subsystems from which no block can inherit its execution context.

Conditional Execution Behavior

+H+ +HH+
[
[

+H +HH

Fulza
Genermator

xecution cantext bars

1

——— g Int

Constant

Enabled

Subsystam

To display the bars, select Execution Context Indicator from model editor’s
Format > Block Displays menu.

4-27

4 Creating Conditional Subsystems

4-28

Referencing a Model

Overview of Model Referencing
(p. 5-3)

Creating a Model Reference (p. 5-8)

Converting a Subsystem to a
Referenced Model (p. 5-11)

Referenced Model Simulation Modes
(p. 5-13)

Simulation Targets (p. 5-16)

Simulink® Model Referencing
Requirements (p. 5-19)

Parameterizing Model References
(p. 5-26)

Defines model referencing, describes
its advantages, and provides links to
demos and commonly used resources

Describes the technique for using a
Model block to convert two separate
models into a parent model and a
referenced model

Describes the technique for
converting an atomic subsystem into
a referenced model that functionally
replaces the subsystem

Describes the two modes of
referenced model simulation:
Normal (interpreted) and Accelerator
(compiled code)

Describes the code, called a
simulation target, that Simulink®
generates for an Accelerator mode
referenced model.

Describes configurational and
structural requirements that a
model must meet in order to be used
as a referenced model.

Introduces three techniques for
setting values in referenced models
despite the requirement to enable
inline parameters

5 Referencing a Model

Using Model Arguments (p. 5-28)

Refreshing Model Blocks (p. 5-34)

Examining a Model Reference
Hierarchy (p. 5-35)

Inheriting Sample Times (p. 5-36)

Defining Function-Call Models
(p. 5-39)

Simulink® Model Referencing
Limitations (p. 5-43)

Describes the use of model
arguments, the most powerful and
flexible technique for parameterizing
model references

Explains the need to refresh model
blocks after changing a model’s
interface to its parent, and notes
some diagnostics

Describes tools that Simulink
provides for displaying and
traversing the structure of a model
reference hierarchy

Describes the conditions under
which a referenced models can and
cannot inherit its sample time from
its parent model

Describes requirements and
techniques for using a function-call
model and a trigger port to control a
referenced model

Describes limitations on the current
release of model referencing in
both modes, Normal mode only, and
Accelerator mode only

Overview of Model Referencing

Overview of Model Referencing

In this section...

“About Model Referencing” on page 5-3
“Referenced Model Advantages” on page 5-5

“Model Referencing Demos” on page 5-6

“Model Referencing Resources” on page 5-7

About Model Referencing

You can include one model in another by using Model blocks. Each instance
of a Model block represents a reference to another model, called a referenced
model or submodel. For simulation and code generation, the referenced
model effectively replaces the Model block that references it. The model that
contains a referenced model is its parent model.

A referenced model’s interface consists of its input and output ports (and
trigger port in the case of a function-call model) and its parameter arguments.
A Model block displays inputs and outputs corresponding to the root-level
inputs and outputs of the model it references, enabling you to incorporate the
referenced model into the block diagram of the parent model. For example, in
the next figure the Model block in the parent model on the left could represent
the submodel on the right:

[=1parentModel o (=] SR~ SubModel =]
File Edit Wew Simulation Format Tools Help File Edit Wew Simulation Format Tools Help

DeE& t2R(c=2t (22 s || DSEHS| =R 0|22 afm

In SubModel

Outl
In2

SubModel

Ready [100% [T=0.00 |FixedstepDiscrete 4| Ready [100% [[T=0.00 [FixedstepDiscrete v

You can use the ports on a Model block to connect the submodel to other
elements of the parent model. Connecting a signal to a Model block port

5 Referencing a Model

5-4

has the same effect as connecting the signal to the corresponding port in
the submodel.

_nixi

File Edit WYiew Simulation Format Tools Help

D& sBER(Ee 42 = foo

counter
Fout 4’@

Scope

hadel

Ready [100% [[|odeds v

A referenced model can itself contain Model blocks and thus reference
lower-level models, and so on to any depth. The topmost model in a hierarchy
of referenced models is called the top model. Where only one level exists, the
parent model and top model are the same. To prevent cyclic inheritance, a
Model block cannot refer directly or indirectly to a model that is superior to it
in the model reference hierarchy, as shown in this figure:

Top model

N\

Model A
Referenced | \
models

Model B
=]

A parent model can contain multiple Model blocks that reference the same
submodel as long as the submodel does not define global data. The submodel
can also appear in other parent models at any level. You can parameterize a
referenced model to provide tunability for all instances of the model, or let

Overview of Model Referencing

different Model blocks specify different values for variables that define the
submodel’s behavior. See “Parameterizing Model References” on page 5-26 for
details.

By default, the Simulink® software executes a top model interpretively, just
as it would if the model did not include submodels. Simulink can execute

a referenced model interpretively, as if it were an atomic subsystem, or by
compiling the submodel to code and executing the code. See “Referenced
Model Simulation Modes” on page 5-13 for details.

You can use any referenced model as a standalone model, provided that it does
not depend on any data that is available only from a higher-level model. An
appropriately configured model can function as both a standalone model and
as a referenced model without requiring any change to the model itself or to
any entities derived from it.

Referenced Model Advantages

Like subsystems, referenced models allow you to organize large models
hierarchically; Model blocks can represent major subsystems. Like libraries,
referenced models allow you to use the same capability repeatedly without
having to redefine it. However, referenced models provide several advantages
that are unavailable with subsystems and/or library blocks:

* Modular development

You can develop a referenced model independently from the models in
which it is used.

¢ Inclusion by reference

You can reference a model multiple times without having to make
redundant copies, and multiple models can reference the same model.

¢ Incremental loading

A referenced model is not loaded until it is needed, which speeds up model
loading.

* Accelerated simulation

Simulink can convert a referenced model to code and simulate the model by
running the code, which is faster than interactive simulation.

5 Referencing a Model

5-6

¢ Incremental code generation

Accelerated simulation requires code generation only if the model has
changed since code was previously generated. Otherwise the existing
code can be reused.

¢ Independent configuration sets

The configuration set used by a referenced model can differ from that of its
parent or other referenced models.

Model Referencing Demos

Simulink includes several demos that illustrate model referencing. To access
these demos from the MATLAB® command line:

1 In the MATLAB Command Window, type

demos

A list of MATLAB products appears on the left side of the Help window.
2 In the left side of the Help window, select Simulink.

A list of Simulink demos appears on the right side of the Help window.
3 Under Simulink, select Modeling Features.

This category contains model referencing demos, including:

®* Component-Based Modeling with Model Reference —
sldemo_mdlref_basic

® Visualizing Model Reference Architectures — sldemo_mdlref _depgraph
® Interface Specification Using Bus Objects — sldemo_mdlref bus

® Parameterizing Model Reference — sldemo_mdlref_ paramargs

Overview of Model Referencing

¢ Converting Subsystems to Model Reference —
sldemo_mdlref_conversion

® Model Reference Function-Call — sldemo_mdlref_fcncall

In addition, the demo sldemo_absbrake (Simulink > Automotive
Applications > Modeling an Anti-Lock Brake System) represents a
wheel speed calculation as a Model block within the context of an anti-lock
braking system (ABS).

Model Referencing Resources

The following are the most commonly needed resources for working with
model referencing:

® The Model block, which represents a model that is included as a referenced
model in another model.

¢ The Configuration Parameters > Diagnostics > Model Referencing
pane, which controls the diagnosis of problems encountered in model
referencing. See “Diagnostics Pane: Model Referencing” for details.

¢ The Configuration Parameters > Model Referencing pane, which
provides options that control model referencing and list files on which
referenced models depend. See “Model Referencing Pane” for details.

5-7

5 Referencing a Model

Creating a Model Reference

A model becomes a submodel when a Model block in some other model
references it. Any model can function as a submodel, and such use does not
preclude using it as a separate model also. To create a reference to a model
(submodel) in another model (parent model):

1 If the directory containing the submodel to be referenced is not on the
MATLAB® path, add the directory to the MATLAB path.

2 In the submodel:

¢ Enable Configuration Parameters > Optimization > Inline
parameters. You must enable Inline parameters for all models in a
model reference hierarchy except the hierarchy’s top model. See “Inline
Parameter Requirements” on page 5-23 for details.

¢ Set Configuration Parameters > Model Referencing > Total
number of instances allowed per top model to One if the model
will be used at most once in any hierarchy, or to Multiple if it will
be used more than once. To reduce overhead, specify Multiple only
when necessary. You can also set the option to Zero, which precludes
referencing the model.

3 Create an instance of the Model block in the parent model by dragging a
Model block instance from the Ports & Subsystems library to the parent
model. The new block is initially unresolved (specifies no submodel) and
has the following appearance:

E! model_ref _create i [m] |

File Edit View Simulation Format Tools Help

DeHES| 2R |(E 4|2 @] r 5o

Ready [100% | | lode45 4

5-8

Creating a Model Reference

4 Open the new Model block’s parameter dialog box by double-clicking the
Model block. See “Navigating a Model Block” for more about accessing
Model block parameters.

*1Block Parameters: Model x|

— Model Reference

Specify the name of a Simulink model. During update diagram, zimulation, and code
aeneration, Simulink, generates code for the referenced model and wzes the
generated code. These operations alzo refresh Model blocks to reflect graphical
changes, such as number of portz, in the referenced model. To refresh without
perfarming these operations, zelect Edit->Refrezsh Model Blocks.

— Parameter

todel name [without the . mdl extension]:

todel arguments:

bodel argument walues [for this instance];

Simulation mode: I.-'l'-.n::n::eleratn:nr ;I

Open todel |

oK LCancel Help Apply

5 Enter the name of the submodel in the Model name field. This name must
contain fewer than 60 characters. (See “Name Length Requirement” on
page 5-19.)

¢ For information about Model Arguments and Model argument
values, see “Using Model Arguments” on page 5-28.

® For information about the Simulation mode, see “Referenced Model
Simulation Modes” on page 5-13.

5 Referencing a Model

5-10

6 Click OK or Apply.

If the referenced model contains any root-level inputs or outputs, Simulink®
displays corresponding input and output ports on the Model block instance
that you have created. Use these ports to connect the referenced model to
other ports in the parent model. For information about connecting blocks in a
parent model to a referenced model that has bus inputs or outputs, see “Bus
Usage Requirements” on page 5-25.

Converting a Subsystem to a Referenced Model

Converting a Subsystem to a Referenced Model

You can convert any atomic subsystem to a referenced model. The conversion
requires that the model containing the subsystem have the following
configuration parameter settings:

¢ Configuration Parameters > Optimization > Inline parameters must
be enabled.

¢ Configuration Parameters > Diagnostics > Data Validity > Signal
resolution must be Explicit only.

¢ Configuration Parameters > Diagnostics > Connectivity > Mux
blocks used to create bus signals must be Error.

After specifying the indicated parameter values, select Convert to Model
Block from the subsystem’s context menu. Simulink® does the following:

® Saves the contents of the subsystem as a new model. Simulink
automatically provides a model name that is based on the block name and
is unique in the MATLAB® path. This name always contains fewer than 60
characters.

® Creates and opens an untitled model that contains a Model block whose
referenced model is the new model that contains the contents of the
subsystem.

If an error occurs during the conversion, the result depends on the error:

* For some errors, a message box appears that gives you the choice of
cancelling or continuing.

o If continuing is impossible, Simulink cancels the conversion without
offering a choice to continue.

Once you have successfully created a Model block and referenced model from
a subsystem, you can delete the subsystem block from the source model

and copy the Model block to the subsystem block’s location. All signals will
automatically reconnect. The source model is now a parent model that
contains a referenced model.

5-11

5 Referencing a Model

5-12

You can use Simulink.SubSystem.convertToModelReference to convert
subsystems to model references programmatically. The function provides
more capabilities than Convert to Model Block, such as the ability to
replace a subsystem with an equivalent Model block in a single operation. See
the Simulink reference documentation for details.

Referenced Model Simulation Modes

Referenced Model Simulation Modes

In this section...
“About Referenced Model Simulation Modes” on page 5-13

“Specifying the Simulation Mode” on page 5-14
“Mixing Simulation Modes” on page 5-14

“Accelerating a Freestanding or Top Model” on page 5-15

About Referenced Model Simulation Modes

Simulink® executes the top model in a model reference hierarchy just as it
would if no referenced models existed. All Simulink simulation modes are
available to the top model. Simulink can execute a referenced model in either
of two modes:

¢ Normal mode — Simulink executes the submodel interpretively, as if
the submodel were an atomic subsystem implemented directly within the
parent model. Normal mode is slower than Accelerator mode, and works
with only one instance of a given model in a reference hierarchy, but it
requires no delay for code generation and works with most Simulink tools.

® Accelerator mode — Simulink creates a MEX-file for the submodel, then
executes the submodel by running the MEX-file. Accelerator mode is faster
than Normal mode, and works with multiple submodel instances, but it
requires compilation and does not work with most Simulink tools.

Simulation results for a given model are essentially identical in either mode.

Trivial differences may occur due to differences in the optimizations and
libraries used.

5-13

5 Referencing a Model

5-14

Note Do not confuse Accelerator mode execution of a referenced model with:

® Accelerator mode execution of a freestanding or top model, as described in
Chapter 19, “Accelerating Models”

® Rapid Accelerator mode execution of a freestanding or top model, as
described in “Running Rapid Simulations”.

While the different types of acceleration share many capabilities and
techniques, they are implemented differently, and have somewhat different
requirements and limitations.

Specifying the Simulation Mode

The Model block for each instance of a referenced model controls its simulation
mode. The default referenced model simulation mode is Accelerator mode. To
set or change a submodel’s simulation mode:

1 Access the Model block’s parameter dialog box. (See “Navigating a Model
Block”.)

2 Set the Simulation mode field to Normal or Accelerator.

3 Click OK or Apply.

Mixing Simulation Modes

Simulink models execute in Normal mode by default. When a top model
executes in Normal mode, it can contain both Normal mode and Accelerator
mode submodels. When the same submodel appears more than once in a
hierarchy, at most one of these instances can specify Normal mode. All the
rest must specify Accelerator mode.

Accelerator mode takes precedence over Normal mode when the two are
mixed. Thus a model that executes in Normal mode can include submodels
that execute in Accelerator mode, but a model that executes in Accelerator
mode cannot include any submodels that execute in Normal mode. When a
Normal mode submodel is subordinate to an Accelerated mode submodel,
Simulink posts a warning and temporarily overrides the Normal mode
specification.

Referenced Model Simulation Modes

Accelerating a Freestanding or Top Model

You can use Simulink Accelerator mode (see Chapter 19, “Accelerating
Models”) or Rapid Accelerator mode (see “Running Rapid Simulations”) to
achieve faster execution of any Simulink model, including a top model in a
model reference hierarchy.

When you execute a top model in Simulink Accelerator mode or Rapid
Accelerator mode, all submodels execute in Accelerator mode. For any
submodel that specifies Normal mode, Simulink posts a warning and
temporarily overrides the Normal mode specification.

5-15

5 Referencing a Model

Simulation Targets

5-16

In this section...

“About Simulation Targets” on page 5-16

“Building Simulation Targets” on page 5-17

About Simulation Targets

A simulation target, or SIM target, is a MEX-file that implements a referenced
model that executes in Accelerator mode. Simulink® invokes the simulation
target as needed during simulation to compute the behavior and outputs

of the referenced model. Simulink uses the same simulation target for

all Accelerator mode instances of a given referenced model anywhere in

a reference hierarchy.

Be careful not to confuse a submodel’s simulation target with any of these
other types of target:

¢ Hardware target — A platform for which Real-Time Workshop® generates
code

e System target — A file that tells Real-Time Workshop how to generate
code for particular purpose

¢ Rapid Simulation target (RSim) — A system target file supplied with
Real-Time Workshop

® Model reference target — A library module that contains Real-Time
Workshop code for a referenced model

Simulink creates a simulation target only for a submodel that has one or
more Accelerator mode instances in a reference hierarchy. A submodel that
executes only in Normal mode always executes interpretively and does not
use a simulation target. When one instance of a submodel executes in Normal
mode, and one or more instances execute in Accelerator mode, Simulink
creates a simulation target for the Accelerator mode instance(s), but the
Normal mode instance does not use it.

Because Accelerator mode requires code generation, it imposes some
requirements and limitations that do not apply to Normal mode. Aside

Simulation Targets

from these constraints, you can generally ignore simulation targets and
their details when you execute a referenced model in Accelerator mode. See
“Limitations on Accelerator Mode Referenced Models” on page 5-47 for details.

Building Simulation Targets

If a simulation target does not exist at the beginning of a simulation, or when
you update a parent model’s block diagram, Simulink by default generates
the needed target from the referenced model. If the simulation target already
exists, Simulink by default checks whether the submodel has changed
significantly since the target was last generated. If so Simulink by default
regenerates the target to reflect changes in the model.

You can change this default behavior to change the rebuild criteria or specify
that Simulink always or never rebuilds targets. See “Rebuild options” for
details. You can command Simulink to generate simulation targets for
Accelerator mode referenced models at any time by updating the model’s
diagram or by executing the slbuild command with appropriate arguments
at the MATLAB® command line.

While generating a simulation target, Simulink displays status messages at
the MATLAB command line to enable you to monitor the target generation
process, which entails generating and compiling code and linking the compiled
target code with compiled code from standard code libraries to create an
executable file.

Simulink creates simulation targets in a subdirectory of the working directory.
This subdirectory is named slprj. If slprj does not exist, Simulink creates
it. Subdirectories in slprj provide separate places for simulation code,
Real-Time Workshop code, and other files.

Reducing Change Checking Time

You can reduce the time that Simulink spends checking whether any or all
simulation targets need to be rebuilt by setting configuration parameter
values as follows:

¢ In all referenced models throughout the hierarchy, set Configuration

Parameters > Diagnostics > Data Validity > Signal resolution to
Explicit only. (See “Signal resolution”.)

5-17

5 Referencing a Model

5-18

¢ In any referenced model for which you want to minimize change checking
time, set Configuration Parameters > Model Referencing > Rebuild
options to If any changes in known dependencies detected. (See
“Rebuild options”.)

These parameter values exist in a referenced model’s configuration set, not
in the individual Model block, so setting either value for any instance of a
referenced model sets it for all instances of that model.

Simulink® Model Referencing Requirements

Simulink® Model Referencing Requirements

In this section...

“About Model Referencing Requirements” on page 5-19
“Name Length Requirement” on page 5-19

“Configuration Parameter Requirements” on page 5-19

“Model Structure Requirements” on page 5-25

About Model Referencing Requirements

A model reference hierarchy must satisfy various Simulink® requirements,
as described in this section. Some limitations also apply, as described in
“Simulink® Model Referencing Limitations” on page 5-43.

Name Length Requirement

The name of a referenced model must contain fewer than 60 characters,
exclusive of the .md1 suffix. An error occurs if the name of a referenced
model is too long.

Configuration Parameter Requirements

A referenced model uses a configuration set in the same way that any other
model does, as described in “Configuration Sets” on page 14-37. By default,
every model in a hierarchy has its own configuration set, which it uses in the
same way that it would if the model executed independently.

Because each model can have its own configuration set, configuration
parameter values can be different in different models. Furthermore, some
parameter values are intrinsically incompatible with model referencing.
Simulink’s response to an inconsistent or unusable configuration parameter
depends on the parameter:

® Where an inconsistency has no significance, or a trivial resolution exists

that carries no risk, Simulink ignores or resolves the inconsistency without
posting a warning.

5-19

5 Referencing a Model

5-20

® Where a nontrivial and possibly acceptable solution exists, Simulink
resolves the conflict silently; resolves it with a warning; or generates an
error. See “Model configuration mismatch” for details.

* Where no acceptable resolution is possible, Simulink generates an error.
You must then change some or all parameter values to eliminate the
problem.

When a model reference hierarchy contains many submodels that have
incompatible parameter values, or a changed parameter value must propagate
to many submodels, manually eliminating all configuration parameter
incompatibilities can be tedious. You can control or eliminate such overhead
by using configuration references to assign an externally-stored configuration
set to multiple models. See “Referencing Configuration Sets” on page 14-47
for details.

Note Configuration parameters on the Real-Time Workshop® pane of the
Configuration Parameters dialog have no effect on simulation in either
Normal or Accelerated mode. Real-Time Workshop parameters affect only
code generation by Real-Time Workshop itself. Although Accelerated mode
simulation requires code generation to create a simulation target, Simulink
uses default values for all Real-Time Workshop parameters when generating
the target, and restores the original parameter values after code generation
is complete.

The tables in the following sections list Configuration parameter options that
can cause problems if set in certain ways, or if set differently in a referenced
model than in a parent model. Where possible, Simulink resolves violations
of these requirements automatically, but most cases require changes to the
parameters in some or all models.

Simulink® Model Referencing Requirements

Configuration Requirements for All Referenced Model

Simulation

Dialog Box Pane

Option

Requirement

Solver

Start time

The start time of the
top model and all
referenced models must
be the same, but need
not be zero.

Stop time

Simulink uses the top
model’s Stop time for
simulation, overriding
any differing Stop time
in a submodel.

Type
Solver

The top model’s

Type and Solver
apply throughout the
hierarchy. See “Solver
Requirements” on page
5-22.

Data Import/Export

Initial state

Can be on for the top
model, but must be off
for a referenced model.

Optimization

Inline parameters

Can be on or off

for a top model, but
must be on for a
referenced model.

See “Inline Parameter
Requirements” on page
5-23.

Application lifespan
(days)

Must be the same for
top and referenced
models.

5-21

5 Referencing a Model

5-22

Dialog Box Pane

Option

Requirement

Model Referencing Total number of Must not be Zero in
instances allowed a referenced model.
per top model Specifying One rather

than Multiple is
preferable or required
in some cases. See
“Model Instance
Requirements” on page
5-24.

Hardware Embedded hardware | All values must be

Implementation options the same for top and

referenced models.

Solver Requirements. Model referencing works with both fixed-step and
variable-step solvers. All models in a model reference hierarchy use the same
solver, which is always the solver specified by the top model. An error occurs
if the solver type specified by the top model is incompatible with the solver
type specified by any submodel, as shown in the following table:

Top Model Solver Submodel Solver Compatibility
Type Type

Fixed Step Fixed Step Allowed
Variable Step Variable Step Allowed

Variable Step

Fixed-step

Allowed unless the
submodel is multi-rate
and specifies both

a discrete sample
time and a continuous
sample time

Fixed Step

Variable Step

Error

If an incompatibility exists between the top model solver and any submodel
solver, one or both models must change as needed to use compatible solvers.
For information about solvers, see “Solvers” on page 2-18 and “Choosing a

Solver” on page 14-11.

Simulink® Model Referencing Requirements

Inline Parameter Requirements. Simulink requires Configuration
Parameters > Optimization > Inline parameters (see “Inline parameters”)
to be enabled for all referenced models in a reference hierarchy. The top model
can enable or disable inline parameters. If a referenced model disables inlined
parameters, and you try to build the parent model:

® For a Normal mode submodel, Simulink generates an error and cancels the
build. All models and compiled files remain unchanged after the failed
build.

® For an Accelerator mode submodel, Simulink temporarily enables inline
parameters, posts no warning, and builds the model. Inline parameters
remain disabled after the build completes.

Simulink ignores tunable parameter specifications in the “Model Parameter
Configuration Dialog Box” for both the top model and referenced

models. Consequently, you cannot use this dialog box to override the inline
parameters optimization for selected parameters and thereby permit them

to be tuned. “Parameterizing Model References” on page 5-26 describes
alternate techniques.

5-23

5 Referencing a Model

5-24

Model Instance Requirements. A referenced model must specify that it is
available for such use, and whether it can be used at most once or can have
multiple instances. Configuration Parameters > Model Referencing

> Total number of instances allowed per top model provides this
specification. See “Total number of instances allowed per top model” for more
information. The possible values for this parameter are:

e Zero — The model cannot be referenced. An error occurs if a reference to
the model occurs in another model.

® One — The model can be referenced at most once in a model reference
hierarchy. An error occurs if more than one instance exists. This value may
be preferable or required.

® Multiple — The model can be referenced more than once in a hierarchy,
provided that it contains no constructs that preclude multiple reference.
An error occurs if the model cannot be multiply referenced, even if only
one reference exists.

Setting Total number of instances allowed per top model to Multiple
for a model that is referenced only once can reduce execution efficiency
slightly, but does not affect data values that result from simulation or from
executing code generated by Real-Time Workshop. Specifying Multiple when
only one model instance exists facilitates later reusing the model in the same
hierarchy, or multiple times in a different hierarchy, without having to change
or rebuild the model.

Some model properties and constructs require Total number of instances
allowed per top model to be set to One, limiting the model to being used
only once in a hierarchy. For details, see “General Reusability Limitations” on
page 5-44 and “Accelerator Mode Reusability Limitations” on page 5-48.

Simulink® Model Referencing Requirements

Model Structure Requirements

The following requirements relate to the structure of a model reference
hierarchy independently of configuration parameter requirements.

Signal Propagation Requirements

The signal name must explicitly appear on any signal line connected to an
Outport of a referenced model. A signal that is connected by an unlabeled line
to an Outport of a referenced model cannot propagate out of the Model block
to the parent model.

Bus Usage Requirements

A bus that propagates between a parent model and a referenced model must be
nonvirtual, and the same bus object must specify the properties of the bus in
both the parent and the referenced model. This object must be defined in the
MATLAB® workspace. See “Using Buses” on page 9-5 for more information.

Sample Time Requirements

The first nonvirtual block connected to a root-level Inport or Outport of a
referenced model must have the same sample time as the port to which

it connects. You can use Rate Transition blocks to match input and output
sample times as illustrated in the following diagram.

ZH T’z
[1
O o
Ini [[- [[Ciutl
Rate Transition Aan Rate Transition1
rate = 0.1 rate = 0.2 rate = 0.1

5-25

5 Referencing a Model

Parameterizing Model References

5-26

In this section...

“Why Parameterize Model References?” on page 5-26
“Global Nontunable Parameters” on page 5-26
“Global Tunable Parameters” on page 5-27

“Model Arguments” on page 5-27

Why Parameterize Model References?

Due to the constraints described in “Inline Parameter Requirements” on page
5-23, you cannot use the “Model Parameter Configuration Dialog Box” to
tune parameters in referenced models.

Simulink® provides three other techniques that you can use to parameterize
referenced models:

* Global Nontunable Parameters
* Global Tunable Parameters

¢ Model Arguments

You cannot parameterize a referenced model by using symbols that match
definitions on the workspace of

Global Nontunable Parameters

A global nontunable parameter is a MATLAB® variable or a
Simulink.Parameter object whose storage class is auto. The parameter
can exist on the MATLAB workspace or any model workspace visible to all
referenced models that use the parameter.

Using a global nontunable parameter in a referenced model allows you to
control the behavior of the referenced model by setting the parameter value
before simulation begins. All instances of the model use the same value. You
cannot change the value during simulation, but you can change it between one
simulation and the next. The change requires rebuilding the model in which

Parameterizing Model References

the change occurs, but not any models that it references. See “Specifying
Numeric Parameter Values” on page 6-10 for details.

Global Tunable Parameters

A global tunable parameter is a Simulink.Parameter object whose storage
class is other than auto. The parameter exists on the MATLAB workspace.

Using a global tunable parameter in a referenced model allows you to control
the behavior of the referenced model by setting the parameter value. All
instances of the model use the same value. You can change the value during
simulation or between one simulation and the next. The change does not
requires rebuilding the model in which the change occurs, or any models
that it references. See “Changing the Values of Block Parameters During
Simulation” on page 6-16 for details.

If you want to reference an existing model that uses tunable parameters
defined with the “Model Parameter Configuration Dialog Box”, you must
change the model to implement tunability in some other way. To facilitate
this task, Simulink provides a command that converts tunable parameters
specified in the Model Parameter Configuration dialog box to global tunable
parameters. See tunablevars2parameterobjects for details.

Model Arguments

You can also use model arguments to specify different behavior for different
references to the same model. This is the only technique that lets you specify
different behaviors for different instances of the same model. See “Using
Model Arguments” on page 5-28 for details.

5-27

5 Referencing a Model

Using Model Arguments

5-28

In this section...

“About Model Arguments” on page 5-28
“Creating the MATLAB® Variables” on page 5-29
“Registering the Model Arguments” on page 5-30

“Assigning Model Argument Values” on page 5-31

About Model Arguments

Model arguments let you parameterize references to the same model so that
each instance of the model behaves differently. Without model arguments, a
variable in a referenced model has the same value in every instance of the
model. Declaring a variable to be a model argument allows each instance of
the model to use a different value for that variable.

To create model arguments for a referenced model, you create MATLAB®
variables in the model workspace, then add the variables to a list of model
arguments associated with the model. You can then specify values for those
variables separately in each Model block that references the model. The
values specified in the Model block replace the values of the MATLAB
variables for that instance of the model.

A referenced model that uses model arguments might also appear as a top
model or a standalone model. No Model block then exists to provide model
argument values, and the model uses the values of the MATLAB variables
themselves, as defined in the model workspace. Thus the same model can be
used without change as a top model, a standalone model, and a parameterized
referenced model.

The demo model sldemo_mdlref paramargs demonstrates techniques

for using model arguments. The demo passes model argument values to
referenced models through masked Model blocks. Such masking can be
convenient, but is independent of the definition and use of model arguments
themselves. See Chapter 17, “Creating Block Masks” for details about
masking.

Using Model Arguments

The rest of this section describes techniques for declaring and using model

arguments to parameterize a referenced model independently of any Model
block masking. The steps are:

® Create MATLAB variables in the model workspace.
® Register the variables to be model arguments.

® Assign values to those arguments in Model blocks.

Creating the MATLAB® Variables
To create MATLAB variables that will be used as model arguments:

1 Open the model for which you want to define model arguments.

2 Open the Model Explorer.

3 Select the model’s workspace in Model Explorer’s Model Hierarchy pane:

& Model Explorer

ol
Eile Edit View Tools Add Help
DgsmaxHHE%Hf0 @n4k]|nmaza
Search [by Mame | M | [&] Search |
Model Higrarchy Contents of: Model Waorkspace Model Workspace
: wiark; data
E-@:Slmulmk Rot Name | ¥alue | DataType | Complexity Ealie
L B Base Workspace Data saurse; | MOLFie readfunite) |
Wparent I |
EEEDUHIEI Import From MAT File | Export To AT File | Clear Workspace
- 1 Modsl Workspace e T e
5 Confiunation (hctive) oclel argumnents (for referencing this madel:
- &k Cads for counter
i a4 , | o
4 |]| Contents [Search Results Bevet | B Y e |
4

4 From Model Explorer’s Add menu, select MATLAB Variable.

A new MATLAB variable appears in the Contents pane with a default
name and value.

5 In the Contents pane:

5-29

5 Referencing a Model

a Change the default name of the new MATLAB variable to a name that
you want to declare as a model argument.

b If you will also use the model as a top or standalone model, specify the
value that the variable should have in that context. This value must
be numeric.

¢ Ifthe variable type does not match the dimensions and complexity of the
model argument, specify a value that has the correct type. This type
must be numeric.

6 Repeat adding and naming MATLAB variables until you have defined all
the variables that you need.

Registering the Model Arguments

To register MATLAB variables as model arguments:

1 Again select the model’s workspace in Model Explorer’s Model Hierarchy
pane.

The Dialog pane displays the Model Workspace dialog.

2 In the Model Workspace dialog, enter the names of the MATLAB variables
that you want to declare as model arguments as a comma-separated list in
the Model arguments field.

For example, if you added two MATLAB variables named init value and
incr, and declared them to be model arguments, the Contents and Dialog
panes of the Model Explorer could look like this:

Contents of: Model Workspace Model Workspace

Wiorkspace data

| Marme | Yalue I DataType
— Drata source: IMDL-FiIe
FH init_value 0
EH iner 1 Import fram MP.T-FiIel Export ko MAT-File

Maodel arguments (Far referencing this model);

init_+value, incr

5-30

Using Model Arguments

3 Click Apply to confirm the entered names.

Assigning Model Argument Values

If a model declares model arguments, you must assign values to those
arguments in each Model block that references the model. Failing to assign a
value to a model argument causes an error: the value of the model argument
does not default to the value of the corresponding MATLAB variable. That
value is available only to a standalone or top model. To assign values to a
referenced model’s arguments:

1 Open the Model block’s parameter dialog box by right-clicking the block
and choosing Model Reference Parameters from the context menu.

[=IFunction Block Parameters: Model x|

— Model Reference

Specify the name of a Simulink model. During update diagram, simulation, and code
generation, Simulink generates code for the referenced model and uses the
generated code. These operations alzo refresh Model blocks to reflect graphical
changes, such as number of ports, in the referenced model. To refresh without
performing theze operations, select Edit-» Refresh Model Blocks.

— Parameter

todel name [without the .md| extenzion):

ICounter

Model arguments:

|init_va|ue,incr

Model argument values [for this instance]:

Simulation mode: IAccelerator ;I

Open kodel |

0K I LCancel | Help | Apply |

The second field, Model arguments, specifies the same MATLAB
variables, in the same order, that you previously typed into the Model
arguments field of the Model Workspace dialog. This field cannot be
edited. It provides a reminder of which model arguments need values
assigned, and in what order.

5-31

5 Referencing a Model

2 In the Model argument values field, enter a comma-delimited list of
values for the model arguments that appear in the Model arguments
field. The values are assigned to arguments in positional order, so they
must appear in the same order as the corresponding arguments.

[=IFunction Block Parameters: Model x|

— Model Reference

Specify the name of a Simulink model. During update diagram, simulation, and code
generation, Simulink generates code for the referenced model and uses the
generated code. These operations alzo refresh Model blocks to reflect graphical
changes, such as number of ports, in the referenced model. To refresh without
performing theze operations, select Edit-» Refresh Model Blocks.

— Parameter

todel name [without the .md| extenzion):

ICounter

Model arguments:

|init_va|ue,incr

Model argument values [for this instance]:
1.2

Simulation mode: IAccelerator ;I

Open kodel |

0K I LCancel | Help | Apply |

You can enter the values as literal values, variable names, MATLAB
expressions, and Simulink® parameter objects. Any symbols used resolve to
values as described in “Hierarchical Symbol Resolution” on page 3-70. All
values must be numeric (including objects with numeric values).

The value for each argument must have the same dimensions and
complexity as the MATLAB variable that defines the model argument in
the model workspace. The data types need not match. If necessary, the
Simulink software will cast a model argument value to the data type of the
corresponding MATLAB variable.

5-32

Using Model Arguments

3 Click OK or Apply to confirm the values for the Model block.

When the model executes in the context of that Model block, the Model
arguments will have the values specified in the Model block’s Model

argument values field.

5-33

5 Referencing a Model

Refreshing Model Blocks

5-34

Refreshing a Model block updates its internal representation to reflect
changes in the interface of the model that it references. For example, you
must refresh a Model block if its referenced model has gained or lost a port.
When more than one Model block references a model whose interface has
changed, all of the Model blocks must be refreshed. Changes that have no
effect on a referenced model’s interface to its parent do not require refreshing.

To refresh all of a model’s Model blocks, select Refresh Model Blocks from
the model’s Edit menu. To update a specific Model block, select Refresh
from the block’s context menu.

Simulink® provides diagnostics that you can use to detect changes in the
interfaces of referenced models that could require refreshing the Model blocks
that reference them. The diagnostics include:

e “Model block version mismatch”

¢ “Port and parameter mismatch”

Examining a Model Reference Hierarchy

Examining a Model Reference Hierarchy

Simulink® provides tools and functions that you can use to examine a model
reference hierarchy:

¢ “Using the Model Dependency Viewer” on page 13-49 — Show the structure
of a model reference hierarchy and allows you to open any referenced model.

e view mdlrefs function — Invoke the Model Dependency Viewer to display
a graph of model reference dependencies.

e find_mdlrefs function — Finds all models directly or indirectly referenced
by a given model.

Displaying Version Numbers
To display the version numbers of the models referenced by a model, choose
Model block version from the Block displays submenu of the parent

model’s Format menu. Simulink displays the version numbers in the icons of
the corresponding Model block instances.

counter
Count
Rew = 1.10
Model :I I:l

Scope
counter
Count
Rew = 1.10

Modeal

The version number displayed on a Model block’s icon refers to the version of
the model used to create the block, or used most recently to refresh the block.
See “Managing Model Versions” on page 3-95 and “Refreshing Model Blocks”
on page 5-34 for more information.

5-35

5 Referencing a Model

Inheriting Sample Times

5-36

The sample times of a Model block are the sample times of the model that
it references. If the referenced model needs to run at specific rates, the
referenced model specifies the required rates. Otherwise, the referenced
model inherits its sample time from the parent model.

Without the ability to inherit sample times, a Model block could not be placed
in a triggered, function call, or iterator subsystem. Additionally, allowing

a Model block to inherit sample time maximizes its reuse potential. For
example, a model might fix the data types and dimensions of all its input and
output signals, but could be reused with different sample times, for example,
discrete at 0.1, discrete at 0.2, triggered, and so on.

A referenced model inherits its sample time if and only if all the following
are true:

® None of its blocks specify sample times (other than inherited and constant).
¢ [t does not have any continuous states.
¢ It does not contain any blocks that use absolute time.

¢ [t specifies a fixed-step solver and the Fixed-step size is auto.

¢ It does not contain any S-functions that make use of their specific sample
time internally.

® After sample time propagation, it has only one sample time (not counting
constant and triggered sample time).

¢ It does not contain any blocks that preclude sample time inheritance, as
listed in “Blocks That Preclude Sample-Time Inheritance” on page 5-37.

You can use a referenced model that inherits its sample time anywhere in
a parent model. By contrast, you cannot use a referenced model that has
intrinsic sample times in a triggered, function call, or iterator subsystem.
To avoid rate transition errors, you must ensure that blocks connected to a
referenced model with intrinsic samples times operate at the same rates as
the referenced model.

If you want a Model block to be used in a model where it can inherit a sample
time, you must constrain the solver declared for that model. On the Solver

Inheriting Sample Times

configuration pane, set solver Type to Fixed-step and Periodic sample
time constraint to Ensure sample time independent.

To determine whether a referenced model inherits its sample time, set the
Periodic sample time constraint on the Solver configuration parameters
dialog pane to Ensure sample time independent. If the model is unable
to inherit sample times, this setting causes Simulink® to display an error
message when building the model. See “Periodic sample time constraint”
for more about this option.

To determine the intrinsic sample time of a referenced model (or the fastest
intrinsic sample time for multirate referenced models), first update some
model that references it. Then select a Model block that references the
referenced model and enter the following command at the MATLAB®
command line:

get_param(gcb, 'CompiledSampleTime')

Blocks That Preclude Sample-Time Inheritance

Using a block whose output depends on an inherited sample time in a
referenced model can cause simulation to produce unexpected or erroneous
results. For this reason, when building a submodel that does not need to run
at a specified rate, Simulink checks whether the model contains any blocks,
including any S-Function blocks, whose outputs are functions of the inherited
simulation time. If so, Simulink specifies a default sample time and displays
an error if you have set the Periodic sample time constraint on the Solver
configuration parameters dialog pane to Ensure sample time independent.
See “Periodic sample time constraint” for more about this option.

The outputs of the following built-in blocks depend on their sample time and
hence preclude a referenced model from inheriting its sample time from the
parent model:

¢ Discrete-Time Integrator

¢ From Workspace (if it has input data that contains time)

Probe (if probing sample time)

Rate Limiter

e Sine Wave

5-37

5 Referencing a Model

5-38

Simulink assumes that the output of an S-function does not depend on
inherited sample time unless the S-function explicitly declares the contrary.
See Writing S-Functions for information on how to create S-functions that
declare whether their output depends on their inherited sample time.

To avoid simulation errors with referenced models that inherit their sample
time, you must not include S-functions in the referenced models that fail

to declare whether their output depends on their inherited sample time.
Simulink by default warns you if your model contains such blocks when you
update or simulate the model. See “Unspecified inheritability of sample
time” for details.

Defining Function-Call Models

Defining Function-Call Models

In this section...
“About Function-Call Models” on page 5-39

“Function-Call Model Demo” on page 5-39
“Creating a Function-Call Model” on page 5-39
“Referencing a Function-Call Model” on page 5-40

“Function-Call Model Requirements” on page 5-41

About Function-Call Models

Simulink® allows certain blocks, such as a Function-Call Generator or

an appropriately configured custom S-function, to control execution of a
referenced model during a time step, using a function-call signal. See
“Function-Call Subsystems” on page 4-21 for more information. A referenced
model capable of being invoked in this way is called a function-call model.

Function-Call Model Demo

To view a function-call model demo, select Simulink > Modeling

Features > Model Reference > Model Reference Function-Call from the
Demos pane of the MATLAB® Help Browser or execute sldemo_mdlref fencall
at the MATLAB command line.

Creating a Function-Call Model
To create a function-call model:

1 Insert a Trigger block at the root level of the model.
2 Set the Trigger block’s Trigger type parameter to function-call.

3 Create and connect any other blocks required to implement the model.

5-39

5 Referencing a Model

5-40

[o]

Trigger
Trigger Type: functio n-call

CO—»6)]

Incr Ot
Memary

4 Ensure that the model satisfies the conditions imposed on function-call
models. See “Function-Call Model Requirements” on page 5-41 for details.

You can now simulate the function-call model either by itself or by running a
model that references the function-call model directly or indirectly.

Referencing a Function-Call Model
To create a reference to a function-call model:

1 Create a Model block in the referencing model that references the
function-call model. See “Creating a Model Reference” on page 5-8 for
details.

The top of the Model block displays a function-call port corresponding to
the function-call trigger port in the function-call model.

£n_call()

Imer Count

Madel

2 Connect a Stateflow® chart, Function-Call Generator block, or other
function-call-generating block to the Model block’s function-call port. The
signal connected to the port must be scalar.

3 Connect the Model blocks inputs and outputs if any to the appropriate
blocks in the parent model.

Defining Function-Call Models

terate 1= 1:10
Funection-Call
Generator
fon_call)
1 Imcr Count I:l
Constant Display
Maodel

4 Create and connect any other blocks required to implement the parent
model.

5 Ensure that the referencing model satisfies the conditions for a model to
reference other models. See “Simulink® Model Referencing Requirements”
on page 5-19 and “Simulink® Model Referencing Limitations” on page
5-43 for details.

You can now simulate the model that references the function-call model.

Function-Call Model Requirements

To be a function-call model, a referenced model must meet the following
requirements in addition to the requirements that every referenced model
must meet.

¢ A function-call model cannot have an outport that is driven only by Ground
blocks, including hidden Ground blocks inserted by Simulink. To meet
this requirement, do the following:

a Insert a Signal Conversion block into the signal connected to the outport.

b Enable the inserted block’s Override optimizations and always copy
signal option.

o If the function-call model specifies a fixed-step solver and contains one or
more blocks that use absolute or elapsed time, the referencing model must
trigger the function-call model at the rate specified by the 'Fixed-step
size' option on the Solver page of the Configuration Parameters

5-41

5 Referencing a Model

dialog. Otherwise, the referencing model may trigger the function-call
model at any rate.

¢ A function-call model must not have direct internal connections between its
root-level input and output ports. Simulink does not honor the None and
Warning settings for the Invalid root Inport/Outport block connection
diagnostic for a referenced function-call model. It reports all invalid root
port connections as errors.

o Ifthe Sample time type is periodic, the sample-time period must not
contain an offset.

® The signal connected to a Model block’s function-call port must be scalar.

5-42

Simulink® Model Referencing Limitations

Simulink® Model Referencing Limitations

In this section...

“Requirements” on page 5-43
“Limitations on All Model Referencing” on page 5-43

“Limitations on Normal Mode Referenced Models” on page 5-46

“Limitations on Accelerator Mode Referenced Models” on page 5-47

Requirements

The following Simulink® limitations apply to model referencing. In addition,
a model reference hierarchy must satisfy all of the requirements listed in
“Simulink® Model Referencing Requirements” on page 5-19.

Limitations on All Model Referencing

Index Base Limitations

In the following two cases, Simulink does not propagate 0-based or 1-based
indexing information to referenced-model root-level ports connected to blocks
that accept indexes, like the Assignment block, or produce indexes, like the
For Iterator block.

e If a root-level input port of the referenced model is connected to index
inputs in the model that have different 0-based or 1-based indexing
settings, Simulink does not set the 0-based or 1-based indexing property of
the root-level Inport.

¢ If a root-level output port of the referenced model is connected to index
outputs in the model that have different 0-based or 1-based indexing
settings, Simulink does not set the 0-based or 1-based indexing property of
the root-level Outport.

In these cases, the lack of propagation can cause Simulink to fail to detect
incompatible index connections.

5-43

5 Referencing a Model

5-44

General Reusability Limitations
If a referenced model has any of the following properties, the model must
specify Configuration Parameters > Model Referencing > Total number
of instances allowed per top model as One. No other instances of the
model can exist in the hierarchy. If the parameter is not set correctly, or more
than one instance of the model exists in the hierarchy, an error occurs. The
properties are:
¢ The model references another model which has been set to single instance
¢ The model contains a state or signal with non-auto storage class
¢ The model uses any of the following Stateflow® constructs:

= Machine-parented data

= Machine-parented events

= Stateflow graphical functions

Simulink® Model Referencing Limitations

Simulink® Tool Limitations

® Working with the Simulink Debugger in a parent model, you can set
breakpoints at Model block boundaries, allowing you to look at the block’s
input and output values, but you cannot set a breakpoint inside the
submodel that the Model block references. See Chapter 18, “Simulink®
Debugger” for more information.

® The Model Coverage tool, which is part of Simulink Verification and
Validation, works for at most one referenced model at a time. That model
must execute in Normal mode. See “Using Model Coverage” for more
information.

¢ Simulink Design Verifier does not work with model referencing.

Stateflow® Limitations

¢ A model that contains a Stateflow chart cannot be referenced multiple
times in the same model reference hierarchy if:

= The Stateflow chart contains exported graphical functions.

= The Stateflow model contains machine-parented data or events.

Other Limitations

¢ Referenced models cannot use asynchronous rates internally. However,
a function-call model referenced in a top model can be triggered by an
asynchronous source within the top model. See “Defining Function-Call
Models” on page 5-39 for more information.

e Mask callbacks cannot add Model blocks or change existing Model block
parameter values. Violating this requirement generates an error. See
Chapter 17, “Creating Block Masks” for more information.

¢ A referenced model can input or output only those user-defined data types
that are fixed-point or defined by Simulink.DataType or Simulink.Bus
objects.

® Model blocks referencing models that contain assignment blocks that are
not in an iterator subsystem cannot be placed in an iterator subsystem.

5-45

5 Referencing a Model

5-46

If you want to initialize the states of a model that references other models
with states, you must specify the initial states in structure format.

The Model Browser does not display Model blocks in its tree view. Use the
Model Explorer to browse a referenced model hierarchy.

A referenced model cannot directly access the signals in a multi-rate bus.
Connecting Multi-Rate Buses to Referenced Models describes a technique
for overcoming this limitation.

A continuous sample time cannot be propagated to a Model block that is
sample-time independent.

You cannot log the output of a Ground block in a referenced model even if
you testpoint it.

Goto/From blocks cannot cross model reference boundaries.

You cannot print a referenced model from a top model.

Limitations on Normal Mode Referenced Models

Simulink® Tool Limitations

Enabling the Simulink Profiler on a parent model does not enable profiling
for referenced models. Profiling must be enabled separately for each
submodel. See “Capturing Performance Data” on page 19-33.

Model coverage cannot be specified for any referenced model if coverage
is specified for the top model. Coverage can be specified for at most one
referenced model at a time. That model must execute in Normal mode.
See “Using Model Coverage”.

Other Limitations

® When the same submodel appears more than once in a hierarchy, at most

one of these instances can specify Normal mode. All the rest must specify
Accelerator mode.

Simulink® Model Referencing Limitations

Limitations on Accelerator Mode Referenced Models

Customization Limitations

Accelerator mode simulation ignores custom code settings in the
Configuration Parameter dialog box and custom code blocks when
generating the simulation target for a referenced model.

Some restrictions exist on grouped custom storage classes in referenced
models. See “Custom Storage Class Limitations” for details.

Data type replacement is not supported for simulation target code
generation for referenced models.

Simulation targets do not include Stateflow target custom code.

Data Logging Limitations

To Workspace blocks, Scope blocks, and all types of runtime display, such as
the display of port values and signal values, have no effect when specified
in referenced models executing in Accelerator mode. The result during
simulation is the same as if the constructs did not exist.

Referenced models executing in Accelerator mode cannot log data to
MAT-files. If data logging is enabled for a referenced model, Simulink
disables the option before code generation and re-enables it afterwards.

5-47

5 Referencing a Model

5-48

Accelerator Mode Reusability Limitations
If a referenced model has any of the following properties, and the model
executes in Accelerator mode, the model must specify Configuration
Parameters > Model Referencing > Total number of instances allowed
per top model as One. No other instances of the model can exist in the
hierarchy, in either Normal mode or Accelerator mode. If the parameter is not
set correctly, or more than one instance of the model exists in the hierarchy,
an error occurs. The properties are:
¢ The model contains a subsystem that is marked as function
¢ The model contains an S-function that is:

= Inlined but has not set the option SS_OPTION_WORKS_WITH_CODE_REUSE

= Not inlined
¢ The model contains a function-call subsystem that:

= Has been forced by Simulink to be a function

= Is called by a wide signal

Simulink® Model Referencing Limitations

S-Function Limitations

¢ If a referenced model contains an S-function that should be inlined using a
Target Language Compiler file, the S-function must use the ssSetOptions
macro to set the SS_OPTION_USE_TLC_WITH_ACCELERATOR option in its
mdlInitializeSizes method. The simulation target will not inline the
S-function unless this flag is set.

¢ The Real-Time Workshop® S-function target does not support model
referencing.

® A referenced model cannot use noninlined S-functions in the following
cases:

= The model uses a variable-step solver.
= The S-function was generated by Real-Time Workshop.

= The S-function supports use of fixed-point numbers as inputs, outputs,
or parameters.

= The model is referenced more than once in the model reference hierarchy.
To work around this limitation, make copies of the referenced model,
assign different names to the copies, and reference a different copy at
each location that needs the model.

Simulink® Tool Limitations

¢ Simulink tools that require access to a model’s internal data or
configuration (including Model Coverage, the Report Generator, the
Simulink Debugger, and the Simulink Profiler) have no effect on referenced
models executing in Accelerator mode. Specifications made and actions
taken by such tools are ignored and effectively do not exist.

Subsystem Limitations

¢ If a subsystem contains Model blocks, you cannot build a subsystem module
by right-clicking the subsystem or by using Tools > Real-Time Workshop
> Build subsystem.

5-49

5 Referencing a Model

® Ifyou generate code for an atomic subsystem as a reusable function, inputs
or outputs that connect the subsystem to a referenced model can affect code
reuse, as described in “Reusable Code and Referenced Models”.

Target Limitations

¢ Real-Time Workshop grt_malloc targets do not support model reference.

¢ The Real-Time Workshop S-function target does not support model
referencing.

Other Limitations

¢ Errors or unexpected behavior can occur if a Model block is part of a cycle,
the Model block is a direct feedthrough block, and an algebraic loop results.
See “Model Blocks and Direct Feedthrough” for details.

¢ The External mode option is not supported. If it is enabled, it is ignored
by Accelerator mode.

5-50

Working with Blocks

About Blocks (p. 6-2)

Editing Blocks (p. 6-4)

Working with Block Parameters
(p. 6-8)

Changing a Block’s Appearance
(p. 6-28)

Displaying Block Outputs (p. 6-33)

Controlling and Displaying the
Sorted Order (p. 6-36)

Accessing Block Data During
Simulation (p. 6-40)

Explains the difference between
virtual and nonvirtual blocks.

How to cut and paste blocks.

How to set parameters that
determine a block’s behavior.

How to change the size, orientation,
color, and labeling of a block.

How to display the values of block
outputs on the block diagram during
simulation.

How to set a block’s execution
priority and display its execution
order.

How to use the Simulink® block
run-time interface to access block
data during a simulation.

6 Working with Blocks

About Blocks

6-2

In this section...
“What are Blocks?” on page 6-2

“Block Data Tips” on page 6-2

“Virtual Blocks” on page 6-2

What are Blocks?

Blocks are the elements from which the Simulink® software builds models.
You can model virtually any dynamic system by creating and interconnecting
blocks in appropriate ways. This section discusses how to use blocks to build
models of dynamic systems.

Block Data Tips

Information about a block is displayed in a pop-up window when you allow the
pointer to hover over the block in the diagram view. To disable this feature or
control what information a data tip includes, select Block data tips options
from the Simulink View menu.

Virtual Blocks

When creating models, you need to be aware that Simulink blocks fall into
two basic categories: nonvirtual and virtual blocks. Nonvirtual blocks play an
active role in the simulation of a system. If you add or remove a nonvirtual
block, you change the model’s behavior. Virtual blocks, by contrast, play no
active role in the simulation; they help organize a model graphically. Some
Simulink blocks are virtual in some circumstances and nonvirtual in others.
Such blocks are called conditionally virtual blocks. The following table lists
Simulink virtual and conditionally virtual blocks.

Block Name Condition Under Which Block Is Virtual
Bus Selector Virtual if input bus is virtual.
Demux Always virtual.

About Blocks

Block Name Condition Under Which Block Is Virtual

Enable Virtual unless connected directly to an Outport
block.

From Always virtual.

Goto Always virtual.

Goto Tag Visibility

Always virtual.

Ground Always virtual.

Inport Virtual unless the block resides in a conditionally
executed or atomic subsystem and has a direct
connection to an Outport block.

Mux Always virtual.

Outport Virtual when the block resides within any
subsystem block (conditional or not), and does not
reside in the root (top-level) Simulink window.

Selector Virtual only when the block’s Number of input

dimensions parameter specifies 1 and its Index
Option specifies either Select all, Index vector
(dialog), or Starting index (dialog).

Signal Specification

Always virtual.

Subsystem Virtual unless the block is conditionally executed
and/or the block’s Treat as Atomic Unit option
is selected.

Terminator Always virtual.

Trigger Virtual when the Outport port is not present.

6 Working with Blocks

Editing Blocks

6-4

In this section...

“Copying and Moving Blocks from One Window to Another” on page 6-4
“Moving Blocks in a Model” on page 6-5
“Copying Blocks in a Model” on page 6-7

“Deleting Blocks” on page 6-7

Copying and Moving Blocks from One Window to
Another

As you build your model, you often copy blocks from Simulink® block libraries
or other libraries or models into your model window. To do this:

1 Open the appropriate block library or model window.

2 Drag the block to copy into the target model window. To drag a block,
position the cursor over the block, then press and hold down the mouse
button. Move the cursor into the target window, then release the mouse
button.

You can also drag blocks from the Simulink Library Browser into a model
window. See “Browsing Block Libraries” on page 7-13 for more information.

Note The names of Sum, Mux, Demux, Bus Creator, and Bus Selector blocks
are hidden when you copy them from the Simulink block library to a model.
This is done to avoid unnecessarily cluttering the model diagram. (The shapes
of these blocks clearly indicate their respective functions.)

You can also copy blocks by using the Copy and Paste commands from the
Edit menu:

1 Select the block you want to copy.

2 Choose Copy from the Edit menu.

Editing Blocks

3 Make the target model window the active window.

4 Choose Paste from the Edit menu.

Simulink assigns a name to each copied block. If it is the first block of its type
in the model, its name is the same as its name in the source window. For
example, if you copy the Gain block from the Math library into your model
window, the name of the new block is Gain. If your model already contains a
block named Gain, Simulink adds a sequence number to the block name (for
example, Gainl, Gain2). You can rename blocks; see “Manipulating Block
Names” on page 6-30.

When you copy a block, the new block inherits all the original block’s

parameter values.

Moving Blocks in a Model

To move a single block from one place to another in a model window, drag the
block to a new location. Simulink automatically repositions lines connected to
the moved block.

To move more than one block, including connecting lines:

1 Select the blocks and lines. If you need information about how to select
more than one block, see “Selecting Multiple Objects” on page 3-5.

2 Drag the objects to their new location and release the mouse button.
To move a block, disconnecting lines:

1 Select the block.

2 Press the Shift key, then drag the block to its new location and release
the mouse button.

You can also move a block by selecting the block and pressing the arrow keys.

Moving blocks from one window to another is similar to copying blocks, except
that you hold down the Shift key while you select the blocks.

6-5

6 Working with Blocks

You can use the Undo command from the Edit menu to remove an added
block.

Aligning Blocks

Simulink uses an invisible five-pixel grid to simplify the alignment of blocks.
When you move a block to a new location, the block snaps to the nearest
line on the grid.

To facilitate aligning blocks at larger intervals, Simulink allows you to display
a larger grid in a model window. To display the grid, enter the following
command at the MATLAB® command prompt.

set_param('<model name>', 'showgrid','on')
The default width of the grid is 20 pixels. To change the grid spacing, enter
set_param('<model name>', 'gridspacing',<number of pixels>)
For example, to change the grid spacing to 25 pixels, enter

set_param('<model name>', 'gridspacing',25)

Note The new spacing must be a multiple of five pixels to ensure that the
displayed grid aligns with the invisible snap grid.

For either of the above commands, you can also select the model, then enter
gcs instead of <model name>.

Positioning Blocks Programmatically

You can position (and resize) a block programmatically, using its Position
parameter. For example, the following command

set_param(gcb, 'Position', [5 5 20 20]);

moves the currently selected block to a location 5 points down and 5 points to
the right of the top left corner of the block diagram and sets the block’s height
and width to 15 points, respectively.

Editing Blocks

Note The maximum size of a block diagram’s height and width is 32767
points. An error message is displayed if you try to moving or resize a block to
a position that exceeds the diagram’s boundaries.

Copying Blocks in a Model

You can copy blocks in a model as follows. While holding down the Ctrl key,
select the block with the left mouse button, then drag it to a new location.
You can also do this by dragging the block using the right mouse button.
Duplicated blocks have the same parameter values as the original blocks.
Sequence numbers are added to the new block names.

Note The model editor sorts block names alphabetically when generating
names for copies pasted into a model. This can cause the names of pasted
blocks to be out of order. For example, supposed you copy a row of 16 gain
blocks named Gain, Gainl, Gain2...Gain15 and paste them into the model.
The names of the pasted blocks occur in the following order: Gain16, Gainl7,
Gain24...Gain23.

Deleting Blocks

To delete one or more blocks, select the blocks to be deleted and press the
Delete or Backspace key. You can also choose Clear or Cut from the Edit
menu. The Cut command writes the blocks into the clipboard, which enables
you to paste them into a model. Using the Delete or Backspace key or the
Clear command does not enable you to paste the block later.

You can use the Undo command from the Edit menu to replace a deleted
block.

6-7

6 Working with Blocks

Working with Block Parameters

6-8

In this section...

“About Block Parameters” on page 6-8

“Mathematical Versus Configuration Parameters” on page 6-8

“Setting Block Parameters” on page 6-9

“Specifying Numeric Parameter Values” on page 6-10

“Checking Parameter Values” on page 6-12

“Changing the Values of Block Parameters During Simulation” on page 6-16
“Inlining Parameters” on page 6-18

“Block Properties Dialog Box” on page 6-20

“State Properties Dialog Box” on page 6-27

About Block Parameters

All Simulink® blocks have attributes that you can specify. Some
user-specifiable attributes are common to all Simulink blocks, for example,
a block’s name and foreground color. Other attributes are specific to a
block, for example, the gain of a Gain block. Simulink associates a variable,
called a block parameter, with each user-specifiable attribute of a block. You
specify the attribute by setting its associated parameter to a corresponding
value. For example, to set the foreground color of a block to red, you set the
value of its foreground color parameter to the string 'red'. The Simulink
parameter reference lists the names, usages, and valid settings for Simulink
block parameters (see “Common Block Parameters” and “Block-Specific
Parameters”).

Mathematical Versus Configuration Parameters

Block parameters fall into two broad categories. A mathematical parameter
is a parameter used to compute the value of a block’s output, for example,
the Gain parameter of a Gain block. All other parameters are configuration
parameters, for example, a Gain block’s Name parameter. In general, you
can change the values of mathematical but not configuration parameters

Working with Block Parameters

during simulation (see “Changing the Values of Block Parameters During
Simulation” on page 6-16).

Setting Block Parameters

You can use the Simulink set_param command to set the value of any
Simulink block parameter. In addition, you can set many block parameters
via Simulink dialog boxes and menus. These include:

¢ Format menu

The Model Editor’s Format menu allows you to specify attributes of the
currently selected block that are visible on the model’s block diagram, such

as the block’s name and color (see “Changing a Block’s Appearance” on page

6-28 for more information).
* Block Properties dialog box

Specifies various attributes that are common to all blocks (see “Block
Properties Dialog Box” on page 6-20 for more information).

¢ Block Parameter dialog box

Every block has a dialog box that allows you to specify values for attributes
that are specific to that type of block. See “Displaying a Block’s Parameter
Dialog Box” on page 6-9 for information on displaying a block’s parameter
dialog box. For information on the parameter dialog of a specific block, see
“Blocks — Alphabetical List” in the online Simulink reference.

® Model Explorer

The Model Explorer allows you to quickly find one or more blocks and set
their properties, thus facilitating global changes to a model, for example,
changing the gain of all of a model’s Gain blocks. See “The Model Explorer”
on page 13-2 for more information.

Displaying a Block’s Parameter Dialog Box

To display a block’s parameter dialog box, double-click the block in the model
or library window. You can also display a block’s parameter dialog box by
selecting the block in the model’s block diagram and choosing BLOCK
Parameters from the model window’s Edit menu or from the block’s context
(right-click) menu, where BLOCK is the name of the block you selected, e.g.,
Constant Parameters.

6-9

6 Working with Blocks

6-10

Note Double-clicking a block to display its parameter dialog box works for all
blocks with parameter dialog boxes except for Subsystem blocks. You must
use the Model Editor’s Edit menu or the block’s context menu to display a
Subsystem block’s parameter dialog box.

Specifying Numeric Parameter Values

Many block parameters, including mathematical parameters, accept
MATLAB® expression strings as values. When Simulink compiles a model, for
example, at the start of a simulation or when you update the model, Simulink
sets the compiled values of the parameters to the result of evaluating the
expressions.

® “Using Workspace Variables in Parameter Expressions” on page 6-10

® “Resolving Variable References in Block Parameter Expressions” on page
6-11

e “Using Parameter Objects to Specify Parameter Values” on page 6-11

® “Determining Parameter Data Types” on page 6-12

Using Workspace Variables in Parameter Expressions

Block parameter expressions can include variables defined in the model’s
mask and model workspaces and in the MATLAB workspace. Using a
workspace variable facilitates updating a model that sets multiple block
parameters to the same value, i.e., it allows you to update multiple parameters
by setting the value of a single workspace variable. For more information,
see “Resolving Symbols” on page 3-69 and “Specifying Numeric Values with
Symbols” on page 3-71.

Using a workspace variable also allows you to change the value of a parameter
during simulation without having to open a block’s parameter dialog box. For
more information, see “Changing the Values of Block Parameters During
Simulation” on page 6-16.

Working with Block Parameters

Note If you plan to generate code from a model, you can use workspace
variables to specify the name, data type, scope, volatility, tunability, and other
attributes of variables used to represent the parameter in the generated code.
For more information, see “Parameter Storage, Interfacing, and Tuning” in
the Real-Time Workshop® documentation.

Resolving Variable References in Block Parameter Expressions

When evaluating a block parameter expression that contains a variable,
Simulink by default searches the workspace hierarchy. If the variable is

not defined in any workspace, Simulink halts compilation of the model

and displays an error message. See “Resolving Symbols” on page 3-69 and
“Specifying Numeric Values with Symbols” on page 3-71 for more information.

Using Parameter Objects to Specify Parameter Values

You can use Simulink.Parameter objects in parameter expressions

to specify parameter values. For example, K and 2*K are both valid
parameter expressions where K is a workspace variable that references a
Simulink.Parameter object. In both cases, Simulink uses the parameter
object’s Value property as the value of K. For more information, see “Resolving
Symbols” on page 3-69 and “Specifying Numeric Values with Symbols” on
page 3-71.

Using parameter objects to specify parameters can facilitate tuning
parameters in some applications (see “Using a Parameter Object to Specify
a Parameter As Noninlined” on page 6-19 and “Parameterizing Model
References” on page 5-26 for more information).

Note Do not use expressions of the form p.Value where p is a parameter
object in parameter expressions. Such expressions cause evaluation errors
when Simulink compiles the model.

6-11

6 Working with Blocks

6-12

Determining Parameter Data Types

When Simulink compiles a model, each of the model’s blocks determines a
data type for storing the values of its parameters whose values are specified
by MATLAB parameter expressions.

Most blocks use internal rules to determine the data type assigned to a
specific parameter. Exceptions include the Gain block, whose parameter
dialog box allows you to specify the data type assigned to the compiled value
of its Gain parameter. You can configure your model to check whether the
data type assigned to a parameter can accommodate the parameter value
specified by the model (see “Data Validity Diagnostics Overview”).

Obtaining Parameter Information. You can use get_param to find the
system and block parameter values for your model. See “Model and Block
Parameters” for a list of arguments get_param accepts.

The model’s signal attributes and parameter expressions must be evaluated
before some parameters are properly reported. This evaluation occurs during
the simulation compilation phase. Alternatively, you can compile your model
without first running it, and then obtain parameter information. For instance,
to access the port width, data types and dimensions of the blocks in your
model, enter the following at the command prompt:

modelname([],[]1,[], ' 'compile')
g=get_param(gcb, 'PortHandles');
get_param(q.Inport, 'CompiledPortDataType')
get_param(q.Inport, 'CompiledPortWidth')
get_param(q.Inport, 'CompiledPortDimensions')
modelname([],[]1,[], 'term")

Checking Parameter Values

Several blocks perform range checking of their mathematical parameters.
Generally, blocks that allow you to enter minimum and maximum values
check to ensure that the values of applicable parameters lie within the
specified range. See the following topics for more information:

* “Blocks That Perform Parameter Range Checking” on page 6-13

* “Specifying Ranges for Parameters” on page 6-13

Working with Block Parameters

o “Performing Parameter Range Checking” on page 6-14

Blocks That Perform Parameter Range Checking
The following blocks perform range checking for their parameters:

Block

Parameters Checked

Constant

Constant value

Data Store Memory

Initial value

Gain Gain

Interpolation Using Prelookup Table data
Lookup Table Table data
Lookup Table (2-D) Table data
Lookup Table (n-D) Table data

Relay

Output when on
Output when off

Repeating Sequence Interpolated

Vector of output values

Repeating Sequence Stair

Vector of output values

Saturation

Upper limit
Lower limit

Specifying Ranges for Parameters

In general, use the Qutput minimum and Output maximum parameters
that appear on a block parameter dialog box to specify a range of valid values
for the block parameters. The following exceptions apply:

¢ For the Gain block, use the Parameter minimum and Parameter
maximum fields to specify a range for the Gain parameter.

® For the Data Store Memory block, use the Minimum and Maximum fields
to specify a range for the Initial value parameter.

When specifying minimum and maximum values that constitute a range,
enter only expressions that evaluate to a scalar, real number with double data

6-13

6 Working with Blocks

6-14

type. The default value, [], is equivalent to - Inf for the minimum value and
Inf for the maximum value. The scalar values that you specify are subject to
expansion, for example, when the block parameters that Simulink checks are
nonscalar (see “Scalar Expansion of Inputs and Parameters” on page 8-24).

Note You cannot specify the minimum or maximum value as NaN.

Specifying Ranges for Complex Numbers. When you specify a minimum
or maximum value for a parameter that is a complex number, the specified
minimum and maximum apply separately to the real part and to the
imaginary part of the complex number. If the value of either part of the
number is less than the minimum, or greater than the maximum, the complex
number is outside the specified range. No range checking occurs against any
combination of the real and imaginary parts, such as (sqrt(a*2+b*2))

Performing Parameter Range Checking
You can initiate parameter range checking in the following ways:

¢ When you click the OK or Apply button on a block parameter dialog box,
the block performs range checking for its parameters. However, the block
checks only the parameters that it can readily evaluate. For example, the
block does not check parameters that use an undefined workspace variable.

¢ When you start a simulation or select Update Diagram from the Simulink
Edit menu, Simulink performs parameter range checking for all blocks in
that model.

Simulink performs parameter range checking by comparing the values of
applicable block parameters with both the specified range (see “Specifying
Ranges for Parameters” on page 6-13) and the block data type. That is,

Simulink performs the following check:

DataTypeMin < MinValue < VALUE < MaxValue < DataTypeMax

where

® DataTypeMin is the minimum value representable by the block data type.

Working with Block Parameters

® MinValue is the minimum value the block should output, specified by, e.g.,
Output minimum.

® VALUE is the numeric value of a block parameter.

® MaxValue is the maximum value the block should output, specified by, e.g.,
Output maximum.

® DataTypeMax is the maximum value representable by the block data type.
When Simulink detects a parameter value that violates the check, it displays

an error message. For example, consider a model that contains a Constant
block whose

* Constant value parameter specifies the variable const, which you have
yet to define in a workspace.

¢ Output minimum and Qutput maximum parameters are set to 2 and 8,
respectively.

¢ Output data type parameter is set to uints.
In this situation, Simulink does not perform parameter range checking when
you click the OK button on the Constant block dialog box because the variable

const is undefined. But suppose you define its value by entering

const = 10

at the MATLAB prompt, and then you update the diagram (see “Updating a
Block Diagram” on page 1-13). Simulink displays the following error message:

6-15

6 Working with Blocks

6-16

=

View Fonk Size

Message Source Reparted by SUMMAary:
C WElock errar |Constant Sirmulink Incansistent numeric values for para...

Kl |1

|§) examplelConstant |
Inconsistent numetic values for parameter YWalue' of ‘example/Constant’ Farameter
value (100 is greater than maximurm (3],

CpEn | Help | Close |

Changing the Values of Block Parameters During
Simulation

Simulink lets you change the values of many block parameters during
simulation. Such parameters are called tunable parameters. In general,
only parameters that represent mathematical variables, such as the Gain
parameter of the Gain block, are tunable. Parameters that specify the
appearance or structure of a block, e.g., the number of inputs of a Sum block,
or when it is evaluated, e.g., a block’s sample time or priority, are not tunable.
You can tell whether a particular parameter is tunable by examining its edit
control in the block’s dialog box or Model Explorer during simulation. If the
control is disabled, the parameter is nontunable.

Note You cannot tune inline parameters. See “Inlining Parameters” on page
6-18 for more information.

Tuning a Block Parameter

You can use a block’s dialog box or the Model Explorer to modify the tunable
parameters of any block, except a source block (see “Changing Source Block

Working with Block Parameters

Parameters During Simulation” on page 6-17). To use the block’s parameter
dialog box, open the block’s parameter dialog box, change the value displayed
in the dialog box, and click the dialog box’s OK or Apply button.

You can also tune a parameter at the MATLAB command line, using either
the set_param command or by assigning a new value to the MATLAB
workspace variable that specifies the parameter’s value. In either case, you
must update the model’s block diagram for the change to take effect (see
“Updating a Block Diagram” on page 1-13).

Changing Source Block Parameters During Simulation

Opening the dialog box of a source block with tunable parameters (see “Source
Blocks with Tunable Parameters” on page 6-17) causes a running simulation
to pause. While the simulation is paused, you can edit the parameter values
displayed on the dialog box. However, you must close the dialog box to have
the changes take effect and allow the simulation to continue. Similarly,
starting a simulation causes any open dialog boxes associated with source
blocks with tunable parameters to close.

Note If you enable the Inline parameters option, Simulink does not pause
the simulation when you open a source block’s dialog box because all of the
parameter fields are disabled and can be viewed but cannot be changed.

The Model Explorer disables the parameter fields that it displays in the list
view and the dialog pane for a source block with tunable parameters while

a simulation is running. As a result, you cannot use the Model Explorer to
change the block’s parameters. However, while the simulation is running, the
Model Explorer displays a Modify button in the dialog view for the block.
Clicking the Modify button opens the block’s dialog box. Note that this
causes the simulation to pause. You can then change the block’s parameters.
You must close the dialog box to have the changes take effect and allow the
simulation to continue. Your changes appear in the Model Explorer after you
close the dialog box.

Source Blocks with Tunable Parameters. Source blocks with tunable
parameters include the following blocks.

6-17

6 Working with Blocks

¢ Simulink source blocks, including
= Band-Limited White Noise
= Chirp Signal
= Constant
= Pulse Generator
= Ramp
= Random Number
= Repeating Sequence
= Signal Generator
= Sine Wave
= Step
= Uniform Random Number

® User-developed masked subsystem blocks that have one or more tunable
parameters and one or more output ports, but no input ports.

¢ S-Function and M-file (level 2) S-Function blocks that have one or more
tunable parameters and one or more output ports but no input ports.

Inlining Parameters

The Inline parameters optimization (see “Inline parameters”) controls how
mathematical block parameters appear in code generated from the model.
When this optimization is off (the default), a model’s mathematical block
parameters appear as variables in the generated code. As a result, you can
tune the parameters both during simulation and when executing the code.
When this option is on, the parameters appear in the generated code as
inlined numeric constants. This reduces the generated code’s memory and
processing requirements. However, because the inline parameters appear as
constants in the generated code, you cannot tune them during code execution.
Furthermore, to ensure that simulation faithfully models the generated code,
Simulink prevents you from changing the values of block parameters during
simulation when the Inline parameters option is on.

6-18

Working with Block Parameters

Specifying Some Parameters as Noninline

Suppose that you want to take advantage of the Inline parameters
optimization while retaining the ability to tune some of your model’s
parameters. You can do this by declaring some parameters as noninline,
using either the “Model Parameter Configuration Dialog Box” or a
Simulink.Parameter object. In either case, you must use a workspace
variable to specify the value of the parameter.

Note The documentation for the Real-Time Workshop refers to workspace
variables used to specify the value of noninline parameters as tunable
workspace parameters. In this context, the term parameter refers to a
workspace variable used to specify a parameter as opposed to the parameter
itself.

Note When compiling a model with the inline parameters option on, Simulink
checks to ensure that the data types of the workspace variables used to specify
the model’s noninline parameters are compatible with code generation. If
not, Simulink halts the compilation and displays an error. See “Tunable
Workspace Parameter Data Type Considerations” for more information.

Using a Parameter Object to Specify a Parameter As Noninlined.
If you use a parameter object to specify a parameter’s value (see “Using
Parameter Objects to Specify Parameter Values” on page 6-11), you can also
use the object to specify the parameter as noninlined. To do this, set the
parameter object’s RTWInfo.StorageClass property to any value but 'Auto’
(the default).

K=Simulink.Parameter;
K.RTWInfo.StorageClass = 'SimulinkGlobal';

If you set the RTWInfo.StorageClass property to any value other than Auto,

you should not include the parameter in the tunable parameters table in the
model’s Model Parameter Configuration dialog box.

6-19

6 Working with Blocks

6-20

Note Simulink halts model compilation and displays an error message if
it detects a conflict between the properties of a parameter as specified by
a parameter object and the properties of the parameter as specified in the
Model Parameter Configuration dialog box.

Block Properties Dialog Box

This dialog box lets you set a block’s properties. To display this dialog, select
the block in the model window and then select Block Properties from the
Edit menu.

The dialog box contains the following tabbed panes:

® “General Pane” on page 6-21
¢ “Block Annotation Pane” on page 6-23
e “Callbacks Pane” on page 6-25

Working with Block Parameters

General Pane
This pane allows you to set the following properties.

) Block Properties:Sum =101 %]

zeneral || Biock Annotation || Calbacks
Uzage
Description: Text saved with the block in the model file.
Priority: Specifies the block's order of execution relative to ather blocks in
the same madel.
Tag: Text that appears inthe hlock lakel that Simulink generates.
Description:
F
-
Priority:
Tag:
034 Cancel Help L]

Description. Brief description of the block’s purpose.

Priority. Execution priority of this block relative to other blocks in the model.
See “Assigning Block Priorities” on page 6-39 for more information.

6-21

6 Working with Blocks

Tag. Text that is assigned to the block’s Tag parameter and saved with the
block in the model. You can use the tag to create your own block-specific
label for a block.

6-22

Working with Block Parameters

Block Annotation Pane

The block annotation pane allows you to display the values of selected block
parameters in an annotation that appears beneath the block’s icon.

<} Block Properties:Sum

=101 %

Block Annotation

Zeneral Callbacks

Uzage

Text that appears below the block's lakel. Erter the text inthe annotation
field. The text may include any of the block property tokens inthe Block
property tokens list. Simulink replaces each token with the value af the
corresponding property in the generated annotation. Click the == button to
enter the selected token in the annotation field. Text can be edited on the
right =ide edi field. See example syntax onthe battom.

Elock property tokens: Enter text and tokens for annatation:

] | 3

W=bocumbDatalypes

YesAccumbdaxs
Fo=Acoumbdine
“e=tncestorBlock=
“o=BackgroundColar=
%=BlockDescrigption:=
“Se=BlockTypes=
Ye=Capabiities=
Ye=Collapehime=
So=CollapseMode=
Yo=DataTypeOverride.
“e=Deszcription=
“o=Diagnostics=
Ye=DropShadow:=
“e=ForegroundColar=
He=Handle=

I _'*ILI

Example syntax:

Mame="%%=MNatme=

(84 |

Cancel

Helg

Spaly

Enter the text of the annotation in the text field that appears on the right side
of the pane. The text can include any of the block property tokens that appear
in the list on the left side of the pane. A block property token is simply the

6-23

6 Working with Blocks

6-24

name of a block parameter preceded by %< and followed by >. When displaying
the annotation, the Simulink software replaces the tokens with the values

of the corresponding block parameters. For example, suppose that you enter
the following text and tokens for a Product block:

Multiplication = %<Multiplication>
Sample time = %<SampleTime>

In the model editor window, the annotation appears as follows:

o
—

Froduct
hiultiplication = Bement-wise(.™)
Sample time = -1

#

The block property token list on the left side of the pane lists all the
parameters that are valid for the currently selected block (see “Model and
Block Parameters” in the Simulink Reference). To add one of the listed tokens
to the text field on the right side of the pane, select the token and then click
the button between the list and the text field.

You can also create block annotations programmatically. See “Creating Block
Annotations Programmatically” on page 6-26.

Working with Block Parameters

Callbacks Pane

The Callbacks Pane allows you to specify implementations for a block’s
callbacks (see “Using Callback Functions” on page 3-52).

) Block Properties:Sum -0l x|

Zeneral || Block Annotstion || Callbacks

Uzage

To creste or edit a callback function for thiz block, select it in the callback list
[helowy, left). Then enter MATLAE code that implement:s the function in the
content pane (helowy, right). The callback name's suffix indicates its status:
*has saved content).

Callback functions list: Contert of callback function: "ClipboardFon"

=]

MameChangeFcn
OpenFon
ParentClozeFon
PostSaveFcn
PreCopyFon
PreleleteFcn
PreSaveFcn
=tartFcn
=topFon

UncoDeleteFen j LI

ik | Cancel Help | Apply |

To specify an implementation for a callback, select the callback in the callback
list on the left side of the pane. Then enter MATLAB commands that
implement the callback in the right-hand field. Click OK or Apply to save the

6-25

6 Working with Blocks

6-26

change. Simulink appends an asterisk to the name of the saved callback to
indicate that it has been implemented.

Creating Block Annotations Programmatically

You can use a block’s AttributesFormatString parameter to display selected
block parameters beneath the block as an “attributes format string,” i.e., a
string that specifies values of the block’s attributes (parameters). “Model and
Block Parameters” in Simulink Reference describes the parameters that a
block can have. Use the Simulink set_param function to set this parameter to
the desired attributes format string.

The attributes format string can be any text string that has embedded
parameter names. An embedded parameter name is a parameter name
preceded by %< and followed by >, for example, %<priority>. Simulink
displays the attributes format string beneath the block’s icon, replacing each
parameter name with the corresponding parameter value. You can use
line-feed characters (\n) to display each parameter on a separate line. For
example, specifying the attributes format string

pri=%s<priority>\ngain=%<Gain>

for a Gain block displays

[>
Eain

pri=i0
gain=1

If a parameter’s value is not a string or an integer, Simulink displays N/S
(not supported) for the parameter’s value. If the parameter name is invalid,
Simulink displays ??? as the parameter value.

Working with Block Parameters

State Properties Dialog Box

The State Properties dialog box allows you to specify code generation
options for certain blocks with discrete states. See “Block State Storage and
Interfacing” in Real-Time Workshop User’s Guide for more information.

6-27

6 Working with Blocks

Changing a Block’s Appearance

6-28

In this section...

“Changing the Orientation of a Block” on page 6-28
“Resizing a Block” on page 6-29

“Displaying Parameters Beneath a Block” on page 6-30
“Using Drop Shadows” on page 6-30

“Manipulating Block Names” on page 6-30

“Specifying a Block’s Color” on page 6-32

Changing the Orientation of a Block

By default, signals flow through a block from left to right. Input ports are on
the left, and output ports are on the right. You can change the orientation of a
block by selecting one of these commands from the Format menu:

¢ The Flip Block command rotates the block 180 degrees.
¢ The Rotate Block command rotates a block clockwise 90 degrees.

Changing a Block’s Appearance

The following figure shows how Simulink® orders ports after changing the
orientation of a block using the Rotate Block and Flip Block menu items.
The text in the blocks shows their orientation.

1 2 3
Y ¥ Y =
Ru/tc-uze/—b Down otate
12 Left * Rig]:lt‘::]
22 to - Flip — = | to 52
3 }nght + Left - 3

Up 4’4

Retate

Resizing a Block

To change the size of a block, select it, then drag any of its selection handles.
While you hold down the mouse button, a dotted rectangle shows the new
block size. When you release the mouse button, the block is resized.

For example, the following figure below shows a Signal Generator block
being resized. The lower-right handle was selected and dragged to the cursor

position. When the mouse button is released, the block takes its new size.

This figure shows a block being resized:

i Signal
wenerator

6-29

6 Working with Blocks

6-30

Displaying Parameters Beneath a Block

You can cause Simulink to display one or more of a block’s parameters beneath
the block. You specify the parameters to be displayed in the following ways:

* By entering an attributes format string in the Attributes format string
field of the block’s Block Properties dialog box (see “Block Properties
Dialog Box” on page 6-20)

® By setting the value of the block’s AttributesFormatString property to
the format string, using set_param

Using Drop Shadows

You can add a drop shadow to a block by selecting the block, then choosing
Show Drop Shadow from the Format menu. When you select a block with
a drop shadow, the menu item changes to Hide Drop Shadow. The following
figure shows a Subsystem block with a drop shadow:

o

Manipulating Block Names

All block names in a model must be unique and must contain at least one
character. By default, block names appear below blocks whose ports are on
the sides, and to the left of blocks whose ports are on the top and bottom, as
the following figure shows:

)D} Tap to hnﬁnmv

ot
Left to right

Note Simulink commands interprets a forward slash, i.e., /, as a block path
delimiter. For example, the path vdp/Mu designates a block named Mu in the
model named vdp. Therefore, avoid using forward slashes (/) in block names
to avoid causing Simulink to interpret the names as paths.

Changing a Block’s Appearance

Changing Block Names

You can edit a block name in one of these ways:

¢ To replace the block name, click the block name, double-click or drag the
cursor to select the entire name, then enter the new name.

¢ To insert characters, click between two characters to position the insertion
point, then insert text.

¢ To replace characters, drag the mouse to select a range of text to replace,
then enter the new text.

When you click the pointer anywhere else in the model or take any other
action, the name is accepted or rejected. If you try to change the name of a
block to a name that already exists or to a name with no characters, Simulink
displays an error message.

You can modify the font used in a block name by selecting the block, then
choosing the Font menu item from the Format menu. Select a font from the
Set Font dialog box. This procedure also changes the font of any text that
appears inside the block.

You can cancel edits to a block name by choosing Undo from the Edit menu.

Note If you change the name of a library block, all links to that block become
unresolved.

Changing the Location of a Block Name
You can change the location of the name of a selected block in two ways:

® By dragging the block name to the opposite side of the block.

® By choosing the Flip Name command from the Format menu. This
command changes the location of the block name to the opposite side of
the block.

For more information about block orientation, see “Changing the Orientation
of a Block” on page 6-28.

6-31

6 Working with Blocks

Changing Whether a Block Name Appears

To change whether the name of a selected block is displayed, choose a menu
item from the Format menu:

¢ The Hide Name menu item hides a visible block name. When you select
Hide Name, it changes to Show Name when that block is selected.

¢ The Show Name menu item shows a hidden block name.
Specifying a Block’s Color

See “Specifying Block Diagram Colors” on page 3-7 for information on how to
set the color of a block.

6-32

Displaying Block Outputs

Displaying Block Outputs

In this section...

“Block Output Example” on page 6-33
“Enabling Port Values Display” on page 6-34
“Port Values Display Options” on page 6-35

Block Output Example

For many blocks, Simulink® can display block outputs as data tips on the
block diagram while a simulation is running.

van der Pol Equation

x1 —>®
Cuf2
Tpo U0 —2-1a - = 1
s 3 ekt 50
n
L Outt
Mu
2
Mux _...|:|
Scope
The wan der Pol Equation o e
iDoubleclckon the *#* for mome info) ’ Double-click
heme for

Simulink Help

To start and stop the simulation, use the "Start/Stop®
sakection in the "Simulation® pull-down menu

Additionally, you can specify whether and when to display block outputs and
the size and format of the output displays and the rate at which Simulink
updates them during a simulation.

6-33

6 Working with Blocks

6-34

Note Port values will not be displayed in subsystems that have direct feed
through for all of its signals. To display port values in subsystems, add a unity
gain block to at least one of the signals.

Enabling Port Values Display

To turn display of port output values on or off, select Port Values from the
Model Editor’s View menu. A menu of display options appears. Select one of
the following display options from the menu:
¢ Show none
Turns port value displaying off.
¢ Show when hovering
Displays output port values for the block under the mouse cursor.
* Toggle when selected
Selecting a block displays its outputs. Reselecting the block turns the
display off.

When using the Simulink version that runs on the Microsoft® Windows®
operating system, you can turn block output display when hovering on or off
from the Model Editor’s toolbar. To do this, select the block output display
button on the toolbar.

- -iBi %]

L =

Click to show/hide block output when hovering

D

Cutd

Displaying Block Outputs

Port Values Display Options

To specify other display options, select Port Values > Options from the
Model Editor’s View menu. The Block Output Display Options dialog

box appears.

vdp - Block Output Display Dptions

—Dizplay optionz

Fant size: [ptz)])I

HEfrESh Interl\'lal [S] L I A I I R R B | [[[I R I I I I R B B |

—Digplay values:
* Show None " Show ‘When Hoverng ¢ Toggle when Selected

—Digplay Format

Flaating paint: I %8.30 vI Fis point [ztored integer): I short "I

To increase the size of the output display text, move the Font size slider to
the right. To increase the rate at which Simulink updates the displays, move

the Refresh interval slider to the left.

6-35

6 Working with Blocks

Controlling and Displaying the Sorted Order

In this section...
“What is Block Sorted Order?” on page 6-36
“How Simulink® Determines the Sorted Order” on page 6-36

“Displaying the Sorted Order” on page 6-38

“Assigning Block Priorities” on page 6-39

What is Block Sorted Order?

The sorted order is an ordering of the blocks in the model that Simulink® uses
as a starting point for determining the order in which to invoke the blocks’
methods (see “Block Methods” on page 2-12) during simulation. Simulink
allows you to display the sorted order for a model and to assign priorities to
blocks that can influence where they appear in the sorted order.

How Simulink® Determines the Sorted Order
Simulink uses the following basic rules to sort the blocks:

¢ Each block must appear in the sorted order ahead any of the blocks whose
direct-feedthrough ports (see “About Direct-Feedthrough Ports” on page
6-37) it drives.

This rule ensures that the direct-feedthrough inputs to blocks will be valid
when block methods that require current inputs are invoked.

¢ Blocks that do not have direct feedthrough inputs can appear
anywhere in the sorted order as long as they precede any blocks whose
direct-feedthrough inputs they drive.

Putting all blocks that do not have direct-feedthrough ports at the head of
the sorted order satisfies this rule. It thus allows Simulink to ignore these
blocks during the sorting process.

The result of applying these rules is a sorted order in which blocks without
direct feedthrough ports appear at the head of the list in no particular order
followed by blocks with direct-feedthrough ports in the order required to
supply valid inputs to the blocks they drive.

6-36

Controlling and Displaying the Sorted Order

During the sorting process, Simulink checks for and flags the occurrence

of algebraic loops, that is, signal loops in which a direct-feedthrough

output of a block is connected directly or indirectly to the corresponding
direct-feedthrough input of the block. Such loops seemingly create a deadlock
condition, because the block needs the value of the direct-feedthrough input
to compute its output.

However, an algebraic loop can represent a set of simultaneous algebraic
equations (hence the name) where the block’s input and output are the
unknowns. Further, these equations can have valid solutions at each time
step. Accordingly, Simulink assumes that loops involving direct-feedthrough
ports do, in fact, represent a solvable set of algebraic equations and attempts
to solve them each time the block’s output is required during a simulation.
For more information, see “Algebraic Loops” on page 2-31.

About Direct-Feedthrough Ports

In order to ensure that the sorted order reflects data dependencies among
blocks, Simulink categorizes a block’s input ports according to the dependency
of the block’s outputs on its inputs. An input port whose current value
determines the current value of one of the block’s outputs is called a
direct-feedthrough port. Examples of blocks that have direct-feedthrough
ports include the Gain, Product, and Sum blocks. Examples of blocks that
have non-direct-feedthrough inputs include the Integrator block (its output is
a function purely of its state), the Constant block (it does not have an input),
and the Memory block (its output is dependent on its input in the previous
time step).

6-37

6 Working with Blocks

6-38

Displaying the Sorted Order

To display the sorted order, select Format > Block Displays > Sorted
Order from the Simulink menu. Selecting this option causes Simulink to
display a notation in the top right corner of each block in a block diagram.

t

1-uu . - 02| xz o] x1
W : " 1= 1=
Fon
Ll Cutl
Ilu
fux - |j|

Scope

The notation for most blocks has the format s:b, where s specifies the index
of the subsystem to whose execution context (see “Conditional Execution
Behavior” on page 4-22) the block belongs and b specifies the block’s position
in the sorted order for that execution context.

The sorted order of a Function-Call Subsystem cannot be determined at

compile time. For these subsystems, Simulink therefore uses either the

notation s:F, if the system has one initiator, where s is the index of the

subsystem that contains the initiator; or the notation M, if the subsystem
has more than one initiator.

A bus-capable block does not execute as a unit, and therefore does not have
a unique sorted order. Such a block displays its sorted order as s:B. See
“Bus-Capable Blocks” on page 9-8 for more information.

A virtual block, such as the Mux block in the preceding figure, exists only
graphically. Virtual blocks do not execute, so they are not part of a model’s
sorted order and do not display any sorted order notation.

Controlling and Displaying the Sorted Order

Assigning Block Priorities

You can assign priorities to nonvirtual blocks or virtual subsystem blocks in
a model (see “Virtual Blocks” on page 6-2). Higher priority blocks appear
before lower priority blocks in the sorted order, though not necessarily before
blocks that have no assigned priority.

You can assign block priorities interactively or programmatically. To set
priorities programmatically, use the command

set_param(b, 'Priority','n')

where b is a block path and n is any valid integer. (Negative numbers and

0 are valid priority values.) The lower the number, the higher the priority;
that is, 2 is higher priority than 3. To set a block’s priority interactively, enter
the priority in the Priority field of the block’s Block Properties dialog box
(see “Block Properties Dialog Box” on page 6-20).

Simulink honors the block priorities that you specify only if they are
consistent with the Simulink block sorting algorithm. If Simulink is unable to
honor a block priority, it displays a Block Priority Violation diagnostic
message (see “Diagnostics Pane: Solver”).

6-39

6 Working with Blocks

Accessing Block Data During Simulation

In this section...
“About Block Run-Time Objects” on page 6-40

“Accessing a Run-Time Object” on page 6-40
“Listening for Method Execution Events” on page 6-41

“Synchronizing Run-Time Objects and Simulink® Execution” on page 6-42

About Block Run-Time Objects

Simulink® provides an application programming interface, called the block
run-time interface, that enables programmatic access to block data, such
as block inputs and outputs, parameters, states, and work vectors, while a
simulation is running. You can use this interface to access block run-time
data from the MATLAB® command line, the Simulink Debugger, and from
Level-2 M-file S-functions (see “Writing S-Functions in M” in the online
Simulink documentation).

Note You can use this interface even when the model is paused or is running
or paused in the debugger.

The block run-time interface consists of a set of Simulink data object classes
(see “Working with Data Objects” on page 10-27) whose instances provide data
about the blocks in a running model. In particular, the interface associates
an instance of Simulink.RunTimeBlock, called the block’s run-time object,
with each nonvirtual block in the running model. A run-time object’s methods
and properties provide access to run-time data about the block’s I/O ports,
parameters, sample times, and states.

Accessing a Run-Time Object

Every nonvirtual block in a running model has a RuntimeObject parameter
whose value, while the simulation is running, is a handle for the blocks’
run-time object. This allows you to use get_param to obtain a block’s run-time
object. For example, the following statement

6-40

Accessing Block Data During Simulation

rto = get_param(gcb, 'RuntimeObject');

returns the run-time object of the currently selected block.

Note Virtual blocks (see “Virtual Blocks” on page 6-2) do not have run-time
objects. Blocks eliminated during model compilation as an optimization also
do not have run-time objects (see “Block reduction”). A run-time object exists
only while the model containing the block is running or paused. If the model
is stopped, get_param returns an empty handle. When you stop or pause a
model, all existing handles for run-time objects become empty.

Listening for Method Execution Events

One application for the block run-time API is to collect diagnostic data at key
points during simulation, such as the value of block states before or after
blocks compute their outputs or derivatives. The block run-time API provides
an event-listener mechanism that facilitates such applications. For more
information, see the Simulink Reference for the add_exec_event_listener
command. For an example of using method execution events, enter

sldemo_msfcn_1ms

at the MATLAB command line. This Simulink model contains the S-function
adapt_1ms.m, which performs a system identification to determine the
coefficients of an FIR filter. The S-function’s PostPropagationSetup method
initializes the block run-time object’s DWork vector such that the second
vector stores the filter coefficients calculated at each time step.

In the Simulink model, double-clicking on the annotation below the S-function
block executes its OpenFcn. This function first opens a figure for plotting the
FIR filter coefficients. It then executes the function add_adapt_coef plot.m
to add a PostOutputs method execution event to the S-function’s block
run-time object using the following lines of code.

% Get the full path to the S-function block
blk = 'sldemo_msfcn_lms/LMS Adaptive';

% Attach the event-listener function to the S-function
h = add_exec_event_listener(blk,

6-41

6 Working with Blocks

'PostOutputs', @plot_adapt_coefs);

The function plot_adapt_coefs.mis registered as an event listener that is
executed after every call to the S-function’s Outputs method. The function
accesses the block run-time object’s DWork vector and plots the filter
coefficients calculated in the Outputs method. The calling syntax used in
plot_adapt_coefs.m follows the standard needed for any listener. The first
input argument is the S-function’s block run-time object, and the second
argument is a structure of event data, as shown below.

function plot_adapt_coefs(block, eventData)

% The figure's handle is stored in the block's UserData
hFig = get_param(block.BlockHandle, 'UserData');
tAxis findobj (hFig, 'Type','axes');

tAxis tAxis(2);
tLines = findobj (tAxis, 'Type','Line');

% The filter coefficients are stored in the block run-time
% object's second DWork vector.
est = block.Dwork(2).Data;

set(tLines(3), 'YData',est);

Synchronizing Run-Time Objects and Simulink®
Execution

Run-time objects can be used at the MATLAB command line to obtain the
value of a block’s output by entering the following commands.

rto = get_param(gchb, 'RuntimeObject')
rto.OutputPort(1).Data

However, the displayed data may not be the block’s true output if the run-time
object is not sychronized with the Simulink execution. Simulink only ensures
the run-time object and Simulink execution are synchronized when the
run-time object is used either within a Level-2 M-file S-function or in an
event listener callback. When called at the MATLAB command line, the
run-time object can return incorrect output data if other blocks in the model
are allowed to share memory.

6-42

Accessing Block Data During Simulation

To ensure the Data field contains the correct block output, turn off the Signal
storage reuse option (see “Signal storage reuse”) on the Optimization pane
in the Configuration Parameters dialog box.

6-43

6 Working with Blocks

6-44

Working with Block
Libraries

About Block Libraries (p. 7-2)

Working with Reference Blocks
(p. 7-3)

Working with Library Links (p. 7-6)

Browsing and Searching Block
Libraries (p. 7-12)

Creating Block Libraries (p. 7-20)

Adding Libraries to the Library
Browser (p. 7-30)

Overview of block libraries.

How to create and manipulate
instances of library blocks in models.

How to display, disable, and break
links between reference blocks and
their library block prototypes.

Using the Library Browser to find
blocks in block libraries.

How to create your own block
libraries.

How to add your own libraries to the
Library Browser.

7 Working with Block Libraries

7-2

About Block Libraries

Libraries are collections of blocks intended to serve as prototypes for creating
instances of block types in models. Simulink® software uses a special type
of model file to store block libraries.

You create instances of block types by dragging and dropping or copying
library blocks into models. When you copy a library block into a model,
Simulink software creates a link between the instance, called a reference
block, and its prototype in the library. The link allows changes in the
prototype to propagate automatically to the instances in a model. Libraries
ensure that your models automatically include the most recent versions of
blocks developed by yourself or others.

Simulink comes with a library of commonly used block types called the
Simulink block library. See “Starting the Simulink® Engine” on page 1-2 for
information on displaying and using this library. Additional libraries are
available from The MathWorks. You can also create your own block libraries
(see “Creating Block Libraries” on page 7-20).

Note Although the Real-Time Workshop® block library is provided with
Simulink to enable model sharing, help for blocks in that library is available
only if you have a Real-Time Workshop license.

Working with Reference Blocks

Working with Reference Blocks

In this section...

“About Reference Blocks” on page 7-3

“Creating a Reference Block” on page 7-3

“Updating a Reference Block” on page 7-4

“Modifying Reference Blocks” on page 7-4

“Finding a Reference Block’s Library Block Prototype” on page 7-5

“Getting Information About Library Blocks Referenced by a Model” on
page 7-5

About Reference Blocks

A reference block is an instance of a block type in a model that contains a link
to a library block that serves as the block type’s prototype. The link consists of
the path of the library block that serves as the instance’s prototype. The link
allows the reference block to update whenever the corresponding prototype in
the library changes (“Updating a Reference Block” on page 7-4). This ensures
that your model always uses the latest version of the block.

Note The data tip for a reference block shows the name of the library block
it references (see “Block Data Tips” on page 6-2).

You can change the values of a reference block’s parameters but you cannot
mask the block or edit its mask. Also, you cannot set callback parameters for
a reference block. If the reference block’s prototype is a subsystem, you can
make nonstructural changes to the contents of the referenced subsystem (see
“Modifying Reference Blocks” on page 7-4).

Creating a Reference Block

To create a reference block in a model or another library:

1 Open your model.

7-3

7 Working with Block Libraries

2 Open the Simulink® Library Browser (see “Opening the Library Browser”
on page 7-12).

3 Use the Library Browser to find the library block that serves as a prototype
of the block you want to create (see “Browsing Block Libraries” on page 7-13
and “Searching Block Libraries” on page 7-17).

4 Drag the library block from the Library Browser’s Library pane and drop
it into your model.

Updating a Reference Block

Simulink updates out-of-date reference blocks in a model or library at these
times:
¢ When the model or library is loaded

¢ When you select Update Diagram from the Edit menu or run the
simulation

® When you use the find_system command

¢ When you query the LinkStatus parameter of a block, using the get_param
command (see “Determining Link Status” on page 7-8)

Note Querying the StaticLinkStatus parameter of a block does not
update any out-of-date reference blocks.

Modifying Reference Blocks

You cannot make structural changes to reference blocks, such as adding or
deleting lines or blocks to the block diagram of a masked subsystem. If you
want to make such changes, you must disable the reference block’s link to its
library prototype (see “Disabling Links to Library Blocks” on page 7-7).

You can, however, change the values of any masked subsystem reference
block parameter that does not alter the block’s structure, e.g., by adding or
deleting lines, blocks, or ports. An example of a nonstructural change is a
change to the value of a mathematical block parameter, such as the Gain
parameter of the Gain block. A link to a library block from a reference block
whose parameter values differ from those of the corresponding library block is

Working with Reference Blocks

called a parameterized link. When saving a model containing a parameterized
link, Simulink saves the changes to the local copy of the subsystem together
with the path to the library copy in the model’s model (.md1l) file. When you
reopen the system, Simulink copies the library subsystem into the loaded
model and applies the saved changes.

Tip To determine whether a reference block’s parameter values differ from
those of its library prototype, open the reference block’s block diagram in an
editor window. The title bar of the editor window displaying the subsystem
displays “parameterized link” if the reference block parameter values differ
from the library block’s parameter values.

Self-Modifying Linked Subsystems

Simulink allows linked subsystems to change their own structural contents
without disabling the link. This allows you to create masked subsystems
that modify their structural contents based on mask parameter dialog box
values. See “Creating Self-Modifying Masks for Library Blocks” on page 17-48
for more information.

Finding a Reference Block’s Library Block Prototype

To find the source library and block linked to a reference block, select the
reference block. Then choose Go To Library Link from the Link Options
submenu of the model window’s Edit or context menu. If the library is open,
Simulink selects and highlights the library block and makes the source
library the active window. If the library is not open, Simulink opens it and
selects the library block.

Getting Information About Library Blocks Referenced
by a Model

Use the 1libinfo command to get information about reference blocks in a
system.

7-5

7 Working with Block Libraries

7-6

Working with Library Links

In this section...

“Displaying Library Links” on page 7-6
“Disabling Links to Library Blocks” on page 7-7
“Determining Link Status” on page 7-8
“Breaking a Link to a Library Block” on page 7-9

“Fixing Unresolved Library Links” on page 7-10

Displaying Library Links
You can configure a model to display an arrow in the bottom left corner of each
block that represents a library link.

/ library link

1
A > I
U 7 =+0.5
Sine Wawe Dizcrets Dizplay
Transfer Fon

{with initial states)

This arrow allows you to tell at a glance whether a block represents a link
to a library block or a local instance of a block. To enable display of library
links, select Library Link Display from the model window’s Format menu
and then select either User (displays only links to user libraries) or All
(displays all links).

The color of the link arrow indicates the status of the link.

Color Status

Black Active link

Grey Inactive link

Red Active and modified

Working with Library Links

Disabling Links to Library Blocks

Simulink allows you to disable the link between a reference block in a model
and the library block that serves as its prototype. Disabling a link allows you
to make structural changes to a subsystem reference block. To disable a link,
select the link, choose Link options from the model window’s Edit or context
menu, then choose Disable link. Simulink displays “disabled link” in the
title bar of a Model Editor window that displays the local copy of a disabled
link to a masked subsystem in a library. To restore a disabled link, choose
Restore link from the Link Options menu.

Note If you attempt to use the Model Editor to make a structural change to
the local copy of an active library link, for example, by editing the subsystem’s
diagram, Simulink offers to disable the link to the subsystem. If you accept,
Simulink disables the link and makes the change. Otherwise, it does not
allow you to make the structural change. Simulink does not prevent you from
using set_param to attempt to make a structural change to an active link.
However, the results of the change are undefined.

Propagating Link Modifications

If you restore a disabled link that has structural changes, Simulink prompts
you to either propagate or discard the changes. If you choose to propagate the
changes, Simulink updates the library version of the subsystem specified

by the restored link with the changes made in the model’s version of that
subsystem. If you choose to discard the changes, Simulink replaces the
version of the subsystem in the model with the version in the library. In either
case, the end result is that the versions of the subsystem in the library and
the model are exactly the same.

If you restore a disabled link to a block with nonstructural changes, Simulink
enables the link without prompting you to propagate or discard the changes.
To see the nonstructural parameter differences between the model’s version of
a library block and the library block itself, choose View changes from the
Link options menu.

If you want to propagate or discard nonstructural changes, select the modified
copy of the library block in the model, choose Link options from the model
window’s Edit or context menu, then choose Propagate/Discard changes.

7 Working with Block Libraries

A dialog box appears that asks whether you want to propagate or discard the
changes. If you elect to propagate the changes, Simulink applies the changes
made to the model’s copy of the library block to the library block itself. If you
elect to discard the changes, Simulink removes the changes from the model’s
copy of the block. In either case, the library and model versions of the block
become the same.

Determining Link Status

All blocks have a LinkStatus parameter and a StaticLinkStatus parameter
that indicate whether the block is a reference block. The parameters can
have these values.

Status Description

none Block is not a reference block.

resolved Link is resolved.

unresolved Link is unresolved.

implicit Block resides in library block and is itself not a link to

a library block. For example, suppose that A is a link
to a subsystem in a library that contains a Gain block.
Further, suppose that you open A and select the Gain
block. Then, get_param(gcb, 'LinkStatus') returns

implicit.
inactive Link is disabled.
restore Restores a broken link to a library block and discards

any changes made to the local copy of the library
block. For example, set_param(gcb, 'LinkStatus',
'restore') replaces the selected block with a link to a
library block of the same type, discarding any changes
in the local copy of the library block. Note that this
parameter is a “write-only” parameter, i.e., it is usable
only with set _param. You cannot use get_param to get
it.

propagate Restores a broken link to a library block and propagates
any changes made to the local copy to the library.

Working with Library Links

Note Using get_param to query a block’s LinkStatus also resolves any
out-of-date block references. It is, therefore, useful when you need to
programmatically update library links in a model. Conversely, querying the
StaticLinkStatus property does not resolve any out-of-date references. You
should query the StaticLinkStatus property when the call to get paramis
used in the callback of a child block querying the link status of its parent.

Breaking a Link to a Library Block

You can break the link between a reference block and its library block to cause
the reference block to become a simple copy of the library block, unlinked to
the library block. Changes to the library block no longer affect the block.
Breaking links to library blocks may enable you to transport a model as a
standalone model, without the libraries.

To break the link between a reference block and its library block, first disable
the block. Then select the block and choose Break Link from the Link
Options menu. You can also break the link between a reference block and its
library block from the command line by changing the value of the LinkStatus
parameter to 'none' using this command:

set_param('refblock', 'LinkStatus', 'none')

You can save a system and break all links between reference blocks and
library blocks using this command:

save_system('sys', 'newname', 'BreakLinks')

7 Working with Block Libraries

7-10

Note Breaking library links in a model does not guarantee that you can run
the model standalone, especially if the model includes blocks from third-party
libraries or optional Simulink blocksets. It is possible that a library block
invokes functions supplied with the library and hence can run only if the
library is installed on the system running the model. Further, breaking a link
can cause a model to fail when you install a new version of the library on a
system. For example, suppose a block invokes a function that is supplied
with the library. Now suppose that a new version of the library eliminates
the function. Running a model with an unlinked copy of the block results in
invocation of a now nonexistent function, causing the simulation to fail. To
avoid such problems, you should generally avoid breaking links to third-party
libraries and optional Simulink blocksets.

Fixing Unresolved Library Links

If Simulink is unable to find either the library block or the source library on
your MATLAB® path when it attempts to update the reference block, the link
becomes unresolved. Simulink issues an error message and displays these
blocks using red dashed lines. The error message is

Failed to find block "source-block-name"
in library "source-library-name"
referenced by block
"reference-block-path".

The unresolved reference block appears like this (colored red).

= Bad Link f

F.Teference Block Hame

To fix a bad link, you must do one of the following:

¢ Delete the unlinked reference block and copy the library block back into
your model.

¢ Add the directory that contains the required library to the MATLAB path
and select Update Diagram from the Edit menu.

Working with Library Links

® Double-click the unlinked reference block to open its dialog box (see the
Bad Link block reference page). On the dialog box that appears, correct the
pathname in the Source block field and click OK.

7-11

7 Working with Block Libraries

7-12

Browsing and Searching Block Libraries

In this section...

“About the Simulink® Library Browser” on page 7-12
“Opening the Library Browser” on page 7-12
“Browsing Block Libraries” on page 7-13

“Searching Block Libraries” on page 7-17

“Opening a Library” on page 7-19

“Creating and Opening Models” on page 7-19

“Copying Blocks” on page 7-19

About the Simulink® Library Browser

The Simulink® Library Browser (see “Library Browser”) allows you to browse
and search the block libraries installed on your system. In particular, you can
use the Library Browser to determine at a glance what libraries are installed
on your system, view their contents, and search for library blocks by name.
You can also use the Library Browser to copy blocks from block libraries into
your models.

Tip You can use the Library Browser to browse libraries that you create
as well as standard Simulink and Simulink blockset libraries. See “Adding
Libraries to the Library Browser” on page 7-30 for more information.

Opening the Library Browser

You can open the Library Browser by
¢ clicking the Library Browser button
&

in the toolbar of the MATLAB® desktop or a Simulink model editor window

or

Browsing and Searching Block Libraries

® entering

simulink

at the MATLAB command line.

Tip To keep the Library Browser above all other windows on your desktop,
select the Pushpin button on the browser’s toolbar.

Browsing Block Libraries

¢ “Determining What Block Libraries Are Installed on your System” on page
7-13

¢ “Viewing the Contents of a Block Library” on page 7-15

® “Getting Help for a Library Block” on page 7-17

Determining What Block Libraries Are Installed on your System
To determine what block libraries are installed on your system, open the
Simulink Library Browser (see “Opening the Library Browser” on page 7-12).
The Library Browser’s Libraries pane displays a tree-structure directory of
the block libraries installed on your system.

7-13

7 Working with Block Libraries

7-14

Libraries pane

ol

File Edit %ieWw Help

J_I O = -|=l\ J_IIEnter search term | #4

Libraries \ Library: Simulink/Sinkz | Search Fesults: [none] I

=8 J Simulink. -
- Commanly \sed Blocks — -
- Continuous Display

- Dizcontinuities
- Digcrete

-~ Logic and Bit Dperations] Floating Scope
- Lookup Tables b
- b ath O perations =
- bodel Verification
- Modebwide Utilties (D O
- Ports & Subzyztems

- Signal Attributes
- Signal Routing] Scope
- Sinkg
- Sources i <
- [Jger-Defined Functions | |
E] [3

G- &dditional b ath & Discrete LI

Black Dezcrption x

Outl: Provide an output port for & subzestem or model. The 'Output when dizabled' and ‘Initial output’
parameters only apply to conditionally executed subsystems. When a conditionally executed subsystem
iz dizabled, the cutput iz either held at itz last value aor zet ta the ‘hitial output’.

Browsing and Searching Block Libraries

Tip
e Ifthe directory is too big to fit into the Libraries pane, the pane displays
scroll bars. Use the scroll bars to move off-screen libraries into view.

* You can expand or collapse directory entries to show or hide sublibraries.
To expand or collapse an entry, click the entry’s +/- button.

® (Click a library’s name in the directory to display the library’s contents in
the Library Browser’s Library pane.

Viewing the Contents of a Block Library

To view the contents of a block library, select the library’s entry in the Library
Browser’s Libraries pane. The Library Browser displays the contents in
its Library pane.

7-15

7 Working with Block Libraries

Contents of the Simulink
Commonly Used Blocks

library

5] Simulink Library Bro

=10/ x|

File Edit “ew Help
/
JJ O = + “IEnters?ﬂch term AR\,
Libraries / ibrary: Simn\ink/Commonly Uzed Blocks I 4| »
EIE Sirnulink / -
& _ommonly Uszed Blocks -
- Continuous } Bz \reator

- Dlizcontinuities

- Dlizcrete

- Logic and Bit Operations
-~ Lookup Tables

- bath Operationz

- Model Yerification
- Modeltwide Utilities
- Portz & Subsystems
- Signal Attributes

- Signal Routing

- Sinkg

- Sources

- Jzer-Defined Functions

=

=l

I P RS Y I L R TR P

{ Buz Select

1 b Congtant

'El [rata Tepe Conversion

o

Block Description

Bus Creator: This block creates a bus signal from itz inputs.

7-16

Browsing and Searching Block Libraries

Getting Help for a Library Block

To get help for a library block displayed in the Library Browser’s Library
pane, select the block and then select Help from the block’s context
(right-click) menu or the Library Browser’s Help menu.

Tip The Library Browser’s Block Description pane displays a brief
description of the selected block’s purpose and usage.

Searching Block Libraries
To search for library blocks whose names contain a specified character string:

1 Enter the character string in the text field of the Library Browser’s Search
tool.

2 Uncheck, if necessary, all the options on the Search tool’s options menu.

Note The options are unchecked by default.

3 Select the tool’s Search button.
The Search tool finds the blocks whose names contain a string that matches,

without regard to character case, the specified string and displays the results
in the Library Browser’s Found pane.

7-17

7 Working with Block Libraries

Search text

LC] Simulink Library Browser

Search button

Click to display

search options menu

/ =10l x|

Search results

File Edit “ew Hels
N\ N .
Dz = ||[can" =144
Librares linkAb ath O perations Found: 'Gair' I 4| F
= gl Simulink -

~ Commonly Uzed Blocks
- Continuous

- Dizcontinuities

- Dizcrete

- Logic and Bit Operations
- Lookup T ables

- M ath Operations

- Model Yerification

- Modelwide Utilities

- Parts & Subzpstems

- Signal Attribukes

hide Sirnulink,

>> Gain
>> Gain

1 b Slder Gain

jee

- Sighal Routing
- Ginla hide A8Gzpace Blockset .
- Sources | | |J
- zer-Defined Functions 4 -
(e LS P v I IS Y PR TR j
Block Deszcription *
Gain: Element-wize gain (v = K. *u] or matriz gain [y = K50 ary = 09k
Matches for 'Gain' 4 blocksets 0 subsystems 7 blocks g

Click to hide
search results

/

7-18

Tip Use the Search tool’s options menu to find blocks whose names match
character case, whole words, or MATLAB regular expressions.

Browsing and Searching Block Libraries

Opening a Library

To open a library, right-click the library’s entry in the browser. Simulink
displays an Open Library button. Select the Open Library button to
open the library.

Creating and Opening Models

To create a model, select the New button on the Library Browser’s toolbar. To
open an existing model, select the Open button on the toolbar.

Copying Blocks

To copy a block from the Library Browser into a model, select the block in the
browser, drag the selected block into the model window, and drop it where
you want to create the copy.

7-19

7 Working with Block Libraries

Creating Block Libraries

In this section...

“Creating a Library” on page 7-20
“Creating a Sublibrary” on page 7-21
“Modifying a Library” on page 7-21
“Locking Libraries” on page 7-22

“Making Backward-Compatible Changes to Libraries” on page 7-22

Creating a Library

You can create your own block library and add it to the Simulink® Library
Browser (see “Adding Libraries to the Library Browser” on page 7-30).

Tip If your library contains many blocks, consider grouping the blocks into a
hierarchy of sublibraries (see “Creating a Sublibrary” on page 7-21).

To create a library:

1 Select Library from the New submenu of the File menu.

Simulink creates a model (*.md1) file for storing the new library and
displays the file in a new model editor window.

Tip You can also use the new_system command to create the library and
the open_system command to open the new library.

2 Drag blocks from models or other libraries into the new library.

7-20

Creating Block Libraries

Note If you want to be able to create links in models to a block in the
library, you must provide a mask (see Chapter 17, “Creating Block Masks”)
for the block. You can also provide a mask for a subsystem in a library but
you do not need to do so in order to create links to it in models.

3 Save the library’s model file under a new name.

Creating a Sublibrary

Creating a sublibrary entails inserting a reference in the model (.md1) file of
one library to the model file of another library. The referenced file is called a
sublibrary of the parent (i.e., referencing) library. The sublibrary is said to be
included by reference in the parent library.

To include a library in another library as a sublibrary:

1 Open the parent library.

2 Unlock the parent library (see “Modifying a Library” on page 7-21).
3 Add a Subsystem block to the parent library.

4 Delete the subsystem’s default input and output ports.

5 Create a mask for the subsystem that displays text or an image that
conveys the sublibrary’s purpose.

6 Set the subsystem’s OpenFcn parameter to the name of the sublibrary’s
model file.

7 Save the parent library.

Modifying a Library
When you open a library, it is automatically locked and you cannot modify its
contents. To unlock the library, select Unlock Library from the Edit menu.

Closing the library window locks the library.

7-21

7 Working with Block Libraries

7-22

Locking Libraries

To lock a block library, save and close the library or set its Lock parameter to
'on' at the MATLAB® command line, using the set_param command. Locking
a library prevents a user from inadvertently modifying a library, for example,
by moving a block in the library or adding or deleting a block from the library.
If you attempt to modify a locked library, Simulink displays a dialog box that
allows you to unlock the library and make the change. You must then relock
the library from the MATLAB command line to prevent further changes.

Making Backward-Compatible Changes to Libraries

Simulink provides the following features to facilitate making changes to
library blocks without invalidating models that use the library blocks.

Forwarding Tables

Library forwarding tables enable Simulink to update models to reflect
changes in the names or locations of the library blocks that they reference.
For example, suppose that you rename a block in a library. You can use a
forwarding table for that library to enable Simulink to update models that
reference the block under its old name to reference it under its new name.

Simulink allows you to associate a forwarding table with any library. The
forwarding table for a library specifies the old locations and new locations of
blocks that have moved within the library or to another library. You associate
a forwarding table with a library by setting its ForwardingTable parameter to
a cell array of two-element cell arrays, each of which specifies the old and new
path of a block that has moved. For example, the following command creates a
forwarding table and assigns it to a library named Lib1.

set_param('Lib1', 'ForwardingTable', {{'Lib1/A', 'Lib2/A'}
{'Lib1/B', 'Lib1/C'}});

The forwarding table specifies that block A has moved from Lib1 to Lib2. and
that block B is now named C. Suppose that you open a model that contains
links to Lib1/A and Lib1/B. Simulink updates the link to Lib1/A to refer

to Lib2/A and the link to Lib1/B to refer to Lib1/C. The changes become
permanent when you subsequently save the model.

Creating Block Libraries

Creating Aliases for Mask Parameters

Simulink lets you create aliases, i.e., alternate names, for a mask’s
parameters. A model can then refer to the mask parameter by either

its name or its alias. This allows you to change the name of a mask
parameter in a library block without having to recreate links to the block in
existing models (see “Example: Using Mask Parameter Aliases to Create
Backward-Compatible Parameter Name Changes” on page 7-23).

To create aliases for a masked block’s mask parameters, use the set_param
command to set the block’s MaskVarAliases parameter to a cell array that
specifies the names of the aliases in the same order as the mask names
appear in the block’s MaskVariables parameter.

Example: Using Mask Parameter Aliases to Create
Backward-Compatible Parameter Name Changes. The following
example illustrates the use of mask parameter aliases to create
backward-compatible parameter name changes.

1 Create a library named mymd1.

2 Create the masked subsystem described in “Masked Subsystem Example”
on page 17-6 in mymdl.

3 Name the masked subsystem Line.

4 Set the masked subsystem’s annotation property (see “Block Annotation
Pane” on page 6-23) to display the value of its m and b parameters, i.e., to

m = %<m>
b = %

The library appears as follows:

7-23

7 Working with Block Libraries

[ZJvLibrary: mylib — O] x|

File Edit WView Format Help

L EEHS| & =R

/}

Line
m = 1
b=0

Ready|100% IUnlocked i

5 Save mylib.

6 Create a model named mymd1l.

7 Create an instance of the Line block in mymd1l.

8 Rename the instance LineA.

9 Change the value of LineA’s m parameter to -1.5.
10 Change the value of LineA’s b parameter to 3.

11 Set LineA’s annotation property to display the values of its m and b
parameters.

7-24

Creating Block Libraries

o x|

File Edit View Simulation Format Tools Help

DeHES| t 2R (= 42

Clodk

Scope

Fl100% | | [FixedStepDiscrete ¢

12 Configure mymdl to use a fixed-step, discrete solver with a 0.1-s step size.
13 Save mymdl.
14 Simulate mymd1.
Note that the model simulates without error.
15 Close mymdl.
16 Unlock mylib.
17 Rename the m parameter of the Line block in mylib to slope.
18 Rename Line’s b parameter to intercept.

19 Change Line’s mask icon and annotation properties to reflect the parameter
name changes.

7-25

7 Working with Block Libraries

7-26

=] Library: mylib O] x|

File Edit WView Format Help

L EHS| & 2R

/}

Lins
shope =1
intercapt =0

Ready|100% IUnlocked i

20 Save mylib.

21 Reopen mymdl.

File Edit Wew Simulaton Format Tools

Help

=10 |

D eHES| t BB =4 2]

@—»/H.D
Clodk

LineA Scope
m = FFF
b="777?
Fl100% [FixedStepDiscrete

Creating Block Libraries

Note that LineA’s icon has reverted to the appearance of its library master
(i.e., mylib/Line) and that its annotation displays question marks for the
values of m and b. These changes reflect the parameter name changes in
the library block . In particular, Simulink cannot find any parameters
named m and b in the library block and hence does not know what to do
with the instance values for those parameters. As a result, LineA reverts
to the default values for the slope and intercept parameters, thereby
inadvertently changing the behavior of the model. The following steps show
how to use parameter aliases to avoid this inadvertent change of behavior.

22 Close mymdl.

23 Unlock mylib.

24 Select the Line block in mylib.

25 Execute the following command at the MATLAB command line.

set_param(gcb, 'MaskVarAliases',{'m', 'b'})

This specifies that m and b are aliases for the Line block’s slope and
intercept parameters.

26 Reopen mymdl.

7-27

7 Working with Block Libraries

7-28

File Edit Wiew Simulaton Format Tools

=101 x|

Help

D eHS| BRS¢ 22

Clodk

LineA
m=777

b=T7F7

Scope

Fl100% | |

[FixedStepDiscrete

Note that LineA’s appearance now reflects the value of the slope parameter
under its original name, i.e., m. This is because when Simulink opened the
model it found that m is an alias for slope and assigned the value of m stored
in the model file to LineA’s slope parameter.

27 Change LineA’s block annotation property to reflect LineA’s parameter

name changes, i.e., replace

m = %<m>
b = %
with

m = %<slope>
%s<intercept>

(o
1l

LineA now appears as follows.

Creating Block Libraries

=101 x|

File Edit Wiew Simulaton Format Tools Help

D eHS| BRS¢ 22

Clodk
: LineA Scope
m=23
b=-1.5
Fl100% | | [FixedStepDiscrete

Note that LineA’s annotation shows that, thanks to parameter aliasing,
Simulink has correctly applied the parameter values stored for LineA in
mymd1’s model file to the block’s renamed parameters.

7-29

7 Working with Block Libraries

7-30

Adding Libraries to the Library Browser

To cause your own top-level library (and its sublibraries) to appear in the
Simulink® Library Browser:

Create a directory in the MATLAB® path for the top-level library and its
sublibraries.

Each top-level library that you want to appear in the Library Browser must
be stored in its own directory on the MATLAB path. In other words, two
top-level libraries cannot exist in the same directory.

Create or copy the top-level library and its sublibraries into its directory.

The directory for each top-level library to be displayed in the Library
Browser must contain a file named slblocks.m that describes the library.
The easiest way for you to create such a file is to use an existing slblocks.m
file as a template and edit it to describe your library. The next two steps
direct you to perform this task.

Create a copy of the matlabroot/toolbox/simulink/blocks/slblocks.m
file in the library’s directory.

The file that you have copied is the slblocks.m file for the standard
Simulink libraries.

Edit the file as necessary to specify the name, open function, mask, and
structure of your library.

The comments in the slblocks.m file explain how to specify the information
about your library that the Library Browser needs.

Sample slblocks.m file

The following s1lblocks.m file describes a custom block library named “My
Library.”

function blkStruct = slblocks

%SLBLOCKS Defines a block library.

°

% Library's name. The name appears in the Library Browser's

Adding Libraries to the Library Browser

% contents pane.
blkStruct.Name = ['My"' sprintf('\n') 'Library'];

% The function that will be called when the user double-clicks on

% the library's name. ;
blkStruct.OpenFcn = 'mylib’;
% The argument to be set as the Mask Display for the subsystem. You
% may comment this line out if no specific mask is desired.
% Example: blkStruct.MaskDisplay =
'plot([0:2*pi],sin([0:2%pil));";
% No display for now.
% blkStruct.MaskDisplay = '';
% End of blocks
To find additional examples of slblocks.m files on your system, enter

which('slblocks.m', '-all')

at the MATLAB command prompt.

7-31

7 Working with Block Libraries

7-32

Working with Signals

Signal Basics (p. 8-3) Explores key signal concepts,
including signal data types, virtual
signals, signal dimensions, and
signal properties.

Validating Signal Connections How to detect signal compatibility

(p. 8-17) errors before simulating a model.

Displaying Signal Sources and How to identify a signal’s source or

Destinations (p. 8-18) destination blocks.

Determining Output Signal Explains the rules that determine

Dimensions (p. 8-21) the dimensions of signals that blocks
output.

Checking Signal Ranges (p. 8-26) How to perform signal range
checking during simulation.

Introducing the Signal and Scope Describes the Signal and Scope

Manager (p. 8-33) Manager

Using the Signal and Scope Manager Shows how to connect viewers and
(p. 8-39) generators

The Signal Selector (p. 8-44) How to use the Signal Selector to

connect signal generators to block
inputs and block outputs to signal

viewers.

Logging Signals (p. 8-49) How to save signal values to
the MATLAB® workspace during
simulation.

Initializing Signals and Discrete How to specify a signal or state’s

States (p. 8-62) initial value.

8 Working with Signals

Working with Test Points (p. 8-70)

Displaying Signal Properties
(p. 8-73)

Working with Signal Groups (p. 8-77)

How to ensure the visibility of a
model’s signals.

How to display signal properties on
a block diagram.

How to create and use
interchangeable groups of signals,
for example, to test a model.

Signal Basics

Signal Basics

In this section...

“About Signals” on page 8-3
“Creating Signals” on page 8-4
“Naming Signals” on page 8-4
“Displaying Signal Values” on page 8-6
“Signal Line Styles” on page 8-7
“Signal Labels” on page 8-7
“Signal Data Types” on page 8-9
“Signal Dimensions” on page 8-9
“Complex Signals” on page 8-12
“Virtual Signals” on page 8-13
“Control Signals” on page 8-15

“Signal Glossary” on page 8-16

About Signals

The term signal refers to a time varying quantity that has values at all
points in time. You can specify a wide range of signal attributes, including
signal name, data type (e.g., 8-bit, 16-bit, or 32-bit integer), numeric type
(real or complex), and dimensionality (one-dimensional, two-dimensional, or
multidimensional array). Many blocks can accept or output signals of any
data or numeric type and dimensionality. Others impose restrictions on the
attributes of the signals they can handle.

Simulink® defines signals as the outputs of dynamic systems represented by
blocks in a Simulink diagram and by the diagram itself. The lines in a block
diagram represent mathematical relationships among the signals defined by
the block diagram. For example, a line connecting the output of block A to
the input of block B indicates that the signal output by B depends on the
signal output by A.

8 Working with Signals

On the block diagram, signals are represented with lines that have an
arrowhead. The source of the signal corresponds to the block that writes to the
signal during evaluation of its block methods (equations). The destinations of
the signal are blocks that read the signal during the evaluation of the block’s
methods (equations).

Note It is tempting but misleading to think of Simulink signals as traveling
along the lines that connect blocks the way electrical signals travel along a
telephone wire. This analogy is misleading because it suggests that a block
diagram represents physical connections between blocks, which is not the
case. Simulink signals are mathematical, not physical, entities and the lines
in a block diagram represent mathematical, not physical, relationships among
blocks.

Composite Signals

Simulink provides two capabilities, muxes and buses, that you can use to
group multiple signals into a composite signal, route the composite signal
from block to block, and extract constituent signals from the composite
where needed. Composite signals have no functional effect, but can simplify
the appearance of a model when many parallel signals exist. See “About
Composite Signals” on page 9-2 for details.

Creating Signals

You can create signals by creating source blocks in your model. For example,
you can create a signal that varies sinusoidally with time by dragging an
instance of the Sine block from the Simulink Sources library into the model.
See “Sources” for information on blocks that you can use to create signals in a
model. You can also use the Signal & Scope Manager to create signals in your
model without using blocks. See “Introducing the Signal and Scope Manager”
on page 8-33 for more information.

Naming Signals
You can give any signal a name. The syntactic requirements for a signal

name vary depending on how the name will be used. The three most common
cases are:

Signal Basics

® The signal is named so that it can be resolved to a Simulink.Signal object.
(See Simulink.Signal.) The signal name must then be a legal MATLAB®
identifier. Such an identifier starts with an alphabetic character, followed
by at most 63 alphanumeric or underscore characters.

¢ The signal has a name so the signal can be identified and referenced by
name in a data log. (See “Logging Signals” on page 8-49.) Such a signal
name can contain space and newline characters. These can improve
readability but sometimes require special handling techniques, as described
in “Handling Spaces and Newlines in Logged Signal Names” on page 8-58.

® The signal name exists only to clarify the diagram, and has no
computational significance. Such a signal name can contain anything and
never needs special handling.

To avoid any doubt about whether a signal name will serve all present
and future purposes, make every signal name a legal MATLAB identifier.
Otherwise, unexpected requirements may require going back and changing
signal names to follow a more restrictive syntax.

Assigning a Signal Name

To assign a name to a signal, double-click the signal. An edit box appears next
to the signal near where you double-clicked. Enter the desired name, then
click somewhere outside the edit box. The signal now has the specified name,
and a label showing that name appears at the location where you entered

it. For a named multibranched signal, you can put a duplicate label on any
branch of the signal by double-clicking the branch.

Another way to name a signal is to right-click the signal, choose Signal
Properties from the Context menu, enter a name in the Signal Name field,
then click OK or Apply. A label showing the name then appears on every
branch of the signal. See “Signal Properties Dialog Box” for more information.

You can also use the API to set the name parameter of the port or line that
represents the signal:

p = get_param(gcb, 'PortHandles')
1 = get_param(p.Inport, 'Line')
set_param(l, 'Name', 's9')

8 Working with Signals

8-6

Changing a Signal Name

To change the name of a signal, click to set the cursor in any label that shows
the name, than change the text as needed; or edit the name in the Signal
Properties > Signal Name field. All labels automatically update to reflect
the change.

To change the location of a label that displays a signal name, drag it with the
mouse. You cannot drag a label away from its signal, but only to a different
location adjacent to the signal.

Deleting a Signal Name

To delete a signal’s name, leaving it nameless, delete all characters in the
name, in any label on the signal or in the Signal Properties > Signal
Name field. To delete a label without deleting the signal name, click near the
edge of the label to select its surrounding box, then press Delete. The label
disappears, but the signal name itself is unaffected.

Displaying Signal Values

As with creating signals, you can use either blocks or the Signal & Scope
Manager to display the values of signals during a simulation. For example,
you can use either the Scope block or the Signal & Scope Manager to graph
time-varying signals on an oscilloscope-like display during simulation. See
“Sinks” in the Simulink block reference for information on blocks that you
can use to display signals in a model.

Signal Basics

Signal Line Styles

Simulink uses a variety of line styles to display different types of signals in the
model window. Assorted line styles help you to differentiate the signal types
in Simulink diagrams. The signal types and their line styles are as follows:

Signal Type | Line Style | Description
Scalar and I S.imulinl’i uses a thin, solid line t(? represent a
Nonscalar diagram’s scalar and nonscalar signals.
Nonscalar When the Wide nonscalar lines option is
—
enabled, Simulink uses a thick, solid line to
represent a diagram’s nonscalar signals. See
also “Using Muxes” on page 9-3.
Control e Simulink uses a thin, dash-dot line to

represent a diagram’s control signals.

Virtual Bus

Simulink uses a triple line with a solid core
to represent a diagram’s virtual signal buses.
See “Using Buses” on page 9-5.

Nonvirtual
Bus

Simulink uses a triple line with a dotted core
to represent a diagram’s nonvirtual signal
buses. See “Using Buses” on page 9-5.

Other than using the Wide nonscalar lines option to display nonscalar
signals as thick, solid lines, you cannot customize or control the line style with
which Simulink displays signals. See “Wide Nonscalar Lines” on page 8-76 for
more information about this option.

Note As you construct a block diagram, Simulink uses a thin, solid line to
represent all signal types. The lines are then redrawn using the specified line
styles only after you update or start simulation of the block diagram.

Signal Labels
A signal label is text that appears next to the line that represents a signal
that has a name. The signal label displays the signal’s name. In addition, if
the signal is a virtual signal (see “Virtual Signals” on page 8-13) and its Show

8 Working with Signals

propagated signals property is on (see “Show propagated signals”), the label
displays the names of the signals that make up the virtual signal.

Simulink creates a label for a signal when you assign it a name in the “Signal
Properties Dialog Box”. You can change the signal’s name by editing its label
on the block diagram. To edit the label, left-click the label. Simulink replaces
the label with an edit field. Edit the name in the edit field, then click outside
the label to apply the change.

A signal’s label displays the signal’s name. A virtual signal’s label optionally
displays the signals it represents in angle brackets. You can edit a signal’s
label, thereby changing the signal’s name.

To create a signal label (and thereby name the signal), double-click the line
that represents the signal. The text cursor appears. Enter the name and click
anywhere outside the label to exit label editing mode.

Note When you create a signal label, take care to double-click the line. If
you click in an unoccupied area close to the line, you will create a model
annotation instead.

Labels can appear above or below horizontal lines or line segments, and left or
right of vertical lines or line segments. Labels can appear at either end, at
the center, or in any combination of these locations.

To move a signal label, drag the label to a new location on the line. When you
release the mouse button, the label fixes its position near the line.

To copy a signal label, hold down the Ctrl key while dragging the label to
another location on the line. When you release the mouse button, the label
appears in both the original and the new locations.

To edit an existing signal label, select it:

® To replace the label, click the label, double-click or drag the cursor to select
the entire label, then enter the new label.

Signal Basics

® To insert characters, click between two characters to position the insertion
point, then insert text.

* To replace characters, drag the mouse to select a range of text to replace,
then enter the new text.

To delete all occurrences of a signal label, delete all the characters in the
label. When you click outside the label, the labels are deleted. To delete a
single occurrence of the label, hold down the Shift key while you select the
label, then press the Delete or Backspace key.

To change the font of a signal label, select the signal, choose Font from the
Format menu, then select a font from the Set Font dialog box.

Signal Data Types

Data type refers to the format used to represent signal values internally. The
data type of Simulink signals is double by default. However, you can create

signals of other data types. Simulink supports the same range of data types as
MATLAB. See “Working with Data Types” on page 10-2 for more information.

Signal Dimensions

Simulink blocks can output one-, two-, or multidimensional signals. A
one-dimensional (1-D) signal consists of a stream of one-dimensional arrays
output at a frequency of one array (vector) per simulation time step. A
two-dimensional (2-D) signal consists of a stream of two-dimensional arrays
output at a frequency of one 2-D array (matrix) per block sample time. A
multidimensional signal consists of a stream of multidimensional (2 or more
dimensions) arrays output at a frequency of one array per block sample time
(see “Multidimensional Arrays” in the MATLAB Programming Fundamentals
documentation for information on multidimensional arrays). The Simulink
user interface and documentation generally refer to 1-D signals as vectors
and 2-D or multidimensional signals as matrices. A one-element array is
frequently referred to as a scalar. A row vector is a 2-D array that has one
row. A column vector is a 2-D array that has one column.

Only the following Simulink blocks support multidimensional signals.
Simulink supports signals with up to 32 dimensions. Do not use signals with
more than 32 dimensions.

8 Working with Signals

® Abs

® Assignment

® Bitwise Operator

® Bus Assignment

¢ Bus Creator

® Bus Selector

¢ Compare to Constant

® Compare to Zero

® Complex to Magnitude-Angle
® Complex to Real-Imag

¢ Concatenate

¢ Constant

® Data Store Memory

® Data Store Read

® Data Store Write

¢ Data Type Conversion

* Embedded MATLAB Function
¢ Environment Controller

* From

* From Workspace

® Gain (only if the Multiplication parameter specifies Element-wise (K. *u))
* Goto

* Ground

o IC

¢ Inport

e Level-2 M-File S-Function

® Logical Operator

8-10

Signal Basics

Magnitude-Angle to Complex
Manual Switch

Math Function (no multidimensional signal support for the transpose
and hermitian functions)

Memory

Merge

MinMax

Model

Multiport Switch
Outport

Product, Product of Elements — only if the Multiplication parameter
specifies Element-wise(.*)

Probe

Random Number
Rate Transition
Real-Imag to Complex
Relational Operator
Reshape

Scope, Floating Scope
Selector

S-Function

Signal Conversion
Signal Specification
Slider Gain

Squeeze

Subsystem, Atomic Subsystem, CodeReuse Subsystem

Add, Subtract, Sum, Sum of Elements — along specified dimension

8-11

8 Working with Signals

8-12

* Switch

¢ Terminator

® To Workspace

® Trigonometric Function

¢ Unary Minus

¢ Uniform Random Number

¢ Unit Delay

e Width

Simulink blocks vary in the dimensionality of the signals they can accept or
output. Some blocks can accept or output signals of any dimensions. Some
can accept or output only scalar or vector signals. To determine the signal
dimensionality of a particular block, see the block’s description in Blocks —
Alphabetical List in the online Simulink reference. See “Determining Output

Signal Dimensions” on page 8-21 for information on what determines the
dimensions of output signals for blocks that can output nonscalar signals.

Note Simulink does not support dynamic signal dimensions during
simulation. That is, the size of a signal must remain constant while the
simulation executes. You can alter a signal’s size only after terminating the
simulation.

Complex Signals

The values of Simulink signals can be complex numbers. A signal whose
values are complex numbers is called a complex signal. You can introduce a
complex-valued signal into a model in the following ways:

® Load complex-valued signal data from the MATLAB workspace into the
model via a root-level Inport block.

® Create a Constant block in your model and set its value to a complex
number.

Signal Basics

® (Create real signals corresponding to the real and imaginary parts of a
complex signal, then combine the parts into a complex signal, using the
Real-Imag to Complex conversion block.

You can manipulate complex signals via blocks that accept them. If you are
not sure whether a block accepts complex signals, see the documentation for
the block in Blocks — Alphabetical List in the online Simulink reference.

Virtual Signals

A virtual signal is a signal that represents another signal graphically. Some
blocks, such as Bus Creator, Inport, and Outport blocks, generate virtual
signals either exclusively or optionally. Virtual signals are purely graphical
entities; they have no mathematical or physical significance. Simulink ignores
them when simulating a model, and they do not exist in generated code.

Whenever you update or run a model, Simulink determines the nonvirtual
signal(s) represented by the model’s virtual signal(s), using a procedure
known as signal propagation. When running the model, Simulink uses the
corresponding nonvirtual signal(s), determined via signal propagation, to
drive the blocks to which the virtual signals are connected.

Consider, for example, the following model.

1 . [9]
=1 gLy ’{ =4 ™
cl [EX N Di=splayl
=3
2 -
z
= sl ’{ =4
rz & Di=splays

The signals driving Gain blocks G1 and G2 are virtual signals corresponding
to signals s2 and s1, respectively. Simulink determines this automatically
whenever you update or simulate the model.

8-13

8 Working with Signals

8-14

Displaying the Nonvirtual Components of Virtual Signals

The Show propagated signals option (see “Signal Properties Dialog Box”)
displays the nonvirtual signals represented by virtual signals in the labels
of the virtual signals.

)
L sl 2 s4 >
C1 Gain Display
s3<sl, s2>
2 3
s2 3 = g
c2 Gainl Displayl

When you change the name of a nonvirtual signal, Simulink immediately
updates the labels of all virtual signals that represent the nonvirtual signal
and whose Show propagated signals is on, except if the path from the
nonvirtual signal to the virtual signal includes an unresolved reference to

a library block. In such cases, to avoid time-consuming library reference
resolutions while you are editing a block diagram, Simulink defers updating
the virtual signal’s label until you update the model’s block diagram either
directly (e.g., by pressing Ctrl+D) or by simulating the model.

Note Virtual signals can represent virtual as well as nonvirtual signals. For
example, you can use a Bus Creator block to combine multiple virtual and
nonvirtual signals into a single virtual signal. If during signal propagation,
Simulink determines that a component of a virtual signal is itself virtual,
Simulink uses signal propagation to determine the nonvirtual components of
the virtual component. This process continues until Simulink has determined
all nonvirtual components of a virtual signal.

To display the signal(s) represented by a virtual signal, click the signal’s label
and enter an angle bracket (<) after the signal’s name. (If the signal has no
name, simply enter the angle bracket.) Click anywhere outside the signal’s
label. Simulink exits label editing mode and displays the signals represented
by the virtual signal in brackets in the label.

Signal Basics

You can also display the signals represented by a virtual signal by selecting
the Show Propagated Signals option on the signal’s property dialog (see
“Signal Properties Dialog Box” in the online Simulink documentation).

Control Signals

A control signal is a signal used by one block to initiate execution of another
block, e.g., a function-call or action subsystem. When you update or start
simulation of a block diagram, Simulink uses a dash-dot pattern to redraw
lines representing the diagram’s control signals as illustrated in the following

example.
pos .
Control signal
2l (e8]
it}
|/
I,F\ ol it =0y p— - — - - l:l
U T ks — - — - —
Sine Wave i ¢' Scope
aka]]
=1 i

neg

8-15

8 Working with Signals

8-16

Signal Glossary

The following table summarizes the terminology used to describe signals in
the Simulink user interface and documentation.

Term

Meaning

Complex signal

Signal whose values are complex numbers.

Data type Format used to represent signal values internally.
See “Working with Data Types” on page 10-2 for
more information.

Matrix Two-dimensional signal array.

Real signal

Signal whose values are real (as opposed to
complex) numbers.

Scalar

One-element array.

Signal bus

A composite signal made up of other signals,
including other composite signals. You can use
Bus Creator and Inport blocks to create signal
buses. See “Using Buses” on page 9-5.

Signal propagation

Process used by Simulink to determine attributes
of signals and blocks, such as data types, labels,
sample time, dimensionality, and so on, that are
determined by connectivity.

Size

Number of elements that a signal contains. The
size of a matrix (2-D) signal is generally expressed
as M-by-N, where M is the number of columns and
N is the number of rows making up the signal.

Test point

A signal that must be accessible during simulation.
See “Working with Test Points” on page 8-70 for
more information.

Vector

One-dimensional signal array.

Virtual signal

Signal that represents another signal or set of
signals.

Width

Size of a vector signal.

Validating Signal Connections

Validating Signal Connections

Many Simulink® blocks have limitations on the types of signals they can
accept. Before simulating a model, Simulink checks all blocks to ensure that
they can accommodate the types of signals output by the ports to which they
are connected. If any incompatibilities exist, Simulink reports an error and
terminates the simulation.

To detect signal compatibility errors before running a simulation, choose

Update Diagram from the Simulink Edit menu. Simulink reports any
invalid connections found in the process of updating the diagram.

8-17

8 Working with Signals

Displaying Signal Sources and Destinations

In this section...

“About Signal Highlighting” on page 8-18
“Highlighting Signal Sources” on page 8-18
“Highlighting Signal Destinations” on page 8-19
“Removing Highlighting” on page 8-19

“Signal Highlighting and Library Blocks” on page 8-20

About Signal Highlighting

You can highlight a signal and its source or destination block(s), then
remove the highlighting once it has served its purpose. Signal highlighting
crosses subsystem boundaries, allowing you to trace a signal across multiple
subsystem levels. Highlighting does not cross the boundary into or out of a
referenced model. If a signal is composite, all source or destination blocks are
highlighted. (See Chapter 9, “Using Composite Signals”.)

Highlighting Signal Sources

To display a signal’s source block(s), choose Highlight to Source from the
signal’s context menu. Simulink® highlights:

o All branches of the signal anywhere in the model

e All virtual blocks through which the signal passes

¢ The nonvirtual block(s) that write the value of the signal

8-18

Displaying Signal Sources and Destinations

Out2
Subsystemn

Highlighting Signal Destinations

To display a signal’s destination blocks, choose Highlight to Destination
from the signal’s context menu. Simulink highlights:

¢ All branches of the signal anywhere in the model
e All virtual blocks through which the signal passes
¢ The nonvirtual block(s) that read the value of the signal

Gain

Removing Highlighting

To remove all highlighting, choose Remove Highlighting from the model’s
context menu, or choose View > Remove Highlighting.

8-19

8 Working with Signals

8-20

Signal Highlighting and Library Blocks

If the path from a source block or to a destination block includes an unresolved
reference to a library block, Simulink highlights the path only from or to the
library block, respectively. This is to avoid time-consuming library reference
resolution while you are editing a model. To permit Simulink to display

the complete path, first update the diagram (e.g., by pressing Ctrl+D).

This causes Simulink to resolve all library references and hence display the
complete path to a destination block or from a source block.

Determining Output Signal Dimensions

Determining Output Signal Dimensions

In this section...

“About Signal Dimensions” on page 8-21
“Determining the Output Dimensions of Source Blocks” on page 8-21
“Determining the Output Dimensions of Nonsource Blocks” on page 8-22

“Signal and Parameter Dimension Rules” on page 8-22

“Scalar Expansion of Inputs and Parameters” on page 8-24

About Signal Dimensions

If a block can emit nonscalar signals, the dimensions of the signals that the
block outputs depend on the block’s parameters, if the block is a source block;
otherwise, the output dimensions depend on the dimensions of the block’s
input and parameters.

Determining the Output Dimensions of Source Blocks

A source block is a block that has no inputs. Examples of source blocks include
the Constant block and the Sine Wave block. See the “Sources” table in the
online Simulink® block reference for a complete listing of Simulink source
blocks. The output dimensions of a source block are the same as those of

its output value parameters if the block’s Interpret Vector Parameters

as 1-D parameter is off (i.e., not selected in the block’s parameter dialog
box). If the Interpret Vector Parameters as 1-D parameter is on, the
output dimensions equal the output value parameter dimensions unless the
parameter dimensions are N-by-1 or 1-by-N. In the latter case, the block
outputs a vector signal of width N.

8-21

8 Working with Signals

8-22

As an example of how a source block’s output value parameter(s)

and Interpret Vector Parameters as 1-D parameter determine the
dimensionality of its output, consider the Constant block. This block outputs
a constant signal equal to its Constant value parameter. The following table
illustrates how the dimensionality of the Constant value parameter and the
setting of the Interpret Vector Parameters as 1-D parameter determine
the dimensionality of the block’s output.

Interpret Vector
Constant Value Parameters as 1-D Output
scalar off one-element array
scalar on one-element array
1-by-N matrix off 1-by-N matrix
1-by-N matrix on N-element vector
N-by-1 matrix off N-by-1 matrix
N-by-1 matrix on N-element vector
M-by-N matrix off M-by-N matrix
M-by-N matrix on M-by-N matrix

Simulink source blocks allow you to specify the dimensions of the signals
that they output. You can therefore use them to introduce signals of various
dimensions into your model.

Determining the Output Dimensions of Nonsource
Blocks

If a block has inputs, the dimensions of its outputs are, after scalar expansion,
the same as those of its inputs. (All inputs must have the same dimensions, as
discussed in “Signal and Parameter Dimension Rules” on page 8-22).

Signal and Parameter Dimension Rules

When creating a Simulink model, you must observe the following rules
regarding signal and parameter dimensions.

Determining Output Signal Dimensions

Input Signal Dimension Rule
All nonscalar inputs to a block must have the same dimensions.

A block can have a mix of scalar and nonscalar inputs as long as all the
nonscalar inputs have the same dimensions. Simulink expands the scalar
inputs to have the same dimensions as the nonscalar inputs (see “Scalar
Expansion of Inputs” on page 8-24) thus preserving the general rule.

Block Parameter Dimension Rule

In general, a block’s parameters must have the same dimensions as the
corresponding inputs.

Two seeming exceptions exist to this general rule:

® A block can have scalar parameters corresponding to nonscalar inputs.
In this case, Simulink expands a scalar parameter to have the same
dimensions as the corresponding input (see “Scalar Expansion of
Parameters” on page 8-25) thus preserving the general rule.

¢ Ifan input is a vector, the corresponding parameter can be either an N-by-1
or a 1-by-N matrix. In this case, Simulink applies the N matrix elements to
the corresponding elements of the input vector. This exception allows use
of MATLAB® row or column vectors, which are actually 1-by-N or N-by-1
matrices, respectively, to specify parameters that apply to vector inputs.

Vector or Matrix Input Conversion Rules

Simulink converts vectors to row or column matrices and row or column
matrices to vectors under the following circumstances:

¢ If a vector signal is connected to an input that requires a matrix, Simulink
converts the vector to a one-row or one-column matrix.

¢ If a one-column or one-row matrix is connected to an input that requires a
vector, Simulink converts the matrix to a vector.

¢ If the inputs to a block consist of a mixture of vectors and matrices and
the matrix inputs all have one column or one row, Simulink converts the
vectors to matrices having one column or one row, respectively.

8-23

8 Working with Signals

Note You can configure Simulink to display a warning or error message if a
vector or matrix conversion occurs during a simulation. See “Vector/matrix
block input conversion” for more information.

Scalar Expansion of Inputs and Parameters

Scalar expansion is the conversion of a scalar value into a nonscalar array

of the same dimensions. Many Simulink blocks support scalar expansion of
inputs and parameters. Block descriptions in the Simulink Reference indicate
whether Simulink applies scalar expansion to a block’s inputs and parameters.

Scalar Expansion of Inputs

Scalar expansion of inputs refers to the expansion of scalar inputs to match
the dimensions of other nonscalar inputs or nonscalar parameters. When the
input to a block is a mix of scalar and nonscalar signals, Simulink expands
the scalar inputs into nonscalar signals having the same dimensions as the
other nonscalar inputs. The elements of an expanded signal equal the value of
the scalar from which the signal was expanded.

The following model illustrates scalar expansion of inputs. This model adds
scalar and vector inputs. The input from block Constantl is scalar expanded
to match the size of the vector input from the Constant block. The input

is expanded to the vector [3 3 3].

[123] +
Constant &-D
.—“ +
. Scope
Constantt
Sum

When a block’s output is a function of a parameter and the parameter is
nonscalar, Simulink expands a scalar input to match the dimensions of the
parameter. For example, Simulink expands a scalar input to a Gain block to
match the dimensions of a nonscalar gain parameter.

8-24

Determining Output Signal Dimensions

Scalar Expansion of Parameters

If a block has a nonscalar input and a corresponding parameter is a scalar,
Simulink expands the scalar parameter to have the same number of elements
as the input. Each element of the expanded parameter equals the value of
the original scalar. Simulink then applies each element of the expanded
parameter to the corresponding input element.

This example shows that a scalar parameter (the Gain) is expanded to a
vector of identically valued elements to match the size of the block input, a
three-element vector.

23 _pwplzl

Consztant &ain Scope

8-25

8 Working with Signals

Checking Signal Ranges

8-26

In this section...

“About Signal Range Checking” on page 8-26
“Blocks That Allow Signal Range Specification” on page 8-26
“Specifying Ranges for Signals” on page 8-27

“Checking for Signal Range Errors” on page 8-28

About Signal Range Checking

Many Simulink® blocks allow you to specify a range of valid values for their
output signals. Simulink provides a diagnostic that you can enable to detect
when blocks generate signals that exceed their specified ranges during
simulation. See the sections that follow for more information.

Blocks That Allow Signal Range Specification

The following blocks allow you to specify ranges for their output signals:

® Abs

* Constant

e Data Store Memory

¢ Data Type Conversion

¢ Difference

® Discrete Derivative

¢ Discrete-Time Integrator
® Gain

¢ Inport

¢ Interpolation Using Prelookup
¢ Lookup Table

¢ Lookup Table (2-D)

Checking Signal Ranges

® Math Function

* MinMax

e Multiport Switch

¢ Qutport

¢ Product, Divide, Product of Elements
* Relay

® Repeating Sequence Interpolated

* Repeating Sequence Stair

¢ Saturation

e Saturation Dynamic

® Signal Specification

® Sum, Add, Subtract, Sum of Elements
® Switch

See “Blocks — Alphabetical List” in the Simulink Reference for more
information about these blocks and their parameters.

Specifying Ranges for Signals

In general, use the Qutput minimum and Output maximum parameters
that appear on a block parameter dialog box to specify a range of valid values
for the block output signal. Exceptions include the Data Store Memory, Inport,
Outport, and Signal Specification blocks, for which you use their Minimum
and Maximum parameters to specify a signal range. See “Blocks That Allow
Signal Range Specification” on page 8-26 for a list of applicable blocks.

When specifying minimum and maximum values that constitute a range,
enter only expressions that evaluate to a scalar, real number with double
data type. The default value, [], is equivalent to - Inf for the minimum value
and Inf for the maximum value. The scalar values that you specify are
subject to expansion, for example, when the block inputs are nonscalar or bus
signals (see “Scalar Expansion of Inputs and Parameters” on page 8-24).

8-27

8 Working with Signals

Note You cannot specify the minimum or maximum value as NaN.

Specifying Ranges for Complex Numbers

When you specify an Output minimum and/or Qutput maximum for a
signal that is a complex number, the specified minimum and maximum values
apply separately to the real part and to the imaginary part of the complex
number. If the value of either part of the number is less than the minimum,
or greater than the maximum, the complex number is outside the specified
range. No range checking occurs against any combination of the real and
imaginary parts, such as (sqrt(a~2+b~2))

Checking for Signal Range Errors

Simulink provides a diagnostic named Simulation range checking, which
you can enable to detect when signals exceed their specified ranges during
simulation. When enabled, Simulink compares the signal values that a block
outputs with both the specified range (see “Specifying Ranges for Signals” on
page 8-27) and the block data type. That is, Simulink performs the following
check:

DataTypeMin < MinValue < VALUE < MaxValue < DataTypeMax

where

® DataTypeMin is the minimum value representable by the block data type.

® MinValue is the minimum value the block should output, specified by, e.g.,
Output minimum.

® VALUE is the signal value that the block outputs.

® MaxValue is the maximum value the block should output, specified by, e.g.,
Output maximum.

® DataTypeMax is the maximum value representable by the block data type.

8-28

Checking Signal Ranges

Note It is possible to overspecify how a block handles signals that exceed
particular ranges. For example, you can specify values (other than the default
values) for both signal range parameters and enable the Saturate on integer
overflow parameter. In this case, Simulink displays a warning message that
advises you to disable the Saturate on integer overflow parameter.

Enabling Simulation Range Checking
To enable the Simulation range checking diagnostic:

1 In your model window, select Simulation > Configuration Parameters.
Simulink displays the Configuration Parameters dialog box.

2 In the Select tree on the left side of the Configuration Parameters dialog
box, click the Diagnostics > Data Validity category. On the right side
under Signals, set the Simulation range checking diagnostic to error
or warning.

— Signal

Signal rezolution: IE:-:pIiu:it anly j Detect overflow: Im
Diivizion by gingular matrix: Inu:une j Inf or MaM block output: Im
Underzspecified data bupes; |nu:une j "t prefiv for identifiers: Im
Sirnulation range checking:

3 Click OK to apply your changes and close the Configuration Parameters
dialog box.

See “Simulation range checking” in the Simulink Graphical User Interface
documentation for more information.

Simulating Models with Simulation Range Checking
To check for signal range errors or warnings:

8-29

8 Working with Signals

8-30

1 Enable the Simulation range checking diagnostic for your model (see

“Enabling Simulation Range Checking” on page 8-29).

2 In your model window, select Simulation > Start to simulate the model.

Simulink simulates your model and performs signal range checking. If a
signal exceeds its specified range when the Simulation range checking
diagnostic specifies error, Simulink stops the simulation and displays
an error message:

i Simulation Diagnostics: example =10l x|

View Fonk Size

Message Source Reported by Summary
C WEock error Simulink Inconsistent numeric values for port 1 ..

Kl 2]

|© examplelGain |
Inconsistent numetic values for port 1 of 'examplefGain' Output value (217 at major
time step 4.2 is greater than maximum (200 from ‘examplefGain'.

CIpEn | Help | Close |

Otherwise, if a signal exceeds its specified range when the Simulation
range checking diagnostic specifies warning, Simulink displays a
warning message in the MATLAB® Command Window:

Warning: Inconsistent numeric values for port 1 of 'example/Gain':
(21) at major time step 4.2 is greater than maximum (20) from 'example

Each message identifies the block whose output signal exceeds its specified
range, and the time step at which this violation occurs.

Checking Signal Ranges

Signal Range Propagation for Virtual Blocks

Some virtual blocks (see “Virtual Blocks” on page 6-2) allow you to specify
ranges for their output signals, for example, the Inport and Outport blocks.
When the Simulation range checking diagnostic is enabled for a model
that contains such blocks, the signal range of the virtual block propagates
backward to the first instance of a nonvirtual block whose output signal it
receives. If the nonvirtual block specifies different values for its own range,
Simulink performs signal range checking with the tightest range possible.
That is, Simulink checks the signal using the larger minimum value and
the smaller maximum value.

For example, consider the following model:

200 —>< [#] [>—>|n1 outi

Constant Got F Cutl
onstan ata ram -
hximum = 300 _ 7 Subszystem S
7 ~
i ~
(4 ~
i< ~
s ~
>
In . Outd
hiaximum = 100 Gain

In this model, the Constant block specifies its Qutput maximum parameter
as 300, and that of the Inport block is set to 100. Suppose you enable the
Simulation range checking diagnostic and simulate the model. The
Inport block back propagates its maximum value to the nonvirtual block that
precedes it, i.e., the Constant block. Simulink then uses the smaller of the
two maximum values to check the signal that the Constant block outputs.
Because the Constant block outputs a signal whose value (200) exceeds the
tightest range, Simulink displays the following error message:

8-31

8 Working with Signals

i Simulation Diagnostics: example -0l x|

View Fonk Size

Message Source Reparted by SUMMAary:
C WElock errar |Constant Sirmulink Inconsistent numeric values for part 1 ...

Kl |1

|§) examplelConstant |
Inconsistent numeric values for port 1 of 'example/Constant’ Outputvalue (2000 at
major time step 0 is greater than maximum (1000 from ‘examples/Subsystemiind '

CpEn | Help | Close |

8-32

Introducing the Signal and Scope Manager

Introducing the Signal and Scope Manager

In this section...

“What is the Signal & Scope Manager?” on page 8-33
“Displaying the Signal and Scope Manager User Interface” on page 8-34

“Understanding the Signal and Scope Manager User Interface” on page 8-34

What is the Signal & Scope Manager?

The Signal & Scope Manager is a user interface to the Signal Viewers and
Generator objects. From the Signal and Scope Manager you manage all signal
generators and viewers from a central place.

Note The Signal and Scope Manager requires that you have Java™ enabled
when you start MATLAB®. This is the default.

What are Viewer and Generator Objects?

The small icons identifying a viewer or generator are called Viewer and
Generator Objects. These objects are not the same as scope or signal blocks.
Objects are managed by the Signal and Scope Manager, and are placed on
signals. Blocks are dragged from the Library browser and are not managed by
the Signal and Scope manager.

Signal Viewer

Sir/lf Ws»-E+DM—> [

Signal Generator /

Scope Block

8-33

8 Working with Signals

Displaying the Signal and Scope Manager User
Interface
Access the Signal and Scope Manager from the model editor’s Tools menu.

Alternatively, right click within your model and select Signal & Scope
Manager from the context menu.

Understanding the Signal and Scope Manager User

Interface
=) Signal & Scope Manager : f14 i =]
Types - Generatorsiiewers in model
Generators Generators Viewers |

- W Simulink |

Mame Type | #in |

- W Communications
[Wl Signal Processing
- B video and Image Processing

Lt [

Yiewers

- W Sirmulink
& Floating Scope ‘
Fd Seope

0 ¥ Graph
- B Comrmunications

~Signals connected to Generatoriewer

D_El Signal Pracessing Port Connected signals
- B video and Image Processing
Attach o model == |
Help | Close |

The Signal and Scope manager user interface is comprised of three panes:
* Types. Selects the viewer or generator to attach to your model. For more
information, see “Types Pane” on page 8-35.

* Generators/Viewers in model. Selects signal sources and viewers for
your model.

For more information on sources, see “Generators Tab” on page 8-35.

For more information on viewers, see “Viewers Tab” on page 8-36.

8-34

Introducing the Signal and Scope Manager

® Signals connected to Generator/Viewer. Manages the connections to
the generators and viewers present in your model. For more information,
see “Signals connected to Generator/Viewer Pane” on page 8-38.

Types Pane

The Types pane shows the generators and viewers associated with the
products installed on your system. Expand a products node list to show all the
generators and viewers available to you.

Note The Simulink® Scope displayed in the Signal and Scope Manager Types
pane is not the same as the Simulink Scope Block. For an explanation of the
differences, see “How Scope Blocks and Signal Viewers Differ” on page 15-3.

Generators Tab

The Generators tab displays a table listing the generators associated with
your model.

— Generatorsiiewers in model

Generators | Wienars I

MHame Type

¥} 0 Constant

X [B

Each row corresponds to a generator. The columns specify each generator’s
name and type.

8-35

8 Working with Signals

Viewers Tab
The Viewers tab displays a table listing the viewers present in your model.

~Generatorsifiewers in model

Generators Viewers |

,
Mame Tvpe #in

7 -El

Temperature Scope P seope L }(l
Litility Scope & Floating Scope |1 ™

Each row corresponds to a viewer. The columns specify each viewer’s name,
type, and number of inputs. If a viewer accepts a variable number of inputs,
the #in entry for the viewer contains a pull-down list that displays the range
of inputs that the viewer can accept. To change the number of inputs accepted
by the viewer, pull down the list and select the desired value.

8-36

Introducing the Signal and Scope Manager

Edit Buttons

Use these buttons to manage generators and viewers after you have selected
them in the Generators or Viewers table:

Button Description
= Opens the parameter dialog box for the selected generator
or viewer.

From the parameter dialog you view and change object
parameters.

See “Scope Viewer Parameters Dialog Box” on page 15-12
for more information.

_El Opens the Signal Selector for the selected generator or
viewer.

You use the Signal Selector to connect and disconnect
generators and viewers.

See “The Signal Selector” on page 8-44 for information on
the signal selector.

}(| Deletes the selected generator or viewer.

8-37

8 Working with Signals

8-38

Signals connected to Generator/Viewer Pane

This table lists the signals connected to the generator or viewer selected in
the Generators/Viewers control group of the Signal and Scope Manager.

rGeneratorsMiewers in madel
Generatars | iewers |

~Signals connectad to Generatorigwer —— =

M T
ame VRe
f @ Sine Wave El
] #® Constant »
ith__
o
el

Cutput

1

Sum:2

Coguectﬁ'a";gnals
&

o, F

This graphic illustrates the table display when two generators are connected

to a sum block. The Viewers display works in the same way.

Clicking on the name of a generator displays the connected signals. For
instance, the constant is shown connected to the second input of the sum block.

Connection Menu

Selecting a connection in the Signals connected to Generator/Viewer
table and pressing the right button on your mouse displays a context menu.
From this context menu you can:

¢ Open the Properties dialog

e Highlight the connections in your block diagram

¢ Open the Signal Selector

Using the Signal and Scope Manager

Using the Signal and Scope Manager

In this section...

“Introduction” on page 8-39

“Attaching a New Viewer or Generator” on page 8-39

“Creating a Multiple Axes Viewer” on page 8-40

“Adding Additional Signals to an Existing Viewer” on page 8-41
“Viewing Test Point Data” on page 8-41

“Adding Custom Viewers and Generators” on page 8-42

Introduction

This section shows you how to use the Signal and Scope Manager to perform
some basic Viewer and Generator object tasks.

If you are not familiar with the Signal and Scope manager, or Viewer or
Generator objects, or if you do not know how to display the Signal and Scope
manager, see “Introducing the Signal and Scope Manager” on page 8-33.

To learn how to use and adjust the viewers you have created, see “The Scope
Viewer Toolbar” on page 15-11.

Attaching a New Viewer or Generator

To connect a new viewer or generator to a signal in the currently selected
model:

1 Display the Signal and Scope manager.

2 Select a viewer or generator from the Types pane.

3 Click Attach to Model.

4 Click the Signal Selector button to display the Signal Selector dialog.

For more information, see “The Signal Selector” on page 8-44.

8-39

8 Working with Signals

8-40

5 Select the signals to be displayed by this viewer, and close the dialog.

Tip To display a viewer that has been attached, double click on the viewer of
interest in the Viewers pane.

Creating a Multiple Axes Viewer

To create a viewer with more than one axes:

Time aftset. 0

1 Display the Signal and Scope manager.

2 Select a viewer from the Types pane.

3 Click Attach to Model.

4 Click the #in pulldown, and select the total number of axes for the graph.

5 Navigate to the Signals connected to Generator/Viewer pane and
select Axes 1.

—Signals connected to Generatorifieswer——
Axes Connected sighals
2 ha selection
3 ha selection

Using the Signal and Scope Manager

6 Click the Signal Selector button to display the Signal Selector dialog.
For more information, see “The Signal Selector” on page 8-44.
7 Select the signals to add to this axis, and close the dialog.

8 Select the next axes, and repeat steps 6 and 7. Continue in this way until
signals have been added to all axes.

Tip
¢ (Click on the Scope Viewer icon to display the scope.

® Run the simulation after adding the new signals to make them visible.

Adding Additional Signals to an Existing Viewer

To add signals to a viewer you have already created:

1 Display the Signal and Scope manager.

2 Navigate to the Viewers pane, and select the scope to which you will add
signals.

3 Click the Signal Selector button to display the Signal Selector dialog.
For more information, see “The Signal Selector” on page 8-44.

4 Select the signals to add to this viewer, and close the dialog.

Tip Run the simulation after adding the new signals to make them visible.

Viewing Test Point Data

You can use the Signal and Scope Manager to view any signal that is defined
as a test point in a submodel. A test point is a signal that is guaranteed to be
observable when using a signal viewer in a model.

8-41

8 Working with Signals

8-42

For more information, see “Working with Test Points” on page 8-70 and
Chapter 5, “Referencing a Model”.

Adding Custom Viewers and Generators

You can add custom signal viewers or generators so that they appear in the
Signal and Scope Manager. The following procedure assumes that you have a
custom viewer named newviewer that you want to add.

Note If the viewer is a compound viewer, such as a subsystem with multiple
blocks, make the top-level subsystem atomic.

1 Open a new Simulink® library.

For example, open the Simulink browser and select File > New > Library.
2 Save the library.

For example, save it as newlib.
3 In the MATLAB® Command Window, set the library type.

For example, use this command to set the library type of newviewer to
viewer,

set_param('newlib', 'LibraryType', 'SSMgrViewerLibrary"')

To set library type for generators, use the type 'SSMgrGenLibrary' as
in this example:

set_param('newlib', 'LibraryType', 'SSMgrGenLibrary')

4 Set the display name of the library, as in this example:.

set_param('newlib', 'SSMgrDisplayString', 'My Custom Library')

5 Add the viewer or generator to the library.

6 Set the iotype of the viewer, as in this example:

Using the Signal and Scope Manager

set_param('newlib/newviewer', 'iotype', 'viewer')

7 Save the library newlib.
Select File > Save.

8 Using the MATLAB editor, create a file named s1_customization.m. In
this file, enter a directive to incorporate the new library as a viewer library.

For example, to save newlib as a viewer library, add the following lines:

function sl_customization(cm)
cm.addSigScopeMgrViewerLibrary('newlib"')
%send function

To add a library as a generator library, add a line like the following:

cm.addSigScopeMgrGeneratorLibrary('newlib')

9 Add a corresponding cm.addSigScope line for each viewer or generator
library you want to add.

10 Save the s1_customization.m file on your MATLAB path. Edit this file to
add new viewer or generator libraries.

11 To see the new custom libraries, restart MATLAB and start the Signal
and Scope Manager.

8-43

8 Working with Signals

The Signal Selector

8-44

In this section...
“About the Signal Selector” on page 8-44
“Port/Axis Selector” on page 8-45

“Model Hierarchy” on page 8-46

“Inputs/Signals List” on page 8-46

About the Signal Selector

The Signal Selector allows you to connect a generator or viewer object (see
“Introducing the Signal and Scope Manager” on page 8-33) or the Floating
Scope to block inputs and outputs. It appears when you click the Signal
selection button for a generator or viewer object in the Signal & Scope
Manager or on the toolbar of the Floating Scope’s window.

The Signal Selector that appears when you click the Signal selection button
applies only to the currently selected generator or viewer object (or the
Floating Scope). If you want to connect blocks to another generator or viewer
object, you must select the object in the Signal & Scope Manager and launch
another instance of the Signal Selector. The object used to launch a particular
instance of the Signal Selector is called that instance’s owner.

The Signal Selector

-!_ﬂ_._': Signal Selector : Scope

Select signals for object untitled/Scope’ |Axes 1

Model hierarchy

’.@"|%i>«|

List contents: |4l available signals

T

B Controller

& Controller: 1
 Controller: 2
 Integratar
 sum

Show sighal hames matching:

Close

Port/Axis Selector

This list box allows you to select the owner output port (in the case of signal

generators) or display axis (in the case of signal viewers) to which you want to
connect blocks in your model.

Select signals for object untitled1/ScopesSi’

The list box is enabled only if the signal generator has multiple outputs or
the signal viewer has multiple axes.

8-45

8 Working with Signals

Model Hierarchy

This tree-structured list lets you select any subsystem in your model.

Model higrarchy f",@’l%l 44— Look Under Mask

=g engine
%] Combustion Library Links
—m Compression

—y Drag Tordque

B Throttle & Manifold
—m Yehicle Dynamics
-3 walve timineg

J |]

Selecting a subsystem causes the adjacent port list to display the ports
available for connection in the selected subsystem. To display subsystems
included as library links in your model, click the Library Links button at
the top of the Model hierarchy control. To display subsystems contained
by masked subsystems, click the Look Under Masks button at the top
of the panel.

Inputs/Signals List

The contents of this panel displays input ports available for connection to the
Signal Selector’s owner if the owner is a signal generator or signals available
for connection to the owner if the owner is a signal viewer.

8-46

The Signal Selector

If the Signal Selector’s owner is a signal generator, the inputs/signals list by
default lists each input port in the system selected in the model hierarchy tree
that is either unconnected or connected to a signal generator.

The label for each entry indicates the name of the block of which the port is an
input. If the block has more than one input, the label indicates the number of
the displayed port. A greyed label indicates that the port is connected to a
signal generator other than the Signal Selectors’ owner. Selecting the check
box next to a port’s entry in the list connects the Signal Selector’s owner to
the port, replacing, if necessary, the signal generator previously connected

to the port.

To display more information on each signal, click the Detailed view button
at the top of the pane. The detailed view shows the path and data type of
each signal and whether the signal is a test point. The controls at the top
and bottom of the panel let you restrict the amount of information shown
in the ports list.

® To show named signals only, select Named signals only from the List
contents control at the top of the pane.

® To show only signals selected in the Signal Selector, select Selected
signals only from the List contents control.

8-47

8 Working with Signals

® To show test point signals only, select Testpointed signals only from
the List contents control.

® To show only signals whose signals match a specified string of characters,
enter the characters in the Show signals matching control at the bottom
of the Signals pane and press the Enter key.

¢ To show the selected types of signals for all subsystems below the currently
selected subsystem in the model hierarchy, click the Current and Below
button at the top of the Signals pane.

To select or deselect a signal in the Signals pane, click its entry or use the
arrow keys to move the selection highlight to the signal entry and press the
Enter key. You can also move the selection highlight to a signal entry by
typing the first few characters of its name (enough to uniquely identify it).

Note You can continue to select and deselect signals on the block diagram
with the Signal Selector open. For example, shift-clicking a line in the block
diagram adds the corresponding signal to the set of signals that you previously
selected with the Signal Selector. If the simulation is running when you open
and use the Signal Selector, Simulink® updates the Signal Selector to reflect
signal selection changes you have made on the block diagram. However, the
changes do not appear until you select the Signal Selector window itself. You
can also use the Signal Selector before running a model. If no simulation is
running, selecting a signal in the model does not change the Signal Selector.

8-48

Logging Signals

Logging Signals

In this section...

“About Signal Logging” on page 8-49

“Signal Logging Limitations” on page 8-50

“Enabling Signal Logging” on page 8-50

“Specifying a Logging Name” on page 8-51

“Limiting the Data Logged for a Signal” on page 8-52

“Logging Referenced Model Signals” on page 8-52

“Viewing Logged Signal Data” on page 8-53

“Accessing Logged Signal Data” on page 8-54

“Example: Logging Signal Data in the F14 Model” on page 8-54
“Handling Spaces and Newlines in Logged Signal Names” on page 8-58

“Extracting Partial Data from a Running Simulation” on page 8-61

About Signal Logging

Logging signals refers to the process of saving signal values to the MATLAB®
workspace during simulation for later retrieval and postprocessing. Simulink®
allows you to log a signal by

Connecting the signal to a To Workspace block, Scope block, or viewer.

This method allows you to document in the diagram itself the workspace
variables used to store signal data. Results are visible during simulation.
Be aware that Scopes store data and can be memory intensive.

Connecting the signal to a root-level Outport block.

This method reduces diagram clutter by eliminating the need to use Scope
blocks to log signals. Data is only available when simulation is paused
or completed.

Setting the signal’s signal logging properties.

This method eliminates the need to add blocks. Data is only available when
simulation is paused or completed.

8-49

8 Working with Signals

8-50

All of these methods allow you to specify the names of the workspace
variables used to save signal data and to limit the amount of data logged
for a particular signal.

See Simulink Reference for the To Workspace and Outport blocks for
information on using these blocks to log signal data. See the documentation
of the sim command for some data logging capabilities that are available
only for programmatic simulation.

Signal Logging Limitations

Simulink does not support signal logging for the following types of signals:
¢ Qutput of a Function-Call Generator block

¢ Signal connected to the input of a Merge block

® Qutputs of Trigger and Enable blocks

Multidimensional signals are supported.

Bus hierarchy is supported. The hierarchy of a bus signal is preserved in the
logsout object. See Chapter 9, “Using Composite Signals” for details about
muxes and buses.

Enabling Signal Logging
To enable signal logging for a signal, select the Log signal data option on the
signal’s Signal Properties dialog box (see “Signal Properties Dialog Box”).

Note If you enable signal logging for a signal, Simulink designates the signal
as a test point automatically. This is because a signal must be accessible to
be logged (see “Designating a Signal as a Test Point” on page 8-70 for more
information).

Globally Enabling and Disabling Signal Logging

You can globally enable or disable signal logging for a model by checking or
unchecking the Signal logging option on the Data Import/Export pane of

Logging Signals

the Configuration Parameters dialog box (see “Signal logging”). Simulink
logs signals only if this option is checked. If the option is not checked,
Simulink ignores the signal logging settings for individual signals.

Enabling Signal Logging Programmatically

You can enable signal logging programmatically for selected blocks with the
outport DatalLogging property. You can set this property using the set_param
command. For example:

1 At the MATLAB Command Window, open a model. Type

vdp

2 Select a block in that model. For example, select the Mux block.
3 Get the port handles of the selected block.

get _param(gcb, 'PortHandles')

4 Enable signal logging for the desired outport port.

set_param(ans.Outport(1), 'DataLogging', 'on')

The logged signal indicator (f) appears.

Specifying a Logging Name

You can assign a name, called the logging name, to the object used to log
data for a signal during simulation. To specify a log name for a signal, select
Custom from the Logging name list on the signal’s Signal Properties dialog
box and enter the custom name in the adjacent text field.

If you do not specify a custom logging name, Simulink uses the signal name, or
if there is no name, Simulink generates a default name that is composed of the
block name and port number. For example, if the block name is MyBlock and
the signal being logged is the first output of this block, Simulink generates
the following name: SL_MyBlock1.

8-51

8 Working with Signals

Limiting the Data Logged for a Signal

The Data panel of the Signal Properties dialog box lets you limit the
amount of data logged for a signal. For example, you can specify the maximum
amount of data to be logged for a signal or a decimation factor that causes
Simulink to skip a specified number of time steps before logging a signal

value. See “Data” for more information.

Logging Referenced Model Signals

You can log any signal that is defined as a test point in a referenced model.
For information about test points, see “Designating a Signal as a Test Point”
on page 8-70. For information about referenced models, see Chapter 5,

“Referencing a Model”.

To log test pointed signals in referenced models, select the Model block and
then select Log referenced signals from the model editor’s Edit menu or
from the block’s context menu.

The Model Reference Signal Logging dialog box appears.

=): Model Reference Signal Logging: mdlref_basic/Countera (mdiref_counter) i =]]
) Raidnal ™ Log signals as specified by the refarenced madel
—8 ndlrer_counter i :
~Signal Propeties
™ output
Signal Name: ITestPH
™ Log signal data
~Logging name
IUse sighal na... LI ITestF‘H
 Data
I™| Limit data pointe to (2t ISDDD
[T Decimation: |2
Refresh
| Reaay Ok | Cancel Help Anply,

The dialog box contains the following panes and controls.

8-52

Logging Signals

Model Hierarchy

This pane displays the contents of the referenced model as a tree control
with expandable nodes. The top-level node represents the referenced model.
Expanding this node displays the subsystems that the referenced model
contains and any models that it itself references. Expanding a subsystem node
displays the subsystems that it contains and the models that it references.

Refresh Button
Refreshes the dialog box to reflect changes in the model hierarchy.

Signals

This pane displays the test points of the model or subsystem selected in the
Model Hierarchy pane (see “Working with Test Points” on page 8-70). Check
the check box next to a test point’s name to specify that it should be logged.

Log signals as specified by the referenced model

Checking this check box causes Simulink to log the signals that the referenced
model specifies should be logged.

Signal Properties

This pane is enabled if Log signals as specified by the referenced model
is not selected. In this case, the controls on this pane allow you to specify the
signal logging properties of the signal selected in the Signals pane. The
values that you specify override for this instance of the referenced model
those specified by the model itself. The controls correspond to the controls of
the same name on the Signal Properties dialog box. See “Signal Properties
Dialog Box” for information on how to use them.

Viewing Logged Signal Data

To view logged signal data, either check the Inspect signals when
simulation is stopped/paused in the Data Import/Export pane of the
Configuration Parameters dialog box or select Tools > Inspect Logged
Signals from the model editor’s menu bar. The first method causes Simulink
to display logged signals in the MATLAB Time Series Tools viewer (see

in the online MATLAB documentation) whenever a simulation ends or you

8-53

8 Working with Signals

8-54

pause a simulation. The second method causes Simulink to display the data
immediately.

Note You must run the simulation first before selecting Tools > Inspect
Logged Signals. Otherwise, selecting this command has no effect.

Accessing Logged Signal Data

Simulink saves signal data that it logs during simulation in a Simulink
data object of type Simulink.ModelDatalLogs that resides in the MATLAB
workspace. The name of the object’s handle is 1logsout by default. The Data
Import/Export configuration pane (see “Data Import/Export Pane”) allows
you to specify another name for this object. See Simulink.ModelDatalogs
in the online Simulink reference for information on extracting signal data
from this object.

The signal logs for particular model elements are contained in the objects in
the following table. The Simulink.ModelDatalLogs object is the container
for these objects.

Modeling Element Signal Data Object
Signal in this model Simulink.Timeseries
Model referenced by this model Simulink.ModelDatalogs
Subsystem Simulink.SubsysDatalogs
Bus, mux, vector concatenate Simulink.TsArray

Scope Simulink.ScopeDatalLogs

Example: Logging Signal Data in the F14 Model
Enabling signal logging on a signal-by-signal basis allows you to store signal
data witho