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1

Simulink® Basics

The following sections explain how to perform basic tasks when using the
Simulink® product.

Starting the Simulink® Engine
(p. 1-2)

How to start Simulink.

Opening Models (p. 1-4) How to open a Simulink model.

Model Editor (p. 1-6) Overview of the Model Editor.

Updating a Block Diagram (p. 1-13) How to update a diagram to reflect
changes that you have made.

Saving a Model (p. 1-15) How to save a Simulink model to
disk.

Printing a Block Diagram (p. 1-21) How to print a Simulink block
diagram.

Generating a Model Report (p. 1-30) How to generate an HTML report on
a model’s structure and content.

Summary of Mouse and Keyboard
Actions (p. 1-33)

Lists key combinations and mouse
actions that you can use to execute
Simulink commands.

Ending a Simulink® Session (p. 1-37) How to end a Simulink session.



1 Simulink® Basics

Starting the Simulink® Engine
To start the Simulink® software, you must first start the MATLAB® technical
computing environment. Consult your MATLAB documentation for more
information. You can then start the Simulink software in two ways:

• On the toolbar, click the Simulink icon.

• Enter the simulink command at the MATLAB prompt.
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Starting the Simulink® Engine

The Library Browser appears. It displays a tree-structured view of the
Simulink block libraries installed on your system. You build models by copying
blocks from the Library Browser into a model window (see “Editing Blocks”).

The Simulink library window displays icons representing the pre-installed
block libraries. You can create models by copying blocks from the library
into a model window.

1-3



1 Simulink® Basics

Note On computers running the Windows® operating system, you can display
the Simulink library window by right-clicking the Simulink node in the
Library Browser window.

Opening Models

In this section...

“Editing an Existing Model” on page 1-4

“Opening Models with Different Character Encodings” on page 1-4

“Avoiding Initial Model Open Delay” on page 1-5

Editing an Existing Model
To edit an existing model diagram, either

• Click the Open button on the Library Browser’s toolbar (Windows®

operating systems only) or select Open from the Simulink® library
window’s File menu and then choose or enter the file name for the model
to edit.

• Enter the name of the model (without the .mdl extension) in the MATLAB®

software Command Window. The model must be in the current directory
or on the path.

Note If you have an earlier version of the Simulink software, and you
want to open a model that was created in a later version, you must first use
the later version to save the model in a format compatible with the earlier
version. You can then open the model in the earlier version. See “Saving a
Model in Earlier Formats” on page 1-17 for details.

Opening Models with Different Character Encodings
If you open a model created in a MATLAB software session configured to
support one character set encoding, for example, Shift_JIS, in a session
configured to support another character encoding, for example, US_ASCII,
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the Simulink software displays a warning or an error message, depending
on whether it can or cannot encode the model, using the current character
encoding, respectively. The warning or error message specifies the encoding
of the current session and the encoding used to create the model. To avoid
corrupting the model (see “Saving Models with Different Character Encodings”
on page 1-16) and ensure correct display of the model’s text, you should:

1 Close all models open in the current session.

2 Use the slCharacterEncoding command to change the character encoding
of the current MATLAB software session to that of the model as specified in
the warning message.

3 Reopen the model.

You can now safely edit and save the model.

Avoiding Initial Model Open Delay
You may notice that the first model that you open in a MATLAB technical
computing environment session takes longer to open than do subsequent
models. This is because to reduce its own startup time and to avoid
unnecessary consumption of your system’s memory, the MATLAB software
does not load the Simulink product into memory until the first time you
open a Simulink model. You can cause the MATLAB technical computing
environment to load the Simulink software when the MATLAB product starts
up, and thus avoid the initial model opening delay. This can be done by using
either the -r command line option or your MATLAB software startup.m file
to run either load_simulink (loads the Simulink product) or simulink (loads
the Simulink product and opens the Simulink Library browser). For example,
to load the Simulink product when the MATLAB software starts up on a
computer running the Microsoft® Windows operating system, create a desktop
shortcut with the following target:

matlabroot\bin\win32\matlab.exe -r load_simulink

Similarly, the following command loads the Simulink software when the
MATLAB software starts up on UNIX® systems, systems:

matlab -r load_simulink
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Model Editor

In this section...

“Opening the Simulink® Model or Library” on page 1-6

“Editor Components” on page 1-7

“Undoing a Command” on page 1-8

“Zooming Block Diagrams” on page 1-9

“Panning Block Diagrams” on page 1-9

“View Command History” on page 1-10

“Bringing the MATLAB® Software Desktop Forward” on page 1-11

“Copying Models to Third-Party Applications” on page 1-11

Opening the Simulink® Model or Library
When you open a Simulink® model or library, the model or library is displayed
in an instance of the Model Editor.
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Editor Components
The Model Editor includes the following components.

Menu Bar
The Simulink menu bar contains commands for creating, editing, viewing,
printing, and simulating models. The menu commands apply to the model
displayed in the editor. See “Creating a Model” and “Running Simulations”
for more information.

Toolbar
The toolbar allows you to execute the most frequently used commands with
a click of a mouse button. For example, to open a Simulink software model,
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click the open folder icon on the toolbar. Letting the mouse cursor hover over
a toolbar button or control causes a tooltip to appear. The tooltip describes
the purpose of the button or control. You can hide the toolbar by clearing the
Toolbar option on the View menu.

Canvas
The canvas displays the model’s block diagram. The canvas allows you to edit
the block diagram. You can use your system’s mouse and keyboard to create
and connect blocks, select and move blocks, edit block labels, display block
dialog boxes, and so on. See “Working with Blocks” for more information.

Context Menus
A context-sensitive menu is displayed when you click the right mouse button
over the canvas. The contents of the menu depend on whether a block, line,
annotation, or other object is selected. If an object is selected, the menu
displays commands that apply only to the selected object. If no object is
selected, the menu displays commands that apply to a model or library as
a whole.

Status Bar
The status bar appears only in the Windows® operating system version of the
Model Editor. When a simulation is running, the status bar displays the
status of the simulation, including the current simulation time and the name
of the current solver. Regardless of the simulation state, the status bar also
displays the zoom factor of the model editor window expressed as a percentage
of normal (100%). You can display or hide the status bar by selecting or
clearing the Status Bar option on the View menu.

Undoing a Command
You can cancel the effects of up to 101 consecutive operations by choosing
Undo from the Edit menu. You can undo these operations:

• Adding, deleting, or moving a block

• Adding, deleting, or moving a line

• Adding, deleting, or moving a model annotation
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• Editing a block name

• Creating a subsystem (see “Undoing Subsystem Creation” for more
information)

You can reverse the effects of an Undo command by choosing Redo from
the Edit menu.

Zooming Block Diagrams
You can enlarge or shrink the view of the block diagram in the current
Simulink software window. To zoom a view:

• Select Zoom In from the View menu (or type r) to enlarge the view.

• Select Zoom Out from the View menu (or type v) to shrink the view.

• Select Fit System To View from the View menu (or press the space bar)
to fit the diagram to the view.

• Select Normal from the View menu (or type 1) to view the diagram at
actual size.

By default, the Simulink software fits a block diagram to view when you
open the diagram either in the model browser’s content pane or in a separate
window. If you change a diagram’s zoom setting and save the model containing
the diagram, the model editor restores the setting the next time you open the
diagram. If you want to restore the default behavior, choose Fit System To
View from the View menu the next time you open the diagram.

Panning Block Diagrams
You can use your keyboard alone (see “Model Viewing Shortcuts” on page
1-33 ) or in combination with your mouse to pan model diagrams that are
too large to fit in the Model Editor’s window. To use the keyboard and the
mouse, position the mouse over the diagram, hold down the p or q key on the
keyboard, then hold down the left mouse button.

Note You must press and hold down the key first and then the mouse button.
The reverse does not work.
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A pan cursor appears.
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Moving the mouse now pans the model diagram in the editor window.

View Command History
A history of the modeling viewing commands is maintained (such as pan and
zoom) that you execute for each model window. The history allows you to
quickly return to a previous view in a window, using the following commands,
accessible from the Model Editor’s View menu and tool bar:

• Back ( ) — Displays the previous view in the view history.

• Forward ( ) — Displays the next view in the view history.
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• Go To Parent ( ) — Opens, if necessary, the parent of the current
subsystem and brings its window to the top of the desktop.

Note A separate view history is maintained for each model window opened
in the current session. As a result, the View > Back and View > Forward
commands cannot cross window boundaries. For example, if window reuse
is not on and you open a subsystem in another window, you cannot use the
View > Back command to go to the window displaying the parent system.
You must use the View > Go To Parent command in this case. On the
other hand, if you enable window reuse and open a subsystem in the current
window, you can use View > Back to restore the parent view.

Bringing the MATLAB® Software Desktop Forward
The Simulink product opens model windows on top of the MATLAB®

desktop. To bring the MATLAB desktop back to the top of your screen, select
View > MATLAB Desktop from the Model Editor’s menu bar.

Copying Models to Third-Party Applications
On a computer running the Microsoft® Windows operating system, you can
copy a Simulink product model to the Windows operating system clipboard,
then paste it to a third-party application such as word processing software.
The Simulink product allows you to copy a model in either bitmap or metafile
format. You can then paste the clipboard model to an application that accepts
figures in bitmap or metafile format. See “Exporting to the Windows or
Macintosh® Clipboard” for a description of how to set up the figure settings
and save a figure to the clipboard.

The following steps give an example of how use the MATLAB software to copy
a model to a third-party application:

1 Set the figure copying options.

a Select File > Preferences. The Preferences dialog box appears.

b Under the Figure Copy Template node, select Copy Options.

c In the Clipboard format pane on the right, select Preserve information
(metafile if possible).
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With this setting, the MATLAB software selects the figure format for
you, and uses the metafile format whenever possible.

d Click OK.

2 Click OK.

3 Open the vdp model.

4 In the Model Editor, select Edit > Copy Model to Clipboard.

5 Open a document in Microsoft Word and paste the contents of the clipboard.
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Updating a Block Diagram
You can leave many attributes of a block diagram, such as signal data types
and sample times, unspecified. The Simulink® product then infers the values
of block diagram attributes based on block connectivity and attributes that
you do specify, a process known as updating the diagram. The Simulink
software tries to infer the most appropriate value for an attribute that you
do not specify. If an attribute cannot be inferred, it halts the update and
displays an error dialog box.

A model’s block diagram is updated at the start of every simulation of a
model. This assures that the simulation reflects the latest changes that you
have made to a model. In addition, you can command the Simulink software
to update a diagram at any time by selecting Edit > Update Diagram from
the Model Editor’s menu bar or context menu, or by pressing Ctrl+D. This
allows you to determine the values of block diagram attributes inferred by the
Simulink software immediately after opening or editing a model.

For example:

1 Create the following model.

1

Out1

1

Gain

1

Constant

2 Select Format > Port/Signal Displays > Port Data Types from the
Model Editor’s menu bar.

The data types of the output ports of the Constant and Gain blocks are
displayed. Note that the data type of both ports is double, the default value.

1

Out1

1

Gain

1

Constant

double double

3 Set the Signal Data Type parameter of the Constant block (see Constant)
to single.
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Note that the output port data type displays on the block diagram do not
reflect this change.

4 Select Edit > Update Diagram from the Model Editor’s menu bar or press
Ctrl-D.

The block diagram is updated to reflect the change that you made
previously.

1

Out1

1

Gain

1

Constant

single single

Note that the Simulink software has inferred a data type for the output
of the Gain block. This is because you did not specify a data type for the
block. The data type inferred is single because single precision is all that
is necessary to simulate the model accurately, given that the precision of
the block’s input is single.

1-14



Saving a Model

Saving a Model

In this section...

“About Saving a Model” on page 1-15

“Saving Models with Different Character Encodings” on page 1-16

“Saving a Model in Earlier Formats” on page 1-17

“Opening Models Originally Created in an Older Version of Simulink®”
on page 1-19

About Saving a Model
You can save a model by choosing either the Save or Save As command from
the File menu. The model is saved by generating a specially formatted file
called the model file (with the .mdl extension) that contains the block diagram
and block properties.

If you are saving a model for the first time, use the Save command to provide
a name and location for the model file. Model file names must start with a
letter and can contain letters, numbers, and underscores. The total number
must not be greater than a certain maximum, usually 63 characters. You can
use the MATLAB® software namelengthmax namelengthmax command to find
out if the maximum is greater than 63 characters for your system. The file
name must not be the same as that of a MATLAB software command.

If you are saving a model whose model file was previously saved, use the Save
command to replace the file’s contents or the Save As command to save the
model with a new name or location. You can also use the Save As command to
save the model in a format compatible with previous releases of the Simulink®

product (see “Saving a Model in Earlier Formats” on page 1-17).

The Simulink software follows this procedure while saving a model:

1 If the mdl file for the model already exists, it is renamed as a temporary file.

2 All block PreSaveFcn callback routines are executed first, then the block
diagram’s PreSaveFcn callback routine are executed.
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3 The model file is written to a new file using the same name and an
extension of mdl.

4 All block PostSaveFcn callback routines are executed, then the block
diagram’s PostSaveFcn callback routine is executed.

5 The temporary file is deleted.

If an error occurs during this process, the Simulink software renames the
temporary file to the name of the original model file, writes the current version
of the model to a file with an .err extension, and issues an error message. If
an error occurs in step 2, step 3 is omitted and steps 4 and 5 are performed.

Saving Models with Different Character Encodings
When a model is saved, the character encoding in effect when the model was
created (the original encoding) is used to encode the text stored in the model’s
.mdl file, regardless of the character encoding in effect when the model is
saved. This can lead to model corruption if you save a model whose original
encoding differs from encoding currently in effect.

For example, it’s possible you could have introduced characters that cannot be
represented in the model’s original encoding. If this is the case, the model is
saved as model.err where model is the model’s name, leaving the original
model file unchanged. The Simulink software also displays an error message
that specifies the line and column number of the first unrepresentable
character. To recover from this error without losing all the changes you’ve
made to the model in the current session, use the following procedure. First,
use a text editor to find the character in the .err file at the position specified
by the save error message. Then, find and delete the corresponding character
in the open model and resave the model . Repeat this process until you are
able to save the model without error.

It’s possible that your model’s original encoding can represent all the text
changes that you’ve made in the current session, albeit incorrectly. For
example, suppose you open a model whose original encoding is A in a session
whose current encoding is B. Further, suppose you edit the model to include a
character that has different encodings in A and B and then save the model.
For example, suppose that the encoding for x in B is the same as the coding
for y in A and you insert x in the model while B is in effect, save the model,
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and then reopen the model with A in effect. In this scenario, the Simulink
software will display x as y. To alert you to the possibility of such corruptions,
the software displays a warning message when you save a model and the
current and original encoding differ but the original encoding can encode,
possibly incorrectly, all the characters to be saved in the model file.

Saving a Model in Earlier Formats
The Save As command allows you to save a model created with the latest
version of the Simulink software in formats used by earlier versions, including
Simulink 4 (Release 12), Simulink 4.1 (Release 12.1), Simulink 5 (Release 13),
Simulink 5.1 (Release 13SP1), and Simulink 6 (Release 14, compatible with
Release 14, Release 14SP1, and Release 14SP2). You might want to do this,
for example, if you need to make a model available to colleagues who have
access only to one of these earlier versions of the Simulink product.

To save a model in earlier format:

1 Select Save from the File menu. This saves a copy in the latest version of
Simulink. This step is necessary to avoid compatibility problems.

2 Select Save As from the File menu.

The Save As dialog box is displayed.

1-17



1 Simulink® Basics

3 Select a format from the Save as type list on the dialog box.

4 Click the Save button.

When saving a model in an earlier version’s format, the model is saved in the
earlier format regardless of whether the model contains blocks and features
that were introduced after that version. If the model does contain blocks
or use features that postdate the earlier version, the model might not give
correct results when run by the earlier version. For example, matrix and
frame signals do not work in Release 11, because Release 11 does not have
matrix and frame support. Similarly, models that contain unconditionally
executed subsystems marked Treat as atomic unit might produce different
results in Release 11, because Release 11 does not support unconditionally
executed atomic subsystems.

The command converts blocks that postdate the earlier version into empty
masked subsystem blocks colored yellow. For example, post-Release 11 blocks
include
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• Lookup Table (n-D)

• Assertion

• Rate Transition

• PreLookup Index Search

• Interpolation (n-D)

• Direct Lookup Table (n-D)

• Polynomial

• Matrix Concatenation

• Signal Specification

• Bus Creator

• If, WhileIterator, ForIterator, Assignment

• SwitchCase

• Bitwise Logical Operator

Post-Release 11 blocks from blocksets appear as unlinked blocks.

Opening Models Originally Created in an Older
Version of Simulink®

Opening models originally created in an older version of Simulink and then
using Save as can cause compatibility problems unless they are first saved
with the most recent Simulink version and then opened and saved with the
older version of Simulink.

Use the following procedure if you wish to open a model created in an older
version of Simulink, and wish to save it to some other version:

1 Open the older model with the most recent version of Simulink available to
you

2 Before making any changes, use Save to save the model in the most recent
version of Simulink available to you

3 If you wish to modify or run the model, do so at this step
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4 Use Save as to save the model in an older Simulink version. Start the
older version of Simulink and use it to open the just saved model

5 While still in the older version of Simulink, but before making any changes
or running the model, use Save to save the model. You can now run the
model in the older version of Simulink.
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Printing a Block Diagram

In this section...

“About Printing” on page 1-21

“Print Dialog Box” on page 1-21

“Specifying Paper Size and Orientation” on page 1-23

“Positioning and Sizing a Diagram” on page 1-23

“Tiled Printing” on page 1-24

“Print Command” on page 1-28

About Printing
You can print a block diagram by selecting Print from the File menu or by
using the print command in the MATLAB® software Command Window.

Print Dialog Box
When you select the Print menu item, the Print dialog box appears. The
Print dialog box enables you to selectively print systems within your model.
Using the dialog box, you can print

• The current system only

• The current system and all systems above it in the model hierarchy

• The current system and all systems below it in the model hierarchy, with
the option of looking into the contents of masked and library blocks

• All systems in the model, with the option of looking into the contents of
masked and library blocks

• The entire diagram over multiple pages

• An overlay frame on each diagram
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The portion of the Print dialog box that supports selective printing is similar
on supported platforms. This figure shows how it looks on a computer running
the Microsoft® Windows® operating system. In this figure, only the current
system is to be printed.

When you select either the Current system and below or All systems
option, two check boxes become enabled. In this figure, All systems is
selected.
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Selecting the Look under mask dialog check box prints the contents of
masked subsystems when encountered at or below the level of the current
block. When you are printing all systems, the top-level system is considered
the current block, so the Simulink® software looks under any masked blocks
encountered.

Selecting the Expand unique library links check box prints the contents
of library blocks when those blocks are systems. Only one copy is printed
regardless of how many copies of the block are contained in the model.
For more information about libraries, see Chapter 7, “Working with Block
Libraries”.

The print log lists the blocks and systems printed. To print the print log,
select the Include Print Log check box.

Selecting the Enable tiled printing for all systems check box overrides the
tiled-print settings for individual subsystems in a model. See “Tiled Printing”
on page 1-24 for more information.

Selecting the Frame check box prints a title block frame on each diagram.
Enter the path to the title block frame in the adjacent edit box. You can create
a customized title block frame, using the MATLAB product frame editor. See
frameedit for information on using the frame editor to create title block
frames.

Specifying Paper Size and Orientation
You can specify the type and orientation of the paper used to print a model
diagram. You can do this on all platforms by setting the model’s PaperType
and PaperOrientation properties, respectively (see “Model and Block
Parameters” in the online reference), using the set_param command. You
can set the paper orientation alone, using the MATLAB software orient
command. On computers running the Windows, operating system, the Print
and Printer Setup dialog boxes let you set the page type and orientation
properties as well.

Positioning and Sizing a Diagram
You can use a model’s PaperPositionMode and PaperPosition parameters to
position and size the model’s diagram on the printed page. The value of the
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PaperPosition parameter is a vector of form [left bottom width height].
The first two elements specify the bottom-left corner of a rectangular area
on the page, measured from the page’s bottom-left corner. The last two
elements specify the width and height of the rectangle. When the model’s
PaperPositionMode is manual, the Simulink software positions (and scales,
if necessary) the model’s diagram to fit inside the specified print rectangle.
For example, the following commands

vdp
set_param('vdp', 'PaperType', 'usletter')
set_param('vdp', 'PaperOrientation', 'landscape')
set_param('vdp', 'PaperPositionMode', 'manual')
set_param('vdp', 'PaperPosition', [0.5 0.5 4 4])
print -svdp

print the block diagram of the vdp sample model in the lower-left corner of a
U.S. letter-size page in landscape orientation.

If PaperPositionMode is auto, the Simulink software centers the model
diagram on the printed page, scaling the diagram, if necessary, to fit the page.

Tiled Printing
By default, each block diagram is scaled during the printing process such that
it fits on a single page. That is, the size of a small diagram is increased or
the size of a large diagram is decreased to confine its printed image to one
page. In the case of a large diagram, scaling can make the printed image
difficult to read.

By contrast, tiled printing enables you to print even the largest block
diagrams without sacrificing clarity and detail. Tiled printing allows you to
distribute a block diagram over multiple pages. You can control the number of
pages over which the Simulink software prints the block diagram, and hence,
the total size of the printed diagram.

Moreover, different tiled-print settings are accommodated for each of the
systems in your model. Consequently, you can customize the appearance of
all printed images to best suit your needs. The following sections describe
how to utilize tiled printing.
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Enabling Tiled Printing
To enable tiled printing for a particular system in your model, select the
Enable Tiled Printing item from the File menu associated with that
system’s Model Editor.

Or you can enable tiled printing programmatically using the set_param
command. Simply set the system’s PaperPositionMode parameter to tiled
(see “Model Parameters” in the online Simulink reference). For example, the
following commands

sldemo_f14
set_param('sldemo_f14/Controller', 'PaperPositionMode', 'tiled')

open the f14 demo model and enable tiled printing for the Controller
subsystem.

To enable tiled printing for all systems in your model, select the Enable
tiled printing for all systems check box on the Print dialog box (see “Print
Dialog Box” on page 1-21). If you select this option, the Simulink software
overrides the individual tiled-print settings for all systems in your model.

Displaying Page Boundaries
You can display the page boundaries in the Model Editor to visualize
the model’s size and layout with respect to the page. To make the page
boundaries visible for a particular system in your model, select the Show
Page Boundaries item from the View menu associated with that system’s
Model Editor. Or you can display the page boundaries programmatically
using the set_param command. Simply set the system’s ShowPageBoundaries
parameter to on (see “Model Parameters” in the online Simulink reference).

The Simulink software renders the page boundaries on the Model Editor’s
canvas. If tiled printing is enabled, page boundaries are represented
by a checkerboard pattern. As illustrated in the following figure, each
checkerboard square indicates the extent of a separate page.

1-25



1 Simulink® Basics

If tiled printing is disabled, only a single page is displayed on the Model
Editor’s canvas.

Specifying Tiled Print Settings
You can use a system’s TiledPageScale and TiledPaperMargins parameters
to customize certain aspects of tiled printing. You specify values for these
parameters using the set_param command.

The TiledPageScale parameter scales the block diagram so that more or less
of it appears on a single tiled page. By default, its value is 1. Values greater
than 1 proportionally scale the diagram such that it occupies a smaller
percentage of the tiled page, while values between 0 and 1 proportionally
scale the diagram such that it occupies a larger percentage of the tiled page.
For example, a TiledPageScale of 0.5 makes the printed diagram appear
twice its size on a tiled page, while a TiledPageScale of 2 makes the printed
diagram appear half its size on a tiled page.

You can specify the margin sizes associated with tiled pages using the
TiledPaperMargins parameter. The value of TiledPaperMargins is a
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vector of form [left top right bottom]. Each element specifies the size
of the margin at a particular edge of the page. The value of the PaperUnits
parameter is used to determine its units of measurement. Each margin to
0.5 inches by default. By decreasing the margin sizes, you can increase the
printable area of the tiled pages.

Printing Tiled Pages
By default, all of a system’s tiled pages are printed when you select Print from
the File menu or use the print command at the MATLAB software prompt.

Alternatively, you can specify the range of tiled page numbers that are
printed printed, as follows:

• On a computer running the Microsoft Windows operating system, you can
specify a range of tiled page numbers to be printed using the Print range
portion of the Print dialog box. This field is accessible if you select both the
Current system and Enable tiled printing for all systems options (see
“Print Dialog Box” on page 1-21).

• On all platforms, you can specify a range of tiled page numbers to be
printed using the print command at the MATLAB software prompt. The
print command’s tileall option enables tiled printing for the system, and
its pages option indicates the range of tiled page numbers to be printed (see
“Print Command” on page 1-28). For example, the following commands

vdp
set_param('vdp', 'PaperPositionMode', 'tiled')
set_param('vdp', 'ShowPageBoundaries', 'on')
set_param('vdp', 'TiledPageScale', '0.1')

open the vdp demo model, enable tiled printing, display the page
boundaries, and scale the tiled pages such that the block diagram spans
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multiple pages. You can print the second, third, and fourth pages by issuing
the following command at the MATLAB software prompt:

print('-svdp', '-tileall', '-pages[2 4]')

Note The Simulink software uses a row-major scheme to number tiled pages.
For example, the first page of the first row is 1, the second page of the first
row is 2, etc.

Print Command
The format of the print command is

print -ssys -device -tileall -pagesp filename

sys is the name of the system to be printed. The system name must be
preceded by the s switch identifier and is the only required argument. sys
must be open or must have been open during the current session. If the
system name contains spaces or takes more than one line, you need to specify
the name as a string. See the examples below.

device specifies a device type. For a list and description of device types, see
the documentation for the MATLAB software print function.

tileall specifies the tiled printing option (see “Tiled Printing” on page 1-24).

p is a two-element vector specifying the range of tiled page numbers to be
printed. The vector must be preceded by the pages switch identifier. This
option is valid only when you enable tiled printing using the tileall switch.
For an example of its usage, see “Printing Tiled Pages” on page 1-27.

filename is the PostScript® file to which the output is saved. If filename
exists, it is replaced. If filename does not include an extension, an
appropriate one is appended.

For example, this command prints a system named untitled.

print -suntitled
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This command prints the contents of a subsystem named Sub1 in the current
system.

print -sSub1

This command prints the contents of a subsystem named Requisite
Friction.

print (['-sRequisite Friction'])

The next example prints a system named Friction Model, a subsystem
whose name appears on two lines. The first command assigns the newline
character to a variable; the second prints the system.

cr = sprintf('\n');
print (['-sFriction' cr 'Model'])

To print the currently selected subsystem, enter

print(['-s', gcb])
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Generating a Model Report
A model report is an HTML document that describes a model’s structure and
content. The report includes block diagrams of the model and its subsystems
and the settings of its block parameters.

To generate a report for the current model:

1 Select Print Details from the model’s File menu.

The Print Details dialog box appears.

The dialog box allows you to select various report options (see “Model
Report Options” on page 1-31).

2 Select the desired report options on the dialog box.

3 Select Print.

The Simulink® software generates the HTML report and displays the report
in your system’s default HTML browser.
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While generating the report, the Simulink software displays status messages
on a messages pane that replaces the options pane on the Print Details
dialog box.

You can select the detail level of the messages from the list at the top of the
messages pane. When the report generation process begins, the Print button
on the Print Details dialog box changes to a Stop button. Clicking this
button terminates the report generation. When the report generation process
finishes, the Stop button changes to an Options button. Clicking this button
redisplays the report generation options, allowing you to generate another
report without having to reopen the Print Details dialog box.

Model Report Options
The Print Details dialog box allows you to select the following report options.

Directory
The directory where the HTML report is stored. The options include your
system’s temporary directory (the default), your system’s current directory, or
another directory whose path you specify in the adjacent edit field.
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Increment filename to prevent overwriting old files
Creates a unique report file name each time you generate a report for the
same model in the current session. This preserves each report.

Current object
Include only the currently selected object in the report.

Current and above
Include the current object and all levels of the model above the current object
in the report.

Current and below
Include the current object and all levels below the current object in the report.

Entire model
Include the entire model in the report.

Look under mask dialog
Include the contents of masked subsystems in the report.

Expand unique library links
Include the contents of library blocks that are subsystems. The report
includes a library subsystem only once even if it occurs in more than one
place in the model.
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Summary of Mouse and Keyboard Actions

In this section...

“Model Viewing Shortcuts” on page 1-33

“Block Editing Shortcuts” on page 1-34

“Line Editing Shortcuts” on page 1-35

“Signal Label Editing Shortcuts” on page 1-35

“Annotation Editing Shortcuts” on page 1-36

Model Viewing Shortcuts
The following table lists keyboard shortcuts for viewing models.

Task

Microsoft®
Windows®

Operating System UNIX® System

Zoom in r r

Zoom out v v

Zoom to normal (100%) 1 1

Pan left d or Ctrl+Left Arrow d or Ctrl+Left Arrow

Pan right g or Ctrl+Right
Arrow

g or Ctrl+Right
Arrow

Pan up e or Ctrl+Up Arrow e or Ctrl+Up Arrow

Pan down c or Ctrl+Down
Arrow

c or Ctrl+Down
Arrow

Fit selection to screen f f

Fit diagram to screen Space Space

Pan with mouse Hold down p or q and
drag mouse

Hold down p or q and
drag mouse

Go back in pan/zoom
history

b or Shift+Left Arrow b or Shift+Left Arrow
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Task

Microsoft®
Windows®

Operating System UNIX® System

Go forward in pan/zoom
history

t or Shift+Right
Arrow

t or Shift+Right
Arrow

Delete selection Delete or Back Space Delete or Back Space

Move selection Use arrow keys Use arrow keys

Block Editing Shortcuts
The following table lists mouse and keyboard actions that apply to blocks.

Task
Microsoft Windows
Operating System UNIX System

Select one block LMB LMB

Select multiple blocks Shift + LMB Shift + LMB; or CMB
alone

Copy block from
another window

Drag block Drag block

Move block Drag block Drag block

Duplicate block Ctrl + LMB and drag;
or RMB and drag

Ctrl + LMB and drag;
or RMB and drag

Connect blocks LMB LMB

Disconnect block Shift + drag block Shift + drag block; or
CMB and drag

Open selected
subsystem

Enter Return

Go to parent of selected
subsystem

Esc Esc
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Line Editing Shortcuts
The following table lists mouse and keyboard actions that apply to lines.

Task
Microsoft Windows
Operating System UNIX System

Select one line LMB LMB

Select multiple lines Shift + LMB Shift + LMB; or CMB
alone

Draw branch line Ctrl + drag line; or RMB
and drag line

Ctrl + drag line; or RMB
+ drag line

Route lines around
blocks

Shift + draw line
segments

Shift + draw line
segments; or CMB and
draw segments

Move line segment Drag segment Drag segment

Move vertex Drag vertex Drag vertex

Create line
segments

Shift + drag line Shift + drag line; or CMB
+ drag line

Signal Label Editing Shortcuts
The next table lists mouse and keyboard actions that apply to signal labels.

Action
Microsoft Windows
Operating System UNIX System

Create signal
label

Double-click line, then
enter label

Double-click line, then
enter label

Copy signal label Ctrl + drag label Ctrl + drag label

Move signal label Drag label Drag label

Edit signal label Click in label, then edit Click in label, then edit

Delete signal
label

Shift + click label, then
press Delete

Shift + click label, then
press Delete
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Annotation Editing Shortcuts
The next table lists mouse and keyboard actions that apply to annotations.

Action
Microsoft Windows
Operating System UNIX System

Create
annotation

Double-click in diagram,
then enter text

Double-click in diagram,
then enter text

Copy annotation Ctrl + drag label Ctrl + drag label

Move annotation Drag label Drag label

Edit annotation Click in text, then edit Click in text, then edit

Delete
annotation

Shift + select annotation,
then press Delete

Shift + select annotation,
then press Delete
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Ending a Simulink® Session
Terminate a Simulink® software session by closing all Simulink windows.

Terminate a MATLAB® software session by choosing one of these commands
from the File menu:

• On a computer running the Microsoft® Windows® operating system: Exit
MATLAB

• On a UNIX® system, system: Quit MATLAB
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2 How Simulink® Works

Introduction
Simulink® is a software package that enables you to model, simulate, and
analyze systems whose outputs change over time. Such systems are often
referred to as dynamic systems. The Simulink software can be used to explore
the behavior of a wide range of real-world dynamic systems, including
electrical circuits, shock absorbers, braking systems, and many other
electrical, mechanical, and thermodynamic systems. This section explains
how Simulink works.

Simulating a dynamic system is a two-step process. First, a user creates a
block diagram, using the Simulink model editor, that graphically depicts
time-dependent mathematical relationships among the system’s inputs,
states, and outputs. The user then commands the Simulink software to
simulate the system represented by the model from a specified start time to
a specified stop time.
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Modeling Dynamic Systems

In this section...

“Block Diagram Semantics” on page 2-3

“Creating Models” on page 2-4

“Time” on page 2-5

“States” on page 2-5

“Block Parameters” on page 2-9

“Tunable Parameters” on page 2-9

“Block Sample Times” on page 2-10

“Custom Blocks” on page 2-10

“Systems and Subsystems” on page 2-11

“Signals” on page 2-12

“Block Methods” on page 2-12

“Model Methods” on page 2-14

Block Diagram Semantics
A classic block diagram model of a dynamic system graphically consists
of blocks and lines (signals). The history of these block diagram models
is derived from engineering areas such as Feedback Control Theory and
Signal Processing. A block within a block diagram defines a dynamic system
in itself. The relationships between each elementary dynamic system in a
block diagram are illustrated by the use of signals connecting the blocks.
Collectively the blocks and lines in a block diagram describe an overall
dynamic system.

The Simulink® product extends these classic block diagram models by
introducing the notion of two classes of blocks, nonvirtual blocks and virtual
blocks. Nonvirtual blocks represent elementary systems. A virtual block is
provided for graphical organizational convenience and plays no role in the
definition of the system of equations described by the block diagram model.
Examples of virtual blocks are the Bus Creator and Bus Selector which are
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used to reduce block diagram clutter by managing groups of signals as a
“bundle.” You can use virtual blocks to improve the readability of your models.

In general, blocks and lines can be used to describe many “models of
computations.” One example would be a flow chart. A flow chart consists of
blocks and lines, but one cannot describe general dynamic systems using
flow chart semantics.

The term “time-based block diagram” is used to distinguish block diagrams
that describe dynamic systems from that of other forms of block diagrams,
and the term block diagram (or model) is used to refer to a time-based block
diagram unless the context requires explicit distinction.

To summarize the meaning of time-based block diagrams:

• Simulink block diagrams define time-based relationships between signals
and state variables. The solution of a block diagram is obtained by
evaluating these relationships over time, where time starts at a user
specified “start time” and ends at a user specified “stop time.” Each
evaluation of these relationships is referred to as a time step.

• Signals represent quantities that change over time and are defined for all
points in time between the block diagram’s start and stop time.

• The relationships between signals and state variables are defined by a set
of equations represented by blocks. Each block consists of a set of equations
(block methods). These equations define a relationship between the input
signals, output signals and the state variables. Inherent in the definition
of a equation is the notion of parameters, which are the coefficients found
within the equation.

Creating Models
The Simulink product provides a graphical editor that allows you to create and
connect instances of block types (see Chapter 3, “Creating a Model”) selected
from libraries of block types (see ) via a library browser. Libraries of blocks
are provided representing elementary systems that can be used as building
blocks. The blocks supplied with Simulink are called built-in blocks. Users
can also create their own block types and use the Simulink editor to create
instances of them in a diagram. User-defined blocks are called custom blocks.
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Time
Time is an inherent component of block diagrams in that the results of a block
diagram simulation change with time. Put another way, a block diagram
represents the instantaneous behavior of a dynamic system. Determining
a system’s behavior over time thus entails repeatedly solving the model at
intervals, called time steps, from the start of the time span to the end of the
time span. The process of solving a model at successive time steps is referred
to as simulating the system that the model represents.

States
Typically the current values of some system, and hence model, outputs are
functions of the previous values of temporal variables. Such variables are
called states. Computing a model’s outputs from a block diagram hence entails
saving the value of states at the current time step for use in computing the
outputs at a subsequent time step. This task is performed during simulation
for models that define states.

Two types of states can occur in a Simulink model: discrete and continuous
states. A continuous state changes continuously. Examples of continuous
states are the position and speed of a car. A discrete state is an approximation
of a continuous state where the state is updated (recomputed) using finite
(periodic or aperiodic) intervals. An example of a discrete state would be the
position of a car shown on a digital odometer where it is updated every second
as opposed to continuously. In the limit, as the discrete state time interval
approaches zero, a discrete state becomes equivalent to a continuous state.

Blocks implicitly define a model’s states. In particular, a block that needs
some or all of its previous outputs to compute its current outputs implicitly
defines a set of states that need to be saved between time steps. Such a block
is said to have states.

The following is a graphical representation of a block that has states:
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Blocks that define continuous states include the following standard Simulink
blocks:

• Integrator

• State-Space

• Transfer Fcn

• Variable Transport Delay

• Zero-Pole

The total number of a model’s states is the sum of all the states defined by all
its blocks. Determining the number of states in a diagram requires parsing the
diagram to determine the types of blocks that it contains and then aggregating
the number of states defined by each instance of a block type that defines
states. This task is performed during the Compilation phase of a simulation.

Working with States
The following facilities are provided for determining, initializing, and logging
a model’s states during simulation:

• The model command displays information about the states defined by a
model, including the total number of states defined by the model, the block
that defines each state, and the initial value of each state.

• The Simulink debugger displays the value of a state at each time step
during a simulation, and the Simulink debugger’s states command
displays information about the model’s current states (see Chapter 18,
“Simulink® Debugger”).

• The Data Import/Export pane of a model’s Configuration Parameters
dialog box (see “Importing and Exporting Simulation Data” on page 14-21)
allows you to specify initial values for a model’s states, and to record the
values of the states at each time step during simulation as an array or
structure variable in the MATLAB® workspace.

• The Block Parameters dialog box (and the ContinuousStateAttributes
parameter) allows you to give names to states for those blocks (such as the
Integrator) that employ continuous states. This can simplify analyzing
data logged for states, especially when a block has multiple states.
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The Two Cylinder Model with Load Constraints demo illustrates the
logging of continuous states.

Continuous States
Computing a continuous state entails knowing its rate of change, or derivative.
Since the rate of change of a continuous state typically itself changes
continuously (i.e., is itself a state), computing the value of a continuous state
at the current time step entails integration of its derivative from the start of
a simulation. Thus modeling a continuous state entails representing the
operation of integration and the process of computing the state’s derivative at
each point in time. Simulink block diagrams use Integrator blocks to indicate
integration and a chain of blocks connected to an integrator block’s input to
represent the method for computing the state’s derivative. The chain of blocks
connected to the integrator block’s input is the graphical counterpart to an
ordinary differential equation (ODE).

In general, excluding simple dynamic systems, analytical methods do not
exist for integrating the states of real-world dynamic systems represented
by ordinary differential equations. Integrating the states requires the use
of numerical methods called ODE solvers. These various methods trade
computational accuracy for computational workload. The Simulink product
comes with computerized implementations of the most common ODE
integration methods and allows a user to determine which it uses to integrate
states represented by Integrator blocks when simulating a system.

Computing the value of a continuous state at the current time step entails
integrating its values from the start of the simulation. The accuracy of
numerical integration in turn depends on the size of the intervals between
time steps. In general, the smaller the time step, the more accurate the
simulation. Some ODE solvers, called variable time step solvers, can
automatically vary the size of the time step, based on the rate of change
of the state, to achieve a specified level of accuracy over the course of a
simulation. The user can specify the size of the time step in the case of
fixed-step solvers, or the solver can automatically determine the step size in
the case of variable-step solvers. To minimize the computation workload, the
variable-step solver chooses the largest step size consistent with achieving an
overall level of precision specified by the user for the most rapidly changing
model state. This ensures that all model states are computed to the accuracy
specified by the user.
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Discrete States
Computing a discrete state requires knowing the relationship between its
value at the current time step and its value at the previous time step. This is
referred to this relationship as the state’s update function. A discrete state
depends not only on its value at the previous time step but also on the values
of a model’s inputs. Modeling a discrete state thus entails modeling the state’s
dependency on the systems’ inputs at the previous time step. Simulink block
diagrams use specific types of blocks, called discrete blocks, to specify update
functions and chains of blocks connected to the inputs of discrete blocks to
model the dependency of a system’s discrete states on its inputs.

As with continuous states, discrete states set a constraint on the simulation
time step size. Specifically, the step size must ensure that all the sample
times of the model’s states are hit. This task is assigned to a component of the
Simulink system called a discrete solver. Two discrete solvers are provided: a
fixed-step discrete solver and a variable-step discrete solver. The fixed-step
discrete solver determines a fixed step size that hits all the sample times
of all the model’s discrete states, regardless of whether the states actually
change value at the sample time hits. By contrast, the variable-step discrete
solver varies the step size to ensure that sample time hits occur only at times
when the states change value.

Modeling Hybrid Systems
A hybrid system is a system that has both discrete and continuous states.
Strictly speaking, any model that has both continuous and discrete sample
times are treated as a hybrid model, presuming that the model has both
continuous and discrete states. Solving such a model entails choosing a
step size that satisfies both the precision constraint on the continuous state
integration and the sample time hit constraint on the discrete states. The
Simulink software meets this requirement by passing the next sample time
hit, as determined by the discrete solver, as an additional constraint on
the continuous solver. The continuous solver must choose a step size that
advances the simulation up to but not beyond the time of the next sample
time hit. The continuous solver can take a time step short of the next sample
time hit to meet its accuracy constraint but it cannot take a step beyond the
next sample time hit even if its accuracy constraint allows it to.
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Block Parameters
Key properties of many standard blocks are parameterized. For example,
the Constant value of the Simulink Constant block is a parameter. Each
parameterized block has a block dialog that lets you set the values of the
parameters. You can use MATLAB expressions to specify parameter values.
Simulink evaluates the expressions before running a simulation. You can
change the values of parameters during a simulation. This allows you to
determine interactively the most suitable value for a parameter.

A parameterized block effectively represents a family of similar blocks. For
example, when creating a model, you can set the Constant value parameter of
each instance of the Constant block separately so that each instance behaves
differently. Because it allows each standard block to represent a family of
blocks, block parameterization greatly increases the modeling power of the
standard Simulink libraries.

Tunable Parameters
Many block parameters are tunable. A tunable parameter is a parameter
whose value can be changed without recompiling the model (see “Model
Compilation” on page 2-15 for more information on compiling a model). For
example, the gain parameter of the Gain block is tunable. You can alter the
block’s gain while a simulation is running. If a parameter is not tunable and
the simulation is running, the dialog box control that sets the parameter
is disabled.

Note You can not change the values of source block parameters through
either a dialog box or the Model Explorer while a simulation is running.
Opening the dialog box of a source block with tunable parameters causes a
running simulation to pause. While the simulation is paused, you can edit
the parameter values displayed on the dialog box. However, you must close
the dialog box to have the changes take effect and allow the simulation to
continue.

It should be pointed out that parameter changes do not immediately occur,
but are queued up and then applied at the start of the next time step during
model execution. Returning to our example of the constant block, the function
it defines is signal(t) = ConstantValue for all time. If we were to allow the
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constant value to be changed immediately, then the solution at the point in
time at which the change occurred would be invalid. Thus we must queue the
change for processing at the next time step.

You can use the Inline parameters option on the Optimization pane of the
Configuration Parameters dialog box to specify that all parameters in
your model are nontunable except for those that you specify. This can speed
up execution of large models and enable generation of faster code from your
model. See “Configuration Parameters Dialog Box” for more information.

Block Sample Times
Every Simulink block is considered to have a sample time, even continuous
blocks (e.g., blocks that define continuous states, such as the Integrator block)
and blocks that do not define states, such as the Gain block. Most blocks allow
you to specify their sample times via a Sample Time parameter. Continuous
blocks are considered to have an infinitesimal sample time called a continuous
sample time. A block that does not specify its sample time is said to have an
implicit sample time that it inherits from its inputs. The implicit sample
time is continuous if any of the block’s inputs are continuous. Otherwise, the
implicit sample time is discrete. An implicit discrete sample time is equal
to the shortest input sample time if all the input sample times are integer
multiples of the shortest time. Otherwise, the implicit sample time is equal to
the fundamental sample time of the inputs, where the fundamental sample
time of a set of sample times is defined as the greatest integer divisor of
the set of sample times. See also “Sample Time Propagation” on page 2-47
for a description of how a process called sample time propagation is used to
determine the sample times of blocks that inherit their sample times.

A block diagram can be optionally color code to indicate the sample times of
the blocks it contains, e.g., black (continuous), magenta (constant), yellow
(hybrid), red (fastest discrete), and so on. See “Displaying Sample Time
Colors” on page 3-10 for more information.

Custom Blocks
You can create libraries of custom blocks that you can then use in your models.
You can create a custom block either graphically or programmatically. To
create a custom block graphically, you draw a block diagram representing the
block’s behavior, wrap this diagram in an instance of the Simulink Subsystem
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block, and provide the block with a parameter dialog, using the Simulink block
mask facility. To create a block programmatically, you create an M-file or a
MEX-file that contains the block’s system functions (see Writing S-Functions).
The resulting file is called an S-function. You then associate the S-function
with instances of the Simulink S-Function block in your model. You can add
a parameter dialog to your S-Function block by wrapping it in a Subsystem
block and adding the parameter dialog to the Subsystem block. See Chapter
21, “Creating Custom Blocks” for more information.

Systems and Subsystems
A Simulink block diagram can consist of layers. Each layer is defined by a
subsystem. A subsystem is part of the overall block diagram and ideally has
no impact on the meaning of the block diagram. Subsystems are provided
primarily to help in the organization aspects of a block diagram. Subsystems
do not define a separate block diagram.

The Simulink software differentiates between two different types of
subsystems: virtual and nonvirtual. The main difference is that nonvirtual
subsystems provide the ability to control when the contents of the subsystem
are evaluated.

Flattening the Model Hierarchy
While preparing a model for execution, internal “systems” are generated that
are collections of block methods (equations) that are evaluated together. The
semantics of time-based block diagrams doesn’t require creation of these
systems. These internal systems are created as a means to manage the
execution of the model. Roughly speaking, there will be one system for the
top-level block diagram which is referred to as the root system, and several
lower-level systems derived from nonvirtual subsystems and other elements
in the block diagram. You will see these systems in the Simulink Debugger.
The act of creating these internal systems is often referred to as flattening
the model hierarchy.

Conditionally Executed Subsystems
You can create conditionally executed subsystems that are executed only
when a transition occurs on a triggering, function-call, action, or enabling
input (see Chapter 4, “Creating Conditional Subsystems”). Conditionally
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executed subsystems are atomic, i.e., the equations that they define are
evaluated as a unit.

Atomic Subsystems
Unconditionally executed subsystems are virtual by default. You can,
however, designate an unconditionally executed subsystem as atomic (see the
Atomic Subsystem block for more information). This is useful if you need to
ensure that the equations defined by a subsystem are evaluated as a unit.

Signals
The term signal refers to a time varying quantity that has values at all
points in time. You can specify a wide range of signal attributes, including
signal name, data type (e.g., 8-bit, 16-bit, or 32-bit integer), numeric type
(real or complex), and dimensionality (one-dimensional, two-dimensional, or
multidimensional array). Many blocks can accept or output signals of any
data or numeric type and dimensionality. Others impose restrictions on the
attributes of the signals they can handle.

On the block diagram, signals are represented with lines that have an
arrowhead. The source of the signal corresponds to the block that writes to the
signal during evaluation of its block methods (equations). The destinations of
the signal are blocks that read the signal during the evaluation of the block’s
methods (equations).

A good way to understand the definition of a signal is to consider a classroom.
The teacher is the one responsible for writing on the white board and the
students read what is written on the white board when they choose to. This
is also true of Simulink signals: a reader of the signal (a block method) can
choose to read the signal as frequently or infrequently as so desired.

For more information about signals, see Chapter 8, “Working with Signals”.

Block Methods
Blocks represent multiple equations. These equations are represented as
block methods. These block methods are evaluated (executed) during the
execution of a block diagram. The evaluation of these block methods is
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performed within a simulation loop, where each cycle through the simulation
loop represent evaluation of the block diagram at a given point in time.

Method Types
Names are assigned to the types of functions performed by block methods.
Common method types include:

• Outputs

Computes the outputs of a block given its inputs at the current time step
and its states at the previous time step.

• Update

Computes the value of the block’s discrete states at the current time step,
given its inputs at the current time step and its discrete states at the
previous time step.

• Derivatives

Computes the derivatives of the block’s continuous states at the current
time step, given the block’s inputs and the values of the states at the
previous time step.

Method Naming Convention
Block methods perform the same types of operations in different ways for
different types of blocks. The Simulink user interface and documentation uses
dot notation to indicate the specific function performed by a block method:

BlockType.MethodType

For example, the method that computes the outputs of a Gain block is referred
to as

Gain.Outputs

The Simulink debugger takes the naming convention one step further and
uses the instance name of a block to specify both the method type and the
block instance on which the method is being invoked during simulation, e.g.,

g1.Outputs
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Model Methods
In addition to block methods, a set of methods is provided that compute the
model’s properties and its outputs. The Simulink software similarly invokes
these methods during simulation to determine a model’s properties and its
outputs. The model methods generally perform their tasks by invoking block
methods of the same type. For example, the model Outputs method invokes
the Outputs methods of the blocks that it contains in the order specified by
the model to compute its outputs. The model Derivatives method similarly
invokes the Derivatives methods of the blocks that it contains to determine
the derivatives of its states.
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Simulating Dynamic Systems

In this section...

“Model Compilation” on page 2-15

“Link Phase” on page 2-16

“Simulation Loop Phase” on page 2-16

“Solvers” on page 2-18

“Zero-Crossing Detection” on page 2-20

“Algebraic Loops” on page 2-31

Model Compilation
The first phase of simulation occurs when you choose Start from the Model
Editor’s Simulation menu, with the system’s model open. This causes the
Simulink® engine to invoke the model compiler. The model compiler converts
the model to an executable form, a process called compilation. In particular,
the compiler

• Evaluates the model’s block parameter expressions to determine their
values.

• Determines signal attributes, e.g., name, data type, numeric type, and
dimensionality, not explicitly specified by the model and checks that each
block can accept the signals connected to its inputs.

• A process called attribute propagation is used to determine unspecified
attributes. This process entails propagating the attributes of a source
signal to the inputs of the blocks that it drives.

• Performs block reduction optimizations.

• Flattens the model hierarchy by replacing virtual subsystems with the
blocks that they contain (see “Solvers” on page 2-18).

• Determines the block sorted order (see “Controlling and Displaying the
Sorted Order” on page 6-36 for more information).

• Determines the sample times of all blocks in the model whose sample times
you did not explicitly specify (see “Sample Time Propagation” on page 2-47).
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Link Phase
In this phase, the Simulink Engine allocates memory needed for working
areas (signals, states, and run-time parameters) for execution of the block
diagram. It also allocates and initializes memory for data structures that
store run-time information for each block. For built-in blocks, the principal
run-time data structure for a block is called the SimBlock. It stores pointers
to a block’s input and output buffers and state and work vectors.

Method Execution Lists
In the Link phase, the Simulink engine also creates method execution lists.
These lists list the most efficient order in which to invoke a model’s block
methods to compute its outputs. The block sorted order lists generated during
the model compilation phase is used to construct the method execution lists.

Block Priorities
You can assign update priorities to blocks (see “Assigning Block Priorities” on
page 6-39). The output methods of higher priority blocks are executed before
those of lower priority blocks. The priorities are honored only if they are
consistent with its block sorting rules.

Simulation Loop Phase
Once the Link Phase completes, the simulation enters the simulation loop
phase. In this phase, the Simulink engine successively computes the states
and outputs of the system at intervals from the simulation start time to the
finish time, using information provided by the model. The successive time
points at which the states and outputs are computed are called time steps.
The length of time between steps is called the step size. The step size depends
on the type of solver (see “Solvers” on page 2-18) used to compute the system’s
continuous states, the system’s fundamental sample time (see “Modeling
and Simulating Discrete Systems” on page 2-40), and whether the system’s
continuous states have discontinuities (see “Zero-Crossing Detection” on page
2-20).

The Simulation Loop phase has two subphases: the Loop Initialization phase
and the Loop Iteration phase. The initialization phase occurs once, at the
start of the loop. The iteration phase is repeated once per time step from the
simulation start time to the simulation stop time.
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At the start of the simulation, the model specifies the initial states and
outputs of the system to be simulated. At each step, new values for the
system’s inputs, states, and outputs are computed, and the model is updated
to reflect the computed values. At the end of the simulation, the model reflects
the final values of the system’s inputs, states, and outputs. The Simulink
software provides data display and logging blocks. You can display and/or log
intermediate results by including these blocks in your model.

Loop Iteration
At each time step, the Simulink Engine:

1 Computes the model’s outputs.

The Simulink Engine initiates this step by invoking the Simulink model
Outputs method. The model Outputs method in turn invokes the model
system Outputs method, which invokes the Outputs methods of the blocks
that the model contains in the order specified by the Outputs method
execution lists generated in the Link phase of the simulation (see “Solvers”
on page 2-18).

The system Outputs method passes the following arguments to each block
Outputs method: a pointer to the block’s data structure and to its SimBlock
structure. The SimBlock data structures point to information that the
Outputs method needs to compute the block’s outputs, including the
location of its input buffers and its output buffers.

2 Computes the model’s states.

The Simulink Engine computes a model’s states by invoking a solver. Which
solver it invokes depends on whether the model has no states, only discrete
states, only continuous states, or both continuous and discrete states.

If the model has only discrete states, the Simulink Engine invokes the
discrete solver selected by the user. The solver computes the size of the
time step needed to hit the model’s sample times. It then invokes the
Update method of the model. The model Update method invokes the
Update method of its system, which invokes the Update methods of each of
the blocks that the system contains in the order specified by the Update
method lists generated in the Link phase.

2-17



2 How Simulink® Works

If the model has only continuous states, the Simulink Engine invokes the
continuous solver specified by the model. Depending on the solver, the
solver either in turn calls the Derivatives method of the model once or
enters a subcycle of minor time steps where the solver repeatedly calls
the model’s Outputs methods and Derivatives methods to compute the
model’s outputs and derivatives at successive intervals within the major
time step. This is done to increase the accuracy of the state computation.
The model Outputs method and Derivatives methods in turn invoke their
corresponding system methods, which invoke the block Outputs and
Derivatives in the order specified by the Outputs and Derivatives methods
execution lists generated in the Link phase.

3 Optionally checks for discontinuities in the continuous states of blocks.

A technique called zero-crossing detection is used to detect discontinuities
in continuous states. See “Zero-Crossing Detection” on page 2-20 for more
information.

4 Computes the time for the next time step.

Steps 1 through 4 are repeated until the simulation stop time is reached.

Solvers
A dynamic system is simulated by computing its states at successive time
steps over a specified time span, using information provided by the model. The
process of computing the successive states of a system from its model is known
as solving the model. No single method of solving a model suffices for all
systems. Accordingly, a set of programs, known as solvers, are provided that
each embody a particular approach to solving a model. The Configuration
Parameters dialog box allows you to choose the solver most suitable for your
model (see “Choosing a Solver Type” on page 14-11).

Fixed-Step Solvers Versus Variable-Step Solvers
The solvers provided in the Simulink software fall into two basic categories:
fixed-step and variable-step.

Fixed-step solvers solve the model at regular time intervals from the beginning
to the end of the simulation. The size of the interval is known as the step size.
You can specify the step size or let the solver choose the step size. Generally,
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decreasing the step size increases the accuracy of the results while increasing
the time required to simulate the system.

Variable-step solvers vary the step size during the simulation, reducing the
step size to increase accuracy when a model’s states are changing rapidly and
increasing the step size to avoid taking unnecessary steps when the model’s
states are changing slowly. Computing the step size adds to the computational
overhead at each step but can reduce the total number of steps, and hence
simulation time, required to maintain a specified level of accuracy for models
with rapidly changing or piecewise continuous states.

Continuous Versus Discrete Solvers
The Simulink product provides both continuous and discrete solvers.

Continuous solvers use numerical integration to compute a model’s continuous
states at the current time step from the states at previous time steps and the
state derivatives. Continuous solvers rely on the model’s blocks to compute
the values of the model’s discrete states at each time step.

Mathematicians have developed a wide variety of numerical integration
techniques for solving the ordinary differential equations (ODEs) that
represent the continuous states of dynamic systems. An extensive set
of fixed-step and variable-step continuous solvers are provided, each
implementing a specific ODE solution method (see “Choosing a Solver Type”
on page 14-11).

Discrete solvers exist primarily to solve purely discrete models. They compute
the next simulation time step for a model and nothing else. They do not
compute continuous states and they rely on the model’s blocks to update the
model’s discrete states.

Note You can use a continuous solver, but not a discrete solver, to solve a
model that contains both continuous and discrete states. This is because a
discrete solver does not handle continuous states. If you select a discrete
solver for a continuous model, your selection is disregarded and uses a
continuous solver instead when solving the model.
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Two discrete solvers are provided: A fixed-step discrete solver and a
variable-step discrete solver. The fixed-step solver by default chooses a step
size and hence simulation rate fast enough to track state changes in the
fastest block in your model. The variable-step solver adjusts the simulation
step size to keep pace with the actual rate of discrete state changes in your
model. This can avoid unnecessary steps and hence shorten simulation time
for multirate models (see “Determining Step Size for Discrete Systems” on
page 2-46 for more information).

Minor Time Steps
Some continuous solvers subdivide the simulation time span into major and
minor time steps, where a minor time step represents a subdivision of the
major time step. The solver produces a result at each major time step. It
uses results at the minor time steps to improve the accuracy of the result at
the major time step.

States Shape Preservation
Usually the integration step size is only related to the current step size and
the current integration error. However, for signals who’s derivative changes
rapidly more accurate integration results can be obtained by including the
derivative input information at each time step. This is done by activating the
State Shapes Preservation option in the Solver pane of the Configuration
Parameter dialog.

Zero-Crossing Detection
A variable-step solver dynamically adjusts the time step size, causing it to
increase when a variable is changing slowly and to decrease when the variable
changes rapidly. This behavior causes the solver to take many small steps in
the vicinity of a discontinuity because the variable is rapidly changing in this
region. This improves accuracy but can lead to excessive simulation times.

The Simulink software uses a technique known as zero-crossing detection to
accurately locate a discontinuity without resorting to excessively small time
steps. Usually this technique improves simulation run time, but it can cause
some simulations to halt before the intended completion time.
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Two algorithms are provided in the Simulink software: Non-Adaptive and
Adaptive. For information about these techniques, see “Zero Crossing
Algorithms” on page 2-25.

Demonstrating Effects of Excessive Zero Crossing Detection
The Simulink software comes with two demos that illustrate zero crossing
behavior.

• Run the bounce demo to see how excessive zero crossings can cause a
simulation to halt before the intended completion time.

• Run the doublebounce demo to see how the adaptive algorithm successfully
solves a complex system with two distinct zero crossing requirements.

The Bounce Demo.

1 Load the demo by typing bounce at the MATLAB® command prompt.

2 Once the block diagram appears, navigate to the Configuration
Parameters dialog. Confirm that the Zero crossing location algorithm
is set to Non-adaptive.

3 Run the model for a simulation time of 20 seconds.

4 After the simulation completes, click on the scope to display the results.

You may need to click on Autoscale to get a clear display.

Use the scope zoom controls to closely examine the last portion of the
simulation. You can see that the velocity is hovering just above zero at the
last time point.

5 Change the simulation run time to 25 seconds, and run the simulation
again.

6 This time the simulation halts with an error shortly after it passes the
simulated 20 second time point.

Excessive chattering as the ball repeatedly approaches zero velocity has
caused the simulation to exceed the default limit of 1000 for the number of
consecutive zero crossings allowed. Although this limit can be increased
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by adjusting the Number of consecutive zero crossings allowed
parameter in the Configuration Parameters dialog, doing so in this
case does not allow the simulation to simulate for 25 seconds.

7 Navigate to the Configuration Parameters dialog and select the
Adaptive zero crossing location algorithm from the Zero crossing
location algorithm pull down.

8 Change the simulation time to 25 seconds, and run the simulation again.

9 This time the simulation runs to completion because the adaptive algorithm
prevented an excessive number of zero crossings from occurring.

The Doublebounce Demo.

1 Load the demo by typing doublebounce at the MATLAB command prompt.

2 In the demo, click the Non-adaptive button. This causes the demo to run
with the Non-adaptive zero crossing location algorithm. This is the default
setting used by the Simulink software for all models.

3 Notice that the two balls hit the ground and recoil at different times.

4 The simulation halts after 14 seconds because the ball on the left has
exceeded the number of zero crossings limit. The ball on the right is left
hanging in mid air.

5 Click on the error message to clear it.

6 Click on the Adaptive button to run the simulation with the Adaptive zero
crossing location algorithm.

7 Notice that this time the simulation runs to completion, even when the
ground shifts out from underneath the ball on the left after 20 seconds.

How the Simulator Can Miss Zero Crossing Events
The bounce and doublebounce demos show that high-frequency fluctuations
about a discontinuity (’chattering’) can cause a simulation to prematurely halt.

It is also possible for the solver to entirely miss zero crossings if the solver
error tolerances are too large. This is possible because the zero crossing
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detection technique checks to see if the value of a signal has changed sign
after a major time step. A sign change indicates that a zero crossing has
occurred, and the zero crossing algorithm will then hunt for the precise
crossing time. However, if a zero crossing occurs within a time step, but the
values at the beginning and end of the step do not indicate a sign change, the
solver steps over the crossing without detecting it.

The following figure shows a signal that crosses zero. In the first instance,
the integrator steps over the event because the sign has not changed between
time steps. In the second, the solver detects change in sign and so detects
the zero crossing event.

Preventing Excessive Zero Crossings
Use this table to help you prevent excessive zero crossing errors in your model.

Make this
change...

How to make this
change...

Rational for making this
change...

Increase the
number of
allowed zero
crossings

Increase the value of the
Number of consecutive
zero crossings allowed.
option on the Solver pane
in the Configuration
Parameters dialog.

This may give your model
enough time to resolve the
zero crossing.
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Make this
change...

How to make this
change...

Rational for making this
change...

Relax the
zero crossing
threshold

Decrease the value of
the Consecutive zero
crossings relative
tolerance option on
the Solver pane in
the Configuration
Parameters dialog.

The solver requires less
time to precisely locate the
zero crossing. This can
reduce simulation time
and eliminate excessive
number of consecutive zero
crossings errors. However,
relaxing the zero crossing
threshold may reduce
accuracy.

Use the
Adaptive Zero
crossing location
algorithm

Select Adaptive from the
Zero crossing location
algorithm pull down
on the Solver pane
in the Configuration
Parameters dialog.

This algorithm
dynamically adjusts the
zero crossing threshold,
which improves accuracy
and reduces the number of
consecutive zero crossings
detected. With this
algorithm you have the
option of specifying a zero
crossing tolerance

Disable
zero-crossing
detection for a
specific block

1 Uncheck the Enable
zero crossing
detection option on
the block’s parameter
dialog box, and

2 Select Use local
settings from the Zero
crossing control pull
down on the Solver pane
of the Configuration
Parameters dialog box.

Locally disabling
zero-crossing detection
prevents a specific
block from stopping the
simulation because of
excessive consecutive zero
crossings. All other blocks
continue to benefit from the
increased accuracy that
zero-crossing detection
provides.
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Make this
change...

How to make this
change...

Rational for making this
change...

Disable
zero-crossing
detection for the
entire model

Select Disable all from
the Zero crossing control
pull down on the Solver
pane of the Configuration
Parameters dialog box.

This prevents zero
crossings from being
detected anywhere in your
model. A consequence is
that your model no longer
benefits from the increased
accuracy that zero-crossing
detection provides.

If using the
od15s solver,
consider
adjusting the
order of the
numerical
differentiation
formulas

Select a value from the
Maxim order pulldown
in the Solver pane
of the Configuration
Parameters dialog box.

For more information, see
“Maximum order”.

Reduce the
maximum step
size

Enter a value for the
Max step size option
in the Solver pane
of the Configuration
Parameters dialog box.

This can insure the solver
takes steps small enough
to resolve the zero crossing.
However, reducing the
step size can increase
simulation time, and
is seldom necessary
when using the Adaptive
algorithm.

Zero Crossing Algorithms
The Simulink software includes two zero crossing detection algorithms:
Non-Adaptive and Adaptive.

To choose the algorithm, either use the Zero crossing location algorithm
option in the Solver pane of the Configuration Parameter dialog, or use
the ZeroCrossAlgorithm command. The command can either be set to
'Non-adaptive' or 'Adaptive'.
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The Non-Adaptive algorithm is provided for backwards compatibility with
older versions of Simulink and is the default. It brackets the zero crossing
event and uses increasingly smaller time steps to pinpoint when the zero
crossing has occurred. Although adequate for many types of simulations, the
Non-Adaptive algorithm can result in very long simulation times when a high
degree of ’chattering’ (high frequency oscillation around the zero crossing
point) is present.

The Adaptive algorithm dynamically turns the bracketing on and off, and
is a good choice when:

• The system contains a large amount of chattering.

• You wish to specify a guard band (tolerance) around which the zero crossing
is detected.

The Adaptive algorithm turns off zero crossing bracketing (stops iterating) if
either of the following are satisfied:

• The zero crossing error is exceeded. This is determined by the value
specified in the Zero crossing location threshold option in the Solver
pane of the Configuration Parameter dialog. This can also be set with the
ZcDetectionTol command. The default is Auto, but you can enter any real
number greater than zero for the tolerance.

• The system has exceeded the number of consecutive zero crossings specified
in the Number of consecutive zero crossings allowed option in the
Solver pane of the Configuration Parameter dialog. Alternatively, this can
be set with the MaxConsecutiveZCs command.

Understanding Zero Crossing Threshold
The Adaptive algorithm automatically sets a tolerance for zero crossing
detection. Alternatively, you can set the tolerance by entering a real number
greater than or equal to zero in the Configuration Parameters Solver pane,
Zero crossing location threshold pull down. This option only becomes
active when the Zero crossing algorithm is set to Adaptive.

This graphic shows how the Zero crossing threshold sets a window region
around the zero crossing point. Signals falling within this window are
considered as being at zero.
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The zero crossing event is bracketed by time steps Tn-1 and Tn. The solver
iteratively reduces the time steps until the state variable lies within the band
defined by the zero crossing threshold, or until the number of consecutive zero
crossings equals or exceeds the value in the Configuration Parameters Solver
pane, Number of consecuitive zero crossings allowed pull down.

It is evident from the figure that increasing the zero crossing threshold
increases the distance between the time steps which will be executed. This
often results in faster simulation times, but could reduce accuracy.

How Blocks Work with Zero-Crossing Detection
A block can register a set of zero-crossing variables, each of which is a function
of a state variable that can have a discontinuity. The zero-crossing function
passes through zero from a positive or negative value when the corresponding
discontinuity occurs. The registered zero-crossing variables are updated at
the end of each simulation step, and any variable that has changed sign is
identified as having had a zero crossing event.

If any zero crossings are detected, the Simulink software interpolates between
the previous and current values of each variable that changed sign to estimate
the times of the zero crossings (that is, the discontinuities).

Blocks that Register Zero Crossings. The following table lists blocks that
register zero crossings and explains how the blocks use the zero crossings:
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Block Description of Zero Crossing

Abs One: to detect when the input signal crosses zero in
either the rising or falling direction.

Backlash Two: one to detect when the upper threshold is engaged,
and one to detect when the lower threshold is engaged.

Compare To Zero One: to detect when the signals equals zero.

Dead Zone Two: one to detect when the dead zone is entered (the
input signal minus the lower limit), and one to detect
when the dead zone is exited (the input signal minus
the upper limit).

From Workspace One: to detect when the input signal has a discontinuity
in either the rising or falling direction

Hit Crossing One: to detect when the input crosses the threshold.

If One: to detect when the If condition is met.

Integrator If the reset port is present, to detect when a reset
occurs. If the output is limited, there are three zero
crossings: one to detect when the upper saturation limit
is reached, one to detect when the lower saturation limit
is reached, and one to detect when saturation is left.

MinMax One: for each element of the output vector, to detect
when an input signal is the new minimum or maximum.

Relay One: if the relay is off, to detect the switch on point. If
the relay is on, to detect the switch off point.

Relational
Operator

One: to detect when the output changes.

Saturation Two: one to detect when the upper limit is reached or
left, and one to detect when the lower limit is reached
or left.

Sign One: to detect when the input crosses through zero.

Signal Builder One: to detect when the input signal has a discontinuity
in either the rising or falling direction

Stateflow® One: to detect if there is a valid state transition
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Block Description of Zero Crossing

Step One: to detect the step time.

Subsystem For conditionally executed subsystems: one for the
enable port if present, and one for the trigger port, if
present.

Switch One: to detect when the switch condition occurs.

Switch Case One: to detect when the case condition is met.

Implementation Example: Saturation Block. An example of a Simulink
block that registers zero crossings is the Saturation block. Zero crossing
detection identifies these state events in the Saturation block:

• The input signal reaches the upper limit.

• The input signal leaves the upper limit.

• The input signal reaches the lower limit.

• The input signal leaves the lower limit.

Simulink blocks that define their own state events are considered to have
intrinsic zero crossings. Use the Hit Crossing block to receive explicit
notification of a zero-crossing event. See “Blocks that Register Zero Crossings”
on page 2-27 for a list of blocks that incorporate zero crossings.

The detection of a state event depends on the construction of an internal
zero-crossing signal. This signal is not accessible by the block diagram. For
the Saturation block, the signal that is used to detect zero crossings for the
upper limit is zcSignal = UpperLimit - u, where u is the input signal.

Zero-crossing signals have a direction attribute, which can have these values:

• rising — A zero crossing occurs when a signal rises to or through zero, or
when a signal leaves zero and becomes positive.

• falling — A zero crossing occurs when a signal falls to or through zero, or
when a signal leaves zero and becomes negative.

• either — A zero crossing occurs if either a rising or falling condition occurs.
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For the Saturation block’s upper limit, the direction of the zero crossing is
either. This enables the entering and leaving saturation events to be detected
using the same zero-crossing signal.
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Algebraic Loops
Some Simulink blocks have input ports with direct feedthrough. This means
that the output of these blocks cannot be computed without knowing the
values of the signals entering the blocks at these input ports. Some examples
of blocks with direct feedthrough inputs are as follows:

• Math Function block

• Gain block

• Integrator block’s initial condition ports

• Product block

• State-Space block when there is a nonzero D matrix

• Sum block

• Transfer Fcn block when the numerator and denominator are of the same
order

• Zero-Pole block when there are as many zeros as poles

An algebraic loop generally occurs when an input port with direct feedthrough
is driven by the output of the same block, either directly, or by a feedback path
through other blocks with direct feedthrough. An example of an algebraic
loop is this simple scalar loop.

Mathematically, this loop implies that the output of the Sum block is an
algebraic state z constrained to equal the first input u minus z (i.e., z = u - z).
The solution of this simple loop is z = u/2, but most algebraic loops cannot be
solved by inspection.
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It is easy to create vector algebraic loops with multiple algebraic state
variables z1, z2, etc., as shown in this model.

The Algebraic Constraint block is a convenient way to model algebraic
equations and specify initial guesses. The Algebraic Constraint block
constrains its input signal F(z) to zero and outputs an algebraic state z. This
block outputs the value necessary to produce a zero at the input. The output
must affect the input through some direct feedback path, i.e., the feedback
path solely contains blocks with direct feedthrough. You can provide an
initial guess of the algebraic state value in the block’s dialog box to improve
algebraic loop solver efficiency.

A scalar algebraic loop represents a scalar algebraic equation or constraint of
the form F(z) = 0, where z is the output of one of the blocks in the loop and
the function F consists of the feedback path through the other blocks in the
loop to the input of the block. In the simple one-block example shown on
the previous page, F(z) = z - (u - z). In the vector loop example shown above,
the equations are

z2 + z1 - 1 = 0
z2 - z1 - 1 = 0

Algebraic loops arise when a model includes an algebraic constraint F(z) = 0.
This constraint might arise as a consequence of the physical interconnectivity
of the system you are modeling, or it might arise because you are specifically
trying to model a differential/algebraic system (DAE).
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When a model contains an algebraic loop, a loop solving routine is called at
each time step. The loop solver performs iterations to determine the solution
to the problem (if it can). As a result, models with algebraic loops run slower
than models without them.

To solve F(z) = 0, the Simulink loop solver uses Newton’s method with weak
line search and rank-one updates to a Jacobian matrix of partial derivatives.
Although the method is robust, it is possible to create loops for which the loop
solver will not converge without a good initial guess for the algebraic states z.
You can specify an initial guess for a line in an algebraic loop by placing an IC
block (which is normally used to specify an initial condition for a signal) on
that line. As shown above, another way to specify an initial guess for a line in
an algebraic loop is to use an Algebraic Constraint block.

Whenever possible, use an IC block or an Algebraic Constraint block to specify
an initial guess for the algebraic state variables in a loop.

Highlighting Algebraic Loops
You can highlight algebraic loops when you update, simulate, or debug a
model. Use the ashow command to highlight algebraic loops when debugging
a model.

For example, the following figure shows the block diagram of the hydcyl demo
model in its original colors.

The following figure shows the diagram after updating when the Algebraic
loop diagnostic is set to Error.

Eliminating Algebraic Loops
The Simulink software can eliminate some algebraic loops that include any of
the following types of blocks:

• Atomic Subsystem

• Enabled Subsystem

• Model
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To enable automatic algebraic loop elimination for a loop involving a particular
instance of an Atomic Subsystem or Enabled Subsystem block, select the
Minimize algebraic loop occurrences parameter on the block’s parameters
dialog box. To enable algebraic loop elimination for a loop involving a Model
block, select the Minimize algebraic loop occurrences parameter on the
Model Referencing Pane of the Configuration Parameters dialog box
(see “Model Referencing Pane”) of the model referenced by the Model block.
If a loop includes more than one instance of these blocks, you should enable
algebraic loop elimination for all of them, including nested blocks.

Note The Simulink software does not minimize algebraic loops on
signals that are test points, even if you select Minimize algebraic loop
occurrences

Algebraic loop minimization is off by default because it is incompatible with
conditional input branch optimization in Simulink (see “Optimization Pane” )
and with single output/update function optimization in Real-Time Workshop®.
If you need these optimizations for an atomic or enabled subsystem or
referenced model involved in an algebraic loop, you must eliminate the
algebraic loop yourself.

The Minimize algebraic loop solver diagnostic allows you to specify the
action Simulink should take, for example, display a warning, if it is unable
to eliminate an algebraic loop involving a block for which algebraic loop
elimination is enabled. See “Diagnostics Pane: Solver” for more information.
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As an example of the ability of the Simulink software to eliminate algebraic
loops, consider the following model.

1

Gain

1

Constant

In1 Out1

Atomic Subsystem

1

Out1

1
s

Integrator

1

Gain

1

In1
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Simulating this model with the solver’s Algebraic Loop diagnostic set to error
(see “Diagnostics Pane: Solver” for more information) reveals that this model
contains an algebraic loop involving its atomic subsystem.
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Checking the atomic subsystem’s Minimize algebraic loop occurrences
parameter eliminates the algebraic loop from the compiled version of the
model.

1

Gain

1

Constant

In1 Out1

Atomic Subsystem
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As a result, the model now simulates without error.

1

Gain

1

Constant

In1 Out1

Atomic Subsystem

Note that the Simulink software is able to eliminate the algebraic loop
involving this model’s atomic subsystem because the atomic subsystem
contains a block with a port that does not have direct feedthrough, i.e., the
Integrator block.
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If you remove the Integrator block from the atomic subsystem, the algebraic
loop cannot be eliminated. Hence, attempting to simulate the model results
in an error.
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Modeling and Simulating Discrete Systems

In this section...

“Multirate and Hybrid Systems” on page 2-40

“Specifying Sample Time” on page 2-41

“Purely Discrete Systems” on page 2-44

“Multirate Systems” on page 2-44

“Determining Step Size for Discrete Systems” on page 2-46

“Sample Time Propagation” on page 2-47

“Propagating Sample Times Back to Source Blocks” on page 2-48

“Constant Sample Time” on page 2-49

“Mixed Continuous and Discrete Systems” on page 2-52

Multirate and Hybrid Systems
The Simulink® product has the ability to simulate discrete (sampled data)
systems, including systems whose components operate at different rates
(multirate systems) and systems that mix discrete and continuous components
(hybrid systems). This capability stems from two key Simulink features:

• SampleTime block parameter

Some Simulink blocks have a SampleTime parameter that you can use to
specify the block’s sample time, i.e., the rate at which it executes during
simulation. All blocks have either an explicit or implicit sample time
parameter. Continuous blocks are examples of blocks that have an implicit
(continuous) sample time. It is possible for a block to have multiple sample
times as provided with blocksets such as the Signal Processing Blockset™
product, or created by a user using the S-Function block.

• Sample-time inheritance

Most standard Simulink blocks can inherit their sample time from
the blocks connected to their inputs. Exceptions include blocks in the
Continuous library and blocks that do not have inputs (e.g., blocks from the
Sources library). In some cases, source blocks can inherit the sample time
of the block connected to their output.
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The ability to specify sample times on a block-by-block basis, either directly
through the SampleTime parameter or indirectly through inheritance, enables
you to model systems containing discrete components operating at different
rates and hybrid systems containing discrete and continuous components.

Specifying Sample Time
You can specify the sample time of any block that has a SampleTime
parameter. You can use the block’s parameter dialog box to set this parameter.
You do this by entering the sample time in the Sample time field on the
dialog box. You can enter either the sample time alone or a vector whose first
element is the sample time and whose second element is an offset: [Ts, To].
Various values of the sample time and offset have special meanings.

The following table summarizes valid values for this parameter and how the
Simulink software interprets them to determine a block’s sample time.

Sample Time Usage

[Ts, To]
0 < Ts < Tsim
|To| < Ts

Specifies that updates occur at simulation times

tn = n * Ts + |To|

where n is an integer in the range 0..Tsim/Ts and Tsim
is the length of the simulation. Blocks that have a
sample time greater than 0 are said to have a discrete
sample time.

The offset allows you to specify that the block be
updated later in the sample interval than other
blocks operating at the same rate.

[0, 0], 0 Specifies that updates occur at every major and minor
time step. A block that has a sample time of 0 is said
to have a continuous sample time.
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Sample Time Usage

[0, 1] Specifies that updates occur only at major time
steps, skipping minor time steps (see “Minor Time
Steps” on page 2-20). This setting avoids unnecessary
computations for blocks whose sample time cannot
change between major time steps. The sample time of
a block that executes only at major time steps is said
to be fixed in minor time step.

[-1, 0], -1 If the block is not in a triggered subsystem,
this setting specifies that the block inherits its
sample time from the block connected to its input
(inheritance) or, in some cases, from the block
connected to its output (back inheritance). If the
block is in a triggered subsystem, you must set the
SampleTime parameter to this setting.

Note that specifying sample-time inheritance for
a source block can cause the Simulink software to
assign an inappropriate sample time to the block
if the source drives more than one block. For this
reason, you should avoid specifying sample-time
inheritance for source blocks. If you do, a warning
message is displayed when you update or simulate
the model.
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Sample Time Usage

[-2, Tvo] Specifies that a block has a variable sample time, that
is, computes its output only at times specified by the
block. Every block with variable sample time has a
unique Tvo determined by the Simulink software. The
only built-in Simulink block that can have variable
sample time is the Pulse Generator block.

inf The meaning of this sample time depends on whether
the active model configuration’s inline parameters
optimization (see “Inline parameters”) is enabled.

If the inline parameters optimization is enabled, inf
signifies that the block’s output can never change (see
“Constant Sample Time” on page 2-49). This speeds
up simulation and the generated code by eliminating
the need to recompute the block’s output at each
time step. If the inline parameters optimization is
disabled or the block with inf sample time drives an
output port of a conditionally executed subsystem,
inf is treated as -1, i.e., as inherited sample time.
This allows you to tune the block’s parameters during
simulation.

Changing a Block’s Sample Time
You cannot change the SampleTime parameter of a block while a simulation
is running. If you want to change a block’s sample time, you must stop and
restart the simulation for the change to take effect.

Compiled Sample Time
During the compilation phase of a simulation, the sample time of the block
is determined from its SampleTime parameter (if it has a SampleTime
parameter), sample-time inheritance, or block type (Continuous blocks
always have a continuous sample time). It is this compiled sample time that
determines the sample rate of a block during simulation. You can determine
the compiled sample time of any block in a model by first updating the model
and then getting the block’s CompiledSampleTime parameter, using the
get_param command.
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Purely Discrete Systems
Purely discrete systems can be simulated using any of the solvers; there is
no difference in the solutions. To generate output points only at the sample
hits, choose one of the discrete solvers.

Multirate Systems
Multirate systems contain blocks that are sampled at different rates. These
systems can be modeled with discrete blocks or with both discrete and
continuous blocks. For example, consider this simple multirate discrete model.

For this example the DTF1 Discrete Transfer Fcn block’s Sample time is set
to [1 0.1], which gives it an offset of 0.1. The DTF2 Discrete Transfer Fcn
block’s Sample time is set to 0.7, with no offset.
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Starting the simulation and plotting the outputs using the stairs function

[t,x,y] = sim('multirate', 3);
stairs(t,y)

produces this plot
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See “Running a Simulation Programmatically” on page 14-74 for information
on the sim command.

For the DTF1 block, which has an offset of 0.1, there is no output until t =
0.1. Because the initial conditions of the transfer functions are zero, the
output of DTF1, y(1), is zero before this time.
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Determining Step Size for Discrete Systems
Simulating a discrete system requires that the simulator take a simulation
step at every sample time hit, that is, at integer multiples of the system’s
shortest sample time. Otherwise, the simulator might miss key transitions
in the system’s states. This is avoided by choosing a simulation step size
to ensure that steps coincide with sample time hits. The step size that the
Simulink software chooses depends on the system’s fundamental sample time
and the type of solver used to simulate the system.

The fundamental sample time of a discrete system is the greatest integer
divisor of the system’s actual sample times. For example, suppose that a
system has sample times of 0.25 and 0.5 second. The fundamental sample
time in this case is 0.25 second. Suppose, instead, the sample times are 0.5
and 0.75 second. In this case, the fundamental sample time is again 0.25
second.

You can direct the Simulink software to use either a fixed-step or a
variable-step discrete solver to solve a discrete system. A fixed-step solver
sets the simulation step size equal to the discrete system’s fundamental
sample time. A variable-step solver varies the step size to equal the distance
between actual sample time hits.

The following diagram illustrates the difference between a fixed-step and
a variable-size solver.
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In the diagram, arrows indicate simulation steps and circles represent sample
time hits. As the diagram illustrates, a variable-step solver requires fewer
simulation steps to simulate a system, if the fundamental sample time is
less than any of the actual sample times of the system being simulated. On
the other hand, a fixed-step solver requires less memory to implement and
is faster if one of the system’s sample times is fundamental. This can be an
advantage in applications that entail generating code from a Simulink model
(using Real-Time Workshop®).

Sample Time Propagation
When updating a model’s diagram, for example, at the beginning of a
simulation, a process called sample time propagation is used to determine the
sample times of blocks that inherit their sample times. The figure below
illustrates a Discrete Filter block with a sample time of Ts driving a Gain
block.

Because the Gain block’s output is simply the input multiplied by a constant,
its output changes at the same rate as the filter. In other words, the Gain
block has an effective sample rate equal to that of the filter’s sample rate.
This is the fundamental mechanism behind sample time propagation in the
Simulink product.

An inherited sample time is assigned to a block based on the sample times of
the blocks connected to its inputs, using the following rules.

• If all the inputs have the same sample time, that sample time is assigned
to the block.

• If the inputs have different sample times and if all the input sample times
are integer multiples of the fastest input sample time, the block is assigned
the sample time of the fastest input.

• If the inputs have different sample times and some of the input sample
times are not integer multiples of the fastest sample time and a
variable-step solver is being used, the block is assigned continuous sample
time.
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• If the inputs have different sample times and some of the input sample
times are not integer multiples of the fastest sample time and a fixed-step
solver is being used, and the greatest common divisor of the sample times
(the fundamental sample time) can be computed, the block is assigned the
fundamental sample time; otherwise, in this case, the block is assigned
continuous sample time.

Note A Model block can inherit its sample time from its inputs only if
the inputs and outputs of the model that it references do not depend on
the sample time

Propagating Sample Times Back to Source Blocks
When you update or simulate a model that specifies a source block’s sample
time as inherited (-1), the source block’s sample time may be back propagated,
i.e., it sets the source block’s sample time to be the same as the sample time
specified or inherited by the block to which the source block is connected. This
only happens if it can be done without changing the results of simulating the
model. For example, in the model below, the Simulink software recognizes
that the Sine Wave block is driving a Discrete-Time Integrator block whose
sample time is 1, so it assigns the Sine Wave block a sample time of 1.

1

Out1
Ts=−1Sine Wave

Ts=−1

1

Gain
Ts=−1

K Ts

z−1

Discrete−Time
Integrator

Ts=1

You can verify this by selecting Sample Time Colors from the Simulink
Format menu and noting that all blocks are colored red. Because the
Discrete-Time Integrator block only looks at its input at its sample times, this
change does not affect the outcome of the simulation but does result in a
performance improvement.

Replacing the Discrete-Time Integrator block with a continuous Integrator
block, as shown below, and recoloring the model by choosing Update
diagram from the Edit menu cause the Sine Wave and Gain blocks to change
to continuous blocks, as indicated by their being colored black.
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1

Out1
Ts = −1Sine Wave

Ts = −1

1
s

Integrator

1

Gain
Ts = −1

Note Back propagation makes the sample times of a model’s sources
dependent on block connectivity. If you change the connectivity of a model
whose sources inherit sample times, you can inadvertently change the source
sample times. For this reason, when you update or simulate a model, by
default the Simulink software displays warnings at the command line if the
model contains sources that inherit their sample times. See “Source block
specifies -1 sample time” for more information.

Constant Sample Time
A block whose output cannot change from its initial value during a simulation
is said to have constant sample time. A block has constant sample time if it
satisfies both of the following conditions:

• All of its parameters are nontunable, either because they are inherently
nontunable or because they have been inlined (see “Inline parameters”).

• The block’s sample time has been declared infinite (inf) or its sample time
is declared to be inherited and it inherits a constant sample time from
another block to which it is connected.

When the Simulink software updates a model, for example, at the beginning
of a simulation, it determines which blocks, if any, have constant sample time,
and computes the initial values of the output ports. During the simulation,
the initial values are used whenever the outputs of blocks with constant
sample time are required, thus avoiding unnecessary computations.

You can determine which blocks have constant sample time by selecting
Sample Time Colors from the Format menu and updating the model.
Blocks with constant sample time are colored magenta.
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For example, in this model, both the Constant and Gain blocks have constant
sample time.

Inline Parameters = on

1

Out1
Ts=−1

1

Gain
Ts=−1

K Ts

z−1

Discrete−Time
Integrator

Ts=1

1

Constant
Ts=inf

The Gain block has constant sample time because it inherits its sample time
from the Constant block and all of the model’s parameters are inlined, i.e.,
nontunable.

Note The Simulink block library includes a few blocks, e.g., the S-Function,
Level-2 M-File S-Function, Rate Transition, and Model block, whose ports can
produce outputs at different sample rates. It is possible for some of the ports
of such blocks to inherit a constant sample time. The ports with constant
sample time produce output only once, at the beginning of the simulation. The
other ports produce outputs at their sample rates.

How Blocks with Infinite Sample Times and Tunable
Parameters are Treated
A block that has tunable parameters cannot have constant sample time even
if its sample time is specified to be infinite. This is because the fact that
a block has one or more tunable parameters means that you can change the
values of its parameters during simulation and hence the value of its outputs.
In this case, sample time propagation (see “Sample Time Propagation” on
page 2-47) is used to determine the block’s actual sample time.
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For example, consider the following model.

Notes−
ODE3 Solver, 1sec fixed−step, singletasking mode

inline parameters turned off

The fast−rate (1) discrete integrator back−propagates its sample time to the constant block

2

Out2

1

Out1

Sine Wave
Ts=1

K Ts

z−1

Discrete−Time
Integrator

In1

In2

In3

In4

Out1

Out2

Constant At Fast Rate

2

Out2
Ts=−1

1

Out1
Ts=−1

Switch

1

Gain2
Ts=−1

1

Gain1
Ts=−1

1

Gain
Ts=−1

0

Constant
Ts=inf

4

In4
Ts=4

3

In3
Ts=4

2

In2
Ts=4

1

In1
Ts=4

In this example, although the Constant block’s sample time is specified to be
infinite, it cannot have constant sample time because the inlined parameters
option is off for this model and therefore the block’s Constant value
parameter is tunable. Since the Constant block’s output can change during
the simulation, a sample time for the block has to be determined that ensures
accurate simulation results. It does this by treating the Constant block’s
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sample time as inherited and using sample time propagation to determine
its sample time. The first nonvirtual block in the diagram branch to which
the Constant block is connected is the Discrete-Time Integrator block. As a
result, the block inherits its sample time (1 sec) via back propagation from
the Discrete-Time Integrator block.

Mixed Continuous and Discrete Systems
Mixed continuous and discrete systems are composed of both sampled and
continuous blocks. Such systems can be simulated using any of the integration
methods, although certain methods are more efficient and accurate than
others. For most mixed continuous and discrete systems, the Runge-Kutta
variable-step methods, ode23 and ode45, are superior to the other methods in
terms of efficiency and accuracy. Because of discontinuities associated with
the sample and hold of the discrete blocks, the ode15s and ode113 methods
are not recommended for mixed continuous and discrete systems.
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Creating a Model

Creating an Empty Model (p. 3-3) How to create a new model.

Selecting Objects (p. 3-5) How to select objects in a model.

Specifying Block Diagram Colors
(p. 3-7)

How to specify the colors of blocks,
lines, and annotations and the
background of the diagram.

Connecting Blocks (p. 3-13) How to draw connections between
blocks.

Aligning, Distributing, and Resizing
Groups of Blocks (p. 3-22)

How to align, distribute, and resize
groups of blocks.

Annotating Diagrams (p. 3-24) How to add annotations to a block
diagram.

Creating Subsystems (p. 3-35) How to create subsystems.

Modeling Control Flow Logic
(p. 3-42)

How to use control flow blocks to
model control logic.

Using Callback Functions (p. 3-52) How to use callback routines to
customize a model.

Using Model Workspaces (p. 3-61) How to modify, save, and reload a
model’s private workspace.

Resolving Symbols (p. 3-69) How to use symbols to specify values
and definitions in a model

Working with Data Stores (p. 3-74) How to create and access data stores.

Consulting the Model Advisor
(p. 3-80)

How to use the Model Advisor
to configure a model for efficient
simulation and code generation.
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Managing Model Versions (p. 3-95) How to use version control systems
to manage and track development of
Simulink® models.

Model Discretizer (p. 3-110) How to create a discrete model from
a continuous model.
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Creating an Empty Model
To create an empty model, click the New button on the Library Browser’s
toolbar, or choose New from the library window’s File menu and select
Model. An empty model is created in memory and it is displayed in a new
model editor window.

Creating a Model Template
When creating a model, defaults are used for many of configuration
parameters. For instance, by default, new models have a white canvas, the
ode45 solver, and a visible toolbar. If these defaults are not to your liking,
use the Simulink® software model construction commands (see “Model
Construction”) to write a function that creates a model with the defaults you
prefer.

For example, the following function creates a model that has a green canvas
and a hidden toolbar and uses the ode3 solver:

function new_model(modelname)
% NEW_MODEL Create a new, empty Simulink model
% NEW_MODEL('MODELNAME') creates a new model with
% the name 'MODELNAME'. Without the 'MODELNAME'
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% argument, the new model is named 'my_untitled'.

if nargin == 0
modelname = 'my_untitled';

end

% create and open the model
open_system(new_system(modelname));

% set default screen color
set_param(modelname, 'ScreenColor', 'green');

% set default solver
set_param(modelname, 'Solver', 'ode3');

% set default toolbar visibility
set_param(modelname, 'Toolbar', 'off');

% save the model
save_system(modelname);
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Selecting Objects

In this section...

“Selecting an Object” on page 3-5

“Selecting Multiple Objects” on page 3-5

Selecting an Object
To select an object, click it. Small black square handles appear at the corners
of a selected block and near the end points of a selected line. For example, the
figure below shows a selected Sine Wave block and a selected line.

When you select an object by clicking it, any other selected objects are
deselected.

Selecting Multiple Objects
You can select more than one object either by selecting objects one at a time,
by selecting objects located near each other using a bounding box, or by
selecting the entire model.

Selecting Multiple Objects One at a Time
To select more than one object by selecting each object individually, hold down
the Shift key and click each object to be selected. To deselect a selected object,
click the object again while holding down the Shift key.

Selecting Multiple Objects Using a Bounding Box
An easy way to select more than one object in the same area of the window is
to draw a bounding box around the objects:

1 Define the starting corner of a bounding box by positioning the pointer at
one corner of the box, then pressing and holding down the mouse button.
Notice the shape of the cursor.
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2 Drag the pointer to the opposite corner of the box. A dotted rectangle
encloses the selected blocks and lines.

3 Release the mouse button. All blocks and lines at least partially enclosed
by the bounding box are selected.

Selecting All Objects
To select all objects in the active window, select Select All from the Edit
menu. You cannot create a subsystem by selecting blocks and lines in this
way. For more information, see “Creating Subsystems” on page 3-35.
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Specifying Block Diagram Colors

In this section...

“How to Specify Block Diagram Colors” on page 3-7

“Choosing a Custom Color” on page 3-8

“Defining a Custom Color” on page 3-8

“Specifying Colors Programmatically” on page 3-9

“Displaying Sample Time Colors” on page 3-10

How to Specify Block Diagram Colors
You can specify the foreground and background colors of any block or
annotation in a diagram, as well as the diagram’s background color. To set the
background color of a block diagram, select Screen color from the Format
menu. To set the background color of a block or annotation or group of such
items, first select the item or items. Then select Background color from the
Format menu. To set the foreground color of a block or annotation, first select
the item. Then select Foreground color from the Format menu.

In all cases, a menu of color choices is displayed. Choose the desired color
from the menu. If you select a color other than Custom, the background or
foreground color of the diagram or diagram element is changed to the selected
color.
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Choosing a Custom Color
If you choose Custom, The Simulink® Choose Custom Color dialog box is
displayed.

The dialog box displays a palette of basic colors and a palette of custom colors
that you previously defined. If you have not previously created any custom
colors, the custom color palette is all white. To choose a color from either
palette, click the color, and then click the OK button.

Defining a Custom Color
To define a custom color, click the Define Custom Colors button on the
Choose Custom Color dialog box.
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The dialog box expands to display a custom color definer.

The color definer allows you to specify a custom color by

• Entering the red, green, and blue components of the color as values
between 0 (darkest) and 255 (brightest)

• Entering hue, saturation, and luminescence components of the color as
values in the range 0 to 255

• Moving the hue-saturation cursor to select the hue and saturation of the
desired color and the luminescence cursor to select the luminescence of
the desired color

The color that you have defined in any of these ways appears in the
Color|Solid box. To redefine a color in the Custom colors palette, select
the color and define a new color, using the color definer. Then click the Add to
Custom Colors button on the color definer.

Specifying Colors Programmatically
You can use the set_param command at the MATLAB® command line or in an
M-file program to set parameters that determine the background color of a

3-9



3 Creating a Model

diagram and the background color and foreground color of diagram elements.
The following table summarizes the parameters that control block diagram
colors.

Parameter Determines

ScreenColor Background color of block diagram

BackgroundColor Background color of blocks and annotations

ForegroundColor Foreground color of blocks and annotations

You can set these parameters to any of the following values:

• 'black', 'white', 'red', 'green', 'blue', 'cyan', 'magenta', 'yellow',
'gray', 'lightBlue', 'orange', 'darkGreen'

• '[r,g,b]'

where r, g, and b are the red, green, and blue components of the color
normalized to the range 0.0 to 1.0.

For example, the following command sets the background color of the
currently selected system or subsystem to a light green color:

set_param(gcs, 'ScreenColor', '[0.3, 0.9, 0.5]')

Displaying Sample Time Colors
The blocks and lines in your model can be color coded to indicate the sample
rates at which the blocks operate.

Color Use

Black Continuous sample time

Magenta Constant sample time

Red Fastest discrete sample time

Green Second fastest discrete sample time

Blue Third fastest discrete sample time

Light Blue Fourth fastest discrete sample time
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Color Use

Dark Green Fifth fastest discrete sample time

Orange Sixth, seventh, eighth, etc., fastest discrete sample
time

Yellow Indicates a block with hybrid sample time, e.g.,
subsystems grouping blocks and Mux or Demux blocks
grouping signals with different sample times, Data
Store Memory blocks updated and read by different
tasks.

Cyan Blocks in triggered subsystems

Brown Variable sample time. See the Pulse Generator block
and “Specifying Sample Time” on page 2-41 for more
information

Gray Fixed in minor step

To enable the sample time colors feature, select Sample Time Colors from
the Format menu.

The Simulink software does not automatically recolor the model with each
change you make to it, so you must select Update Diagram from the Edit
menu to explicitly update the model coloration. To return to your original
coloring, disable sample time coloration by again choosing Sample Time
Colors.

The color that is assigned to each block depends on its sample time relative
to other sample times in the model. This means that the same sample time
may be assigned different colors in a top-level model and in models that it
references. (See Chapter 5, “Referencing a Model”.)

For example, suppose that a model defines three sample times: 1, 2, and 3.
Further, suppose that it references a model that defines two sample times: 2
and 3. In this case, blocks operating at the 2 sample rate appear as green in
the top-level model and as red in the referenced model.

It is important to note that Mux and Demux blocks are simply grouping
operators; signals passing through them retain their timing information. For
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this reason, the lines emanating from a Demux block can have different colors
if they are driven by sources having different sample times. In this case, the
Mux and Demux blocks are color coded as hybrids (yellow) to indicate that
they handle signals with multiple rates.

Similarly, Subsystem blocks that contain blocks with differing sample times
are also colored as hybrids, because there is no single rate associated with
them. If all the blocks within a subsystem run at a single rate, the Subsystem
block is colored according to that rate.

3-12



Connecting Blocks

Connecting Blocks

In this section...

“Automatically Connecting Blocks” on page 3-13

“Manually Connecting Blocks” on page 3-16

“Disconnecting Blocks” on page 3-21

Automatically Connecting Blocks
You can command the Simulink® software to connect blocks automatically.
This eliminates the need for you to draw the connecting lines yourself. When
connecting blocks, the lines are routed around intervening blocks to avoid
cluttering the diagram.

Connecting Two Blocks
To autoconnect two blocks:

1 Select the source block.

2 Hold down Ctrl and left-click the destination block.
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The source block is connected to the destination block, and the lines are
routed around intervening blocks if necessary.

When connecting two blocks, the Simulink software draws as many
connections as possible between the two blocks as illustrated in the following
example.

Connecting Groups of Blocks
The Simulink software can connect a group of source blocks to a destination
block or a source block to a group of destination blocks.

To connect a group of source blocks to a destination block:

1 Select the source blocks.
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2 Hold down Ctrl and left-click the destination block.

To connect a source block to a group of destination blocks:

1 Select the destination blocks.

2 Hold down Ctrl and left-click the source block.
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Manually Connecting Blocks
You can draw lines manually between blocks or between lines and blocks.
You might want to do this if you need to control the path of the line or to
create a branch line.

Drawing a Line Between Blocks
To connect the output port of one block to the input port of another block:

1 Position the cursor over the first block’s output port. It is not necessary to
position the cursor precisely on the port.

The cursor shape changes to crosshairs.

2 Press and hold down the mouse button.

3 Drag the pointer to the second block’s input port. You can position the
cursor on or near the port or in the block. If you position the cursor in the
block, the line is connected to the closest input port.

The cursor shape changes to double crosshairs.
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4 Release the mouse button. The port symbols are replaced by a connecting
line with an arrow showing the direction of the signal flow. You can create
lines either from output to input, or from input to output.

The arrow appears at the appropriate input port, and the signal is the same.

The Simulink software draws connecting lines using horizontal and vertical
line segments. To draw a diagonal line, hold down the Shift key while
drawing the line.

Drawing a Branch Line
A branch line is a line that starts from an existing line and carries its signal to
the input port of a block. Both the existing line and the branch line represent
the same signal. Using branch lines enables you to connect a signal to more
than one block.

This example connect the output of the Product block to both the Scope block
and the To Workspace block.

To add a branch line:

1 Position the pointer on the line where you want the branch line to start.

2 While holding down the Ctrl key, press and hold down the left mouse
button.

3 Drag the pointer to the input port of the target block, then release the
mouse button and the Ctrl key.
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You can also use the right mouse button instead of holding down the left
mouse button and the Ctrl key.

Drawing a Line Segment
You might want to draw a line with segments exactly where you want them
instead of where the Simulink software draws them. Or you might want to
draw a line before you copy the block to which the line is connected. You can
do either by drawing line segments.

To draw a line segment, you draw a line that ends in an unoccupied area of
the diagram. An arrow appears on the unconnected end of the line. To add
another line segment, position the cursor over the end of the segment and
draw another segment. The segments area drawn as horizontal and vertical
lines. To draw diagonal line segments, hold down the Shift key while you
draw the lines.

Moving a Line Segment
To move a line segment:

1 Position the pointer on the segment you want to move.

2 Press and hold down the left mouse button.

3 Drag the pointer to the desired location.
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4 Release the mouse button.

To move the segment connected to an input port, position the pointer over the
port and drag the end of the segment to the new location. You cannot move
the segment connected to an output port.

Moving a Line Vertex
To move a vertex of a line:

1 Position the pointer on the vertex, then press and hold down the mouse
button.

The cursor changes to a circle that encloses the vertex.

2 Drag the pointer to the desired location.
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3 Release the mouse button.

Inserting Blocks in a Line
You can insert a block in a line by dropping the block on the line. The
Simulink software inserts the block for you at the point where you drop the
block. The block that you insert can have only one input and one output.

To insert a block in a line:

1 Position the pointer over the block and press the left mouse button.

2 Drag the block over the line in which you want to insert the block.

3 Release the mouse button to drop the block on the line.
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The block is inserted where you dropped it.

Disconnecting Blocks
To disconnect a block from its connecting lines, hold down the Shift key, then
drag the block to a new location.

To disconnect a line from a block’s input port, position the mouse pointer over
the line’s arrowhead. The pointer turns into a circle. Drag the arrowhead
away from the block.
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Aligning, Distributing, and Resizing Groups of Blocks
The model editor’s Format menu includes commands that let you quickly
align, distribute, and resize groups of blocks. To align (or distribute or resize)
a group of blocks:

1 Select the blocks that you want to align.

One of the selected blocks displays empty selection handles. The model
editor uses this block as the reference for aligning the other selected blocks.
If you want another block to serve as the alignment reference, click that
block.

2 Select one of the alignment options from the editor’s Format > Align
Blocks menu (or distribution options from the Format > Distribute
Blocks or resize options from the Format > Resize Blocks menu). For
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example, selecting Align Top Edges aligns the top edges of the selected
blocks with the top edge of the reference block.
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Annotating Diagrams

In this section...

“How to Annotate Diagrams” on page 3-24

“Annotations Properties Dialog Box” on page 3-25

“Annotation Callback Functions” on page 3-28

“Associating Click Functions with Annotations” on page 3-29

“Annotations API” on page 3-31

“Using TeX Formatting Commands in Annotations” on page 3-31

“Creating Annotations Programmatically” on page 3-33

How to Annotate Diagrams
Annotations provide textual information about a model. You can add an
annotation to any unoccupied area of your block diagram.

To create a model annotation, double-click an unoccupied area of the block
diagram. A small rectangle appears and the cursor changes to an insertion
point. Start typing the annotation contents. Each line is centered in the
rectangle that surrounds the annotation.

To move an annotation, drag it to a new location.

To edit an annotation, select it:
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• To replace the annotation, click the annotation, then double-click or drag
the cursor to select it. Then, enter the new annotation.

• To insert characters, click between two characters to position the insertion
point, then insert text.

• To replace characters, drag the mouse to select a range of text to replace,
then enter the new text.

To delete an annotation, hold down the Shift key while you select the
annotation, then press the Delete or Backspace key.

To change an annotation’s font, select the annotation, then choose Font from
the Format menu. Select a font and size from the dialog box.

To change the text alignment (e.g., left, center, or right) of the annotation,
select the annotation and choose Text Alignment from model editor’s
Format or the context menu. Then choose one of the alignment options (e.g.,
Center) from the Text Alignment submenu.

Annotations Properties Dialog Box
The Annotation Properties dialog box allows you to specify the contents and
format of the currently selected annotation and to associate a click function
with the annotation.
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To display the Annotation Properties dialog box for an annotation, select the
annotation and then select Annotation Properties from model editor’s Edit
or the context menu.

The dialog box appears.
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The dialog box includes the following controls.

Text
Displays the current text of the annotation. Edit this field to change the
annotation text.

Drop shadow
Checking this option causes a drop shadow to be displayed around the
annotation, giving it a 3-D appearance.

Enable TeX commands
Checking this option enables use of TeX formatting commands in this
annotation. See “Using TeX Formatting Commands in Annotations” in the
online Simulink® documentation for more information.

Font
Clicking this button displays a font chooser dialog box. Use the font chooser to
change the font used to render the annotation’s text.

Foreground color
Specifies the color of the annotation text.

Background color
Specifies the color of the background of the annotation’s bounding box.

Alignment
Specifies the alignment of the annotation’s text relative to its bounding box.

ClickFcn
Specifies MATLAB® code to be executed when a user single-clicks this
annotation. The Simulink software stores the code entered in this field with
the model. See “Associating Click Functions with Annotations” on page 3-29
for more information.
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Use display text as click callback
Checking this option causes the text in the Text field to be treated as the
annotation’s click function. The specified text must be a valid MATLAB
expression comprising symbols that are defined in the MATLAB workspace
when the user clicks this annotation. See “Associating Click Functions with
Annotations” on page 3-29 for more information. Note that selecting this
option disables the ClickFcn edit field.

Annotation Callback Functions
You can associate the following callback functions with annotations.

Click Function
A click function is an M function that the Simulink software invokes when a
user single-clicks an annotation. You can associate a click function with any of
a model’s annotations (see “Associating Click Functions with Annotations” on
page 3-29). the Simulink software uses the color blue to display the text of
annotations associated with click functions. This allows the user to see at a
glance which annotations are associated with click functions. Click functions
allow you to add hyperlinks and custom command “buttons” to your model’s
block diagram. For example, you can use click functions to allow a user to
display the values of workspace variables referenced by the model or to open
related models simply by clicking on annotations displayed on the block
diagram. (See Chapter 5, “Referencing a Model”.)

Load Function
This function is invoked when it loads the model containing the associated
annotation. To associate a load function with an annotation, set the LoadFcn
property of the annotation to the desired function (see “Annotations API”
on page 3-31).

Delete function
This function is invoked before deleting the associated annotation. To
associate a delete function with an annotation, set the DeleteFcn property of
the annotation to the desired function (see “Annotations API” on page 3-31).
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Associating Click Functions with Annotations
Two ways are provided to associate a click function with an annotation via the
annotation’s properties dialog box (see “Annotations Properties Dialog Box” on
page 3-25). You can specify either the annotation itself as the click function
or a separately defined function. To specify the annotation itself as the click
function, enter a valid MATLAB expression in the dialog box’s Text field
and check the Use display text as callback option. To specify a separately
defined click function, enter the M-code that defines the click function in
the dialog box’s ClickFcn edit field.
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The following model illustrates the two ways to associate click functions with
an annotation.

Clicking either of the annotations in this model displays help for the
set_param command.
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Note You can also use M-code to associate a click function with an
annotation. See “Annotations API” on page 3-31 for more information.

Selecting and Editing Annotations Associated with Click
Functions
Associating an annotation with a click function prevents you from selecting
the annotation by clicking on it. You must use drag select the annotation.
Similarly, you cannot make the annotation editable on the diagram by clicking
its text. To make the annotation editable on the diagram, first drag-select it,
then select Edit Annotation Text from model editor’s Edit or the context
menu.

Annotations API
An application program interface (API) is provided that enables you to use
M programs to get and set the properties of annotations. The API comprises
the following elements:

• Simulink.Annotation class

Allows M-code, e.g., annotation load functions (see “Load Function” on page
3-28), to set the properties of annotations

• getCallbackAnnotation function

Gets the Simulink.Annotation object for the annotation associated with
the currently executing annotation callback function

Using TeX Formatting Commands in Annotations
You can use TeX formatting commands to include mathematical and other
symbols and Greek letters in block diagram annotations.
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To use TeX commands in an annotation:

1 Select the annotation.

2 Select Enable TeX Commands from model editor’s Format menu.

3 Enter or edit the text of the annotation, using TeX commands where needed
to achieve the desired appearance.
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See “Mathematical Symbols, Greek Letters, and TeX Characters” in the
MATLAB documentation for information on the TeX formatting commands
which are supported.

4 Deselect the annotation by clicking outside it or typing Esc.

The formatted text is displayed.

Creating Annotations Programmatically
You can use the add_block command to create annotations at the command
line or in an M-file program. Use the following syntax to create the annotation:

add_block('built-in/Note','path/text','Position', ...
[center_x, 0, 0, center_y]);

where path is the path of the diagram to be annotated, text is the text of
the annotation, and [center_x, 0, 0, center_y] is the position of the center
of the annotation in pixels relative to the upper left corner of the diagram.
For example, the following sequence of commands

new_system('test')
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open_system('test')
add_block('built-in/Gain', 'test/Gain', 'Position', ...
[260, 125, 290, 155])
add_block('built-in/Note','test/programmatically created', ...
'Position', [550 0 0 180])

creates the following model:

To delete an annotation, use the find_system command to get the annotation’s
handle. Then use the delete function to delete the annotation, e.g.,

delete(find_system(gcs, 'FindAll', 'on', 'type', 'annotation'));
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Creating Subsystems

In this section...

“Why Subsystems are Advantageous” on page 3-35

“Creating a Subsystem by Adding the Subsystem Block” on page 3-36

“Creating a Subsystem by Grouping Existing Blocks” on page 3-36

“Model Navigation Commands” on page 3-38

“Window Reuse” on page 3-38

“Labeling Subsystem Ports” on page 3-39

“Controlling Access to Subsystems” on page 3-40

“Interconverting Subsystems and Block Diagrams” on page 3-41

“Emptying Subsystems and Block Diagrams” on page 3-41

Why Subsystems are Advantageous
A subsystem is a set of blocks that have been replaced by a single block called
a Subsystem block. As your model increases in size and complexity, you can
simplify it by grouping blocks into subsystems. Using subsystems has these
advantages:

• It helps reduce the number of blocks displayed in your model window.

• It allows you to keep functionally related blocks together.

• It enables you to establish a hierarchical block diagram, where a Subsystem
block is on one layer and the blocks that make up the subsystem are on
another.

You can create a subsystem in two ways:

• Add a Subsystem block to your model, then open that block and add the
blocks it contains to the subsystem window.

• Add the blocks that make up the subsystem, then group those blocks into a
subsystem.
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A subsystem can be execute conditionally or unconditionally. An
unconditionally executed subsystem always executes. A conditionally
executed subsystem may or may not execute, depending on the value of an
input signal. For information about conditionally executed subsystems, see
Chapter 4, “Creating Conditional Subsystems”.

Creating a Subsystem by Adding the Subsystem
Block
To create a subsystem before adding the blocks it contains, add a Subsystem
block to the model, then add the blocks that make up the subsystem:

1 Copy the Subsystem block from the Ports & Subsystems library into your
model.

2 Open the Subsystem block by double-clicking it.

The subsystem is opened in the current or a new model window, depending
on the model window reuse mode that you selected (see “Window Reuse” on
page 3-38).

3 In the empty Subsystem window, create the subsystem. Use Inport blocks
to represent input from outside the subsystem and Outport blocks to
represent external output.

For example, the subsystem shown includes a Sum block and Inport and
Outport blocks to represent input to and output from the subsystem.

Creating a Subsystem by Grouping Existing Blocks
If your model already contains the blocks you want to convert to a subsystem,
you can create the subsystem by grouping those blocks:

1 Enclose the blocks and connecting lines that you want to include in
the subsystem within a bounding box. You cannot specify the blocks to
be grouped by selecting them individually or by using the Select All
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command. For more information, see “Selecting Multiple Objects Using a
Bounding Box” on page 3-5.

For example, this figure shows a model that represents a counter. The Sum
and Unit Delay blocks are selected within a bounding box.

When you release the mouse button, the two blocks and all the connecting
lines are selected.

2 Choose Create Subsystem from the Edit menu. The selected blocks are
replaced with a Subsystem block.

This figure shows the model after you choose the Create Subsystem
command (and resize the Subsystem block so the port labels are readable).

If you open the Subsystem block, the underlying system is displayed, as
shown below.

Notice that the Simulink® software adds Inport and Outport blocks to
represent input from and output to blocks outside the subsystem.

As with all blocks, you can change the name of the Subsystem block. You can
also use the masking feature to customize the block’s appearance and dialog
box. See Chapter 17, “Creating Block Masks”.
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Undoing Subsystem Creation
To undo creation of a subsystem by grouping blocks, select Undo from the
Edit menu. You can undo creation of a subsystem that you have subsequently
edited. However, the Undo command does not undo any nongraphical
changes that you made to the blocks, such as changing the value of a block
parameter or the name of a block. The Simulink software alerts you to this
limitation by displaying a warning dialog box before undoing creation of a
modified subsystem.

Model Navigation Commands
Subsystems allow you to create a hierarchical model comprising many layers.
You can navigate this hierarchy using the Model Browser (see “The Model
Browser” on page 13-28) and/or the following model navigation commands:

• Open Block

The Open Block command opens the currently selected subsystem. To
execute the command, select Open Block from either the Edit menu or
the subsystem’s context (right-click) menu, press Enter, or double-click
the subsystem.

• Open Block In New Window

Opens the currently selected subsystem regardless of the window reuse
settings (see “Window Reuse” on page 3-38). To execute the command,
select Open Block In New Window from the subsystem’s context
(right-click) menu.

• Go To Parent

The Go To Parent command displays the parent of the subsystem
displayed in the current window. To execute the command, press Esc or
select Go To Parent from the the Simulink software View menu.

Window Reuse
You can specify whether the Simulink software model navigation commands
use the current window or a new window to display a subsystem or its parent.
Reusing windows avoids cluttering your screen with windows. Creating a
window for each subsystem allows you to view subsystems side by side with
their parents or siblings. To specify your preference regarding window reuse,
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select Preferences from the File menu and then select one of the following
Window reuse type options listed in the Preferences dialog box.

Reuse Type Open Action Go to Parent (Esc) Action

none Subsystem appears in a
new window.

Parent window moves to the
front.

reuse Subsystem replaces the
parent in the current
window.

Parent window replaces
subsystem in current window

replace Subsystem appears in
a new window. Parent
window disappears.

Parent window appears.
Subsystem window disappears.

mixed Subsystem appears in its
own window.

Parent window rises to front.
Subsystem window disappears.

Labeling Subsystem Ports
Simulink labels ports on a Subsystem block. The labels are the names of
Inport and Outport blocks that connect the subsystem to blocks outside the
subsystem through these ports.

You can hide (or show) the port labels by

• Selecting the Subsystem block, then choosing Hide Port Labels (or Show
Port Labels) from the Format menu

• Selecting an Inport or Outport block in the subsystem and choosing Hide
Name (or Show Name) from the Format menu

• Selecting the Show port labels option in the Subsystem block’s parameter
dialog
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This figure shows two models.

The subsystem on the left contains two Inport blocks and one Outport block.
The Subsystem block on the right shows the labeled ports.

Controlling Access to Subsystems
You can control user access to subsystems. For example, you can prevent a
user from viewing or modifying the contents of a library subsystem while still
allowing the user to employ the subsystem in a model.

To restrict access to a library subsystem, open the subsystem’s parameter
dialog box and set its Read/Write permissions parameter to either ReadOnly
or NoReadOrWrite. The first option allows a user to view the contents of
the library subsystem but prevents the user from modifying the reference
subsystem without first disabling its library link or changing its Read/Write
permissions parameter to ReadWrite. The second option prevents the user
from viewing the contents of the library subsystem, modifying the reference
subsystem, and changing the reference subsystem’s permissions. Note that
both options allow a user to use the library subsystem in models by creating
links (see Chapter 7, “Working with Block Libraries”). See the Subsystem
block in the Simulink Reference guide for more information on subsystem
access options.

Note You will not receive a response if you attempt to view the contents
of a subsystem whose Read/Write permissions parameter is set to
NoReadOrWrite. For example, when double-clicking such a subsystem, the
Simulink software neither opens the subsystem nor displays any messages.
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Interconverting Subsystems and Block Diagrams
These functions are provided that you can use to interconvert subsystems
and block diagrams:

Simulink.SubSystem.copyContentsToBlockDiagram
Copies the contents of a subsystem to an empty block diagram.

Simulink.BlockDiagram.copyContentsToSubSystem
Copies the contents of a block diagram to an empty subsystem.

For more information, see the reference documentation for these functions.

Emptying Subsystems and Block Diagrams
These functions are provided to empty subsystems and block diagrams:

Simulink.SubSystem.deleteContents
Deletes the contents of a subsystem.

Simulink.BlockDiagram.deleteContents
Deletes the contents of a block diagram.

For more information, see the reference documentation for these functions.
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Modeling Control Flow Logic

In this section...

“Equivalent C Language Statements” on page 3-42

“Modeling Conditional Control Flow Logic” on page 3-42

“Modeling While and For Loops” on page 3-45

Equivalent C Language Statements
You can use block diagrams to model control flow logic equivalent to the
following C programming language statements:

• for

• if-else

• switch

• while

Modeling Conditional Control Flow Logic
You can use the following blocks to model conditional control flow logic.

C Statement Equivalent Blocks

if-else If, If Action Subsystem

switch Switch Case, Switch Case Action Subsystem

Modeling If-Else Control Flow
The following diagram models if-else control flow.
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Construct an if-else control flow diagram as follows:

• Provide data inputs to the If block for constructing if-else conditions.

Inputs to the If block are set in the If block properties dialog box. Internally,
they are designated as u1, u2,..., un and are used to construct output
conditions.

• Set output port if-else conditions for the If block.

Output ports for the If block are also set in its properties dialog box. You
use the input values u1, u2, ..., un to express conditions for the if,
elseif, and else condition fields in the dialog box. Of these, only the if field
is required. You can enter multiple elseif conditions and select a check box
to enable the else condition.

• Connect each condition output port to an Action subsystem.

Each if, elseif, and else condition output port on the If block is connected
to a subsystem to be executed if the port’s case is true. You create these
subsystems by placing an Action Port block in a subsystem. This creates
an atomic Action subsystem with a port named Action, which you then
connect to a condition on the If block. Once connected, the subsystem takes
on the identity of the condition it is connected to and behaves like an
enabled subsystem.

For more detailed information, see the If and Action Port blocks.
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Note All blocks in an Action subsystem driven by an If or Switch Case block
must run at the same rate as the driving block.

Modeling Switch Control Flow
The following diagram models switch control flow.

Construct a switch control flow statement as follows:

• Provide a data input to the argument input of the Switch Case block.

The input to the Switch Case block is the argument to the switch control
flow statement. This value determines the appropriate case to execute.
Noninteger inputs to this port are truncated.

• Add cases to the Switch Case block based on the numeric value of the
argument input.

You add cases to the Switch Case block through the properties dialog box of
the Switch Case block. Cases can be single or multivalued. You can also
add an optional default case, which is true if no other cases are true. Once
added, these cases appear as output ports on the Switch Case block.

• Connect each Switch Case block case output port to an Action subsystem.

Each case output of the Switch Case block is connected to a subsystem to be
executed if the port’s case is true. You create these subsystems by placing
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an Action Port block in a subsystem. This creates an atomic subsystem
with a port named Action, which you then connect to a condition on the
Switch Case block. Once connected, the subsystem takes on the identity of
the condition and behaves like an enabled subsystem. Place all the block
programming executed for that case in this subsystem.

For more detailed information, see Simulink® Reference for the Switch Case
and Action Port blocks.

Note After the subsystem for a particular case is executed, an implied break
is executed that exits the switch control flow statement altogether. The
Simulink software switch control flow statement implementations do not
exhibit “fall through” behavior like C switch statements.

Modeling While and For Loops
The following blocks allow you to model while and for loops.

C Statement Equivalent Blocks

do-while While Iterator Subsystem

for For Iterator Subsystem

while While Iterator Subsystem

Modeling While Loops
The following diagram illustrates a while loop.
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In this example, the Simulink software repeatedly executes the contents of
the While subsystem at each time step until a condition specified by the While
Iterator block is satisfied. In particular, for each iteration of the loop specified
by the While Iterator block, the Simulink software invokes the update and
output methods of all the blocks in the While subsystem in the same order that
the methods would be invoked if they were in a noniterated atomic subsystem.

Note Simulation time does not advance during execution of a While
subsystem’s iterations. Nevertheless, blocks in a While subsystem treat
each iteration as a time step. As a result, in a While subsystem, the output
of a block with states, i.e., a block whose output depends on its previous
input, reflects the value of its input at the previous iteration of the while
loop—not, as one might expect, its input at the previous simulation time step.
For example, a Unit Delay block in a While subsystem outputs the value of
its input at the previous iteration of the while loop—not the value at the
previous simulation time step.

Construct a while loop as follows:

• Place a While Iterator block in a subsystem.

The host subsystem’s label changes to while {...} to indicate that it is
modeling a while loop. These subsystems behave like triggered subsystems.
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This subsystem is host to the block programming you want to iterate with
the While Iterator block.

• Provide a data input for the initial condition data input port of the While
Iterator block.

The While Iterator block requires an initial condition data input (labeled
IC) for its first iteration. This must originate outside the While subsystem.
If this value is nonzero, the first iteration takes place.

• Provide data input for the conditions port of the While Iterator block.

Conditions for the remaining iterations are passed to the data input port
labeled cond. Input for this port must originate inside the While subsystem.

• You can set the While Iterator block to output its iterator value through
its properties dialog.

The iterator value is 1 for the first iteration and is incremented by 1 for
each succeeding iteration.

• You can change the iteration of the While Iterator block to do-while
through its properties dialog.

This changes the label of the host subsystem to do {...} while. With
a do-while iteration, the While Iteration block no longer has an initial
condition (IC) port, because all blocks in the subsystem are executed once
before the condition port (labeled cond) is checked.

• Create a block diagram in the subsystem that defines the subsystem’s
outputs.

Note The diagram must not contain blocks with continuous states, e.g.,
blocks from the Continuous block library, and the sample times of all the
blocks must be inherited (-1) or constant (inf).

For more information, see the While Iterator block.
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Modeling For Loops
The following diagram models a for loop:

In this example, the Simulink software executes the contents of the For
subsystem multiples times at each time step with the number of iterations
being specified by the input to the For Iterator block. In particular, for each
iteration of the for loop, the Simulink software invokes the update and output
methods of all the blocks in the For subsystem in the same order that the
methods would be invoked if they were in a noniterated atomic subsystem.

Note Simulation time does not advance during execution of a For subsystem’s
iterations. Nevertheless, blocks in a For subsystem treat each iteration as a
time step. As a result, in a For subsystem, the output of a block with states,
i.e., a block whose output depends on its previous input, reflects the value of
its input at the previous iteration of the for loop—not, as one might expect, its
input at the previous simulation time step. For example, a Unit Delay block
in a For subsystem outputs the value of its input at the previous iteration of
the for loop—not the value at the previous simulation time step.

Construct a for loop as follows:

• Drag a For Iterator Subsystem block from the Library Browser or Library
window into your model.
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• You can set the For Iterator block to take external or internal input for
the number of iterations it executes.

Through the properties dialog of the For Iterator block you can set it to take
input for the number of iterations through the port labeled N. This input
must come from outside the For Iterator Subsystem.

You can also set the number of iterations directly in the properties dialog.

• You can set the For Iterator block to output its iterator value for use in the
block programming of the For Iterator Subsystem.

The iterator value is 1 for the first iteration and is incremented by 1 for
each succeeding iteration.

• Create a block diagram in the subsystem that defines the subsystem’s
outputs.

Note The diagram must not contain blocks with continuous states, e.g.,
blocks from the Continuous block library, and the sample times of all the
blocks must be inherited (-1) or constant (inf).

The For Iterator block works well with the Assignment block to reassign
values in a vector or matrix. This is demonstrated in the following example.
Note the matrix dimensions in the data being passed.
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The above example outputs the sine value of an input 2-by-5 matrix (2 rows,
5 columns) using a For subsystem containing an Assignment block. The
process is as follows:

1 A 2-by-5 matrix is input to the Selector block and the Assignment block.

2 The Selector block strips off a 2-by-1 matrix from the input matrix at the
column value indicated by the current iteration value of the For Iterator
block.

3 The sine of the 2-by-1 matrix is taken.
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4 The sine value 2-by-1 matrix is passed to an Assignment block.

5 The Assignment block, which takes the original 2-by-5 matrix as one of
its inputs, assigns the 2-by-1 matrix back into the original matrix at the
column location indicated by the iteration value.

The rows specified for reassignment in the property dialog for the
Assignment block in the above example are [1,2]. Because there are only
two rows in the original matrix, you could also have specified -1 for the
rows, i.e., all rows.

Note Experienced Simulink software users will note that the Trigonometric
Function block is already capable of taking the sine of a matrix. The above
example uses the Trigonometric Function block only as an example of
changing each element of a matrix with the collaboration of an Assignment
block and a For Iterator block.
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Using Callback Functions

In this section...

“About Callback Functions” on page 3-52

“Tracing Callbacks” on page 3-52

“Creating Model Callback Functions” on page 3-53

“Creating Block Callback Functions” on page 3-55

“Port Callback Parameters” on page 3-59

About Callback Functions
You can define MATLAB® expressions that execute when the block diagram or
a block is acted upon in a particular way. These expressions, called callback
functions, are specified by block, port, or model parameters. For example, the
function specified by a block’s NameChangeFcn parameter is executed when
you double-click that block’s name or its path changes.

Note Do not call the run command from within model or block callbacks.
Doing so can result in unexpected behavior (such as errors or incorrect
results) if a Simulink® model is loaded, compiled, or simulated from inside an
M-function.

Tracing Callbacks
Callback tracing allows you to determine the callbacks the Simulink software
invokes and in what order the it invokes them when you open or simulate a
model. To enable callback tracing, select the Callback tracing option on
the Preferences dialog box or execute set_param(0, 'CallbackTracing',
'on'). This option causes the callbacks to be listed in the MATLAB Command
Window as they are invoked. This option applies to all Simulink models, not
just models that are open when the preference is enabled.
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Creating Model Callback Functions
You can create model callback functions interactively or programmatically.
Use the Callbacks pane of the model’s Model Properties dialog box (see
“Callbacks Pane” on page 3-100) to create model callbacks interactively. To
create a callback programmatically, use the set_param command to assign a
MATLAB expression that implements the function to the model parameter
corresponding to the callback (see “Model Callback Functions” on page 3-53).

For example, this command evaluates the variable testvar when the user
double-clicks the Test block in mymodel:

set_param('mymodel/Test', 'OpenFcn', testvar)

You can examine the clutch system (sldemo_clutch.mdl) for routines
associated with many model callbacks. This model defines the following
callbacks:

• PreLoadFcn

• PostLoadFcn

• StartFcn

• StopFcn

• CloseFcn

Model Callback Functions
The following table describes callback functions associated with models.

Parameter When Executed

CloseFcn Before the block diagram is closed. Any
ModelCloseFcn and DeleteFcn callbacks set on
blocks in the model are called prior to the model’s
CloseFcn. The DestroyFcn callback of any blocks in
the model is called after the model’s CloseFcn.

PostLoadFcn After the model is loaded. Defining a callback
routine for this parameter might be useful for
generating an interface that requires that the model
has already been loaded.
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Parameter When Executed

InitFcn Called at start of model simulation.

PostSaveFcn After the model is saved.

PreLoadFcn Before the model is loaded. Defining a callback
routine for this parameter might be useful for
loading variables used by the model.

Note In a PreLoadFcn callback routine, the
get_param command does not return the model’s
parameter values because the model is not yet
loaded.

In a PreLoadFcn routine, get_param returns:

• The default value for a standard model parameter
such as solver

• An error message for a model parameter added
with add_param

In a PostLoadFcn callback routine, however,
get_param returns the model’s parameter values
because the model is loaded.

PreSaveFcn Before the model is saved.

StartFcn Before the simulation starts.

StopFcn After the simulation stops. Output is written to
workspace variables and files before the StopFcn is
executed.
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Note Beware of adverse interactions between callback functions of models
referenced by other models. (See Chapter 5, “Referencing a Model”.) For
example, suppose that model A references model B and that model A’s OpenFcn
creates variables in the MATLAB workspace and model B’s CloseFcn clears
the MATLAB workspace. Now suppose that simulating model A requires
rebuilding model B. Rebuilding B entails opening and closing model B and
hence invoking model B’s CloseFcn, which clears the MATLAB workspace,
including the variables created by A’s OpenFcn.

Creating Block Callback Functions
You can create block callback functions interactively or programmatically.
Use the Callbacks pane of the block’s Block Properties dialog box (see
“Callbacks Pane” on page 6-25) to create block callbacks interactively. To
create a callback programmatically, use the set_param command to assign
a MATLAB expression that implements the function to the block parameter
corresponding to the callback (see “Block Callback Parameters” on page 3-55).

Note A callback for a masked subsystem cannot directly reference the
parameters of the masked subsystem (see “About Masks” on page 17-2). The
Simulink software evaluates block callbacks in the MATLAB base workspace
whereas the mask parameters reside in the masked subsystem’s private
workspace. A block callback, however, can use get_param to obtain the value
of a mask parameter, e.g., get_param(gcb, 'gain'), where gain is the name
of a mask parameter of the current block.

Block Callback Parameters
This table lists the parameters for which you can define block callback
routines, and indicates when those callback routines are executed. Routines
that are executed before or after actions take place occur immediately before
or after the action.

Parameter When Executed

ClipboardFcn When the block is copied or cut to the system
clipboard.
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Parameter When Executed

CloseFcn When the block is closed using the close_system
command. The CloseFcn is not called when you
interactively close the block, when you interactively
close the subsystem or model containing the block,
or when you close the subsystem or model containing
the block using close_system.

CopyFcn After a block is copied. The callback is recursive for
Subsystem blocks (that is, if you copy a Subsystem
block that contains a block for which the CopyFcn
parameter is defined, the routine is also executed).
The routine is also executed if an add_block
command is used to copy the block.

DeleteChildFcn After a block or line is deleted in a subsystem. If
the block has a DeleteFcn or DestroyFcn, those
functions are executed prior to the DeleteChildFcn.
Only Subsystem blocks have a DeleteChildFcn
callback.

DeleteFcn After a block is graphically deleted, e.g., when you
graphically delete the block, invoke delete_block
on the block, or close the model containing the block.
When the DeleteFcn is called, the block handle is
still valid and can be accessed using get_param.
The DeleteFcn callback is recursive for Subsystem
blocks. If the block is graphically deleted by invoking
delete_block or by closing the model, after deletion
the block is destroyed from memory and the block’s
DestroyFcn is called.

DestroyFcn When the block has been destroyed from memory,
e.g., when you invoke delete_block on either
the block or a subsystem containing the block or
close the model containing the block. If the block
was not previously graphically deleted, the block’s
DeleteFcn is called prior to the DestroyFcn. When
the DestroyFcn is called, the block handle is no
longer valid.
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Parameter When Executed

InitFcn Before the block diagram is compiled and before
block parameters are evaluated.

ErrorFcn When an error has occurred in a subsystem. Only
Subsystem blocks have a ErrorFcn callback. The
callback function should have the following form:

errorMsg = errorHandler(subsys, errorType)

where errorHandler is the name of the callback
function, subsys is a handle to the subsystem in
which the error occurred, errorType is a Simulink
string indicating the type of error that occurred, and
errorMsg is a string specifying the error message to
be displayed to the user. The following command
sets the ErrorFcn of the subsystem subsys to call
the errorHandler callback function

set_param(subsys,'ErrorFcn','errorHandler')

Do not include the callback function’s input
arguments in the call to set_param. The Simulink
software displays the error message errorMsg
returned by the callback function.

LoadFcn After the block diagram is loaded. This callback is
recursive for Subsystem blocks.

ModelCloseFcn Before the block diagram is closed. When the model
is closed, the block’s ModelCloseFcn is called prior
to its DeleteFcn. This callback is recursive for
Subsystem blocks.

MoveFcn When the block is moved or resized.

NameChangeFcn After a block’s name and/or path changes. When a
Subsystem block’s path is changed, it recursively
calls this function for all blocks it contains after
calling its own NameChangeFcn routine.
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Parameter When Executed

OpenFcn When the block is opened. This parameter is
generally used with Subsystem blocks. The routine
is executed when you double-click the block or when
an open_system command is called with the block as
an argument. The OpenFcn parameter overrides the
normal behavior associated with opening a block,
which is to display the block’s dialog box or to open
the subsystem.

ParentCloseFcn Before closing a subsystem containing the block or
when the block is made part of a new subsystem
using the new_system command (see new_system
in the online Simulink software reference) or the
Create Subsystem item in model editor’s Edit
menu. The ParentCloseFcn of blocks at the root
model level is not called when the model is closed.

PostSaveFcn After the block diagram is saved. This callback is
recursive for Subsystem blocks.

PreCopyFcn Before a block is copied. The callback is recursive for
Subsystem blocks (that is, if you copy a Subsystem
block that contains a block for which the PreCopyFcn
parameter is defined, that routine is also executed).
The block’s CopyFcn is called after all PreCopyFcn
callbacks are executed, unless the PreCopyFcn
invokes the error command either explicitly or via a
command used in any PreCopyFcn. The PreCopyFcn
is also executed if an add_block command is used to
copy the block.

PreDeleteFcn Before a block is graphically deleted, e.g., when
the user graphically deletes the block or invokes
delete_block on the block. The PreDeleteFcn is
not called when the model containing the block is
closed. The block’s DeleteFcn is called after the
PreDeleteFcn unless the PreDeleteFcn invokes the
error command either explicitly or via a command
used in the PreDeleteFcn.
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Parameter When Executed

PreSaveFcn Before the block diagram is saved. This callback is
recursive for Subsystem blocks.

StartFcn After the block diagram is compiled and before the
simulation starts. In the case of an S-Function
block, StartFcn executes immediately before the
first execution of the block’s mdlProcessParameters
function. See “S-Function Callback Methods” in the
online Simulink software documentation for more
information.

StopFcn At any termination of the simulation. In the
case of an S-Function block, StopFcn executes
after the block’s mdlTerminate function executes.
See “S-Function Callback Methods” in the online
Simulink software documentation for more
information.

UndoDeleteFcn When a block deletion is undone.

Port Callback Parameters
Block input and output ports have a single callback function parameter,
ConnectionCallback. This parameter allows you to set callbacks on ports
that are triggered every time the connectivity of these ports changes.
Examples of connectivity changes include adding a connection from the port
to a block, deleting a block connected to the port, and deleting, disconnecting,
or connecting branches or lines to the port.

Use get_param to get the port handle of a port and set_param to set the
callback on the port. The callback function must have one input argument
that represents the port handle, but the input argument is not included in
the call to set_param. For example, suppose the currently selected block has
a single input port. The following code fragment sets foo as the connection
callback on the input port.

phs = get_param(gcb, 'PortHandles');
set_param(phs.Inport, 'ConnectionCallback', 'foo');

where, foo is defined as:
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function foo(portHandle)
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Using Model Workspaces

In this section...

“About Model Workspaces” on page 3-61

“Changing Model Workspace Data” on page 3-62

“Model Workspace Dialog Box” on page 3-64

About Model Workspaces
Each model is provided with its own workspace for storing variable values.
The model workspace is similar to the base MATLAB® workspace except that

• Variables in a model’s workspace are visible only in the scope of the model.

If both the MATLAB workspace and a model workspace define a variable
of the same name, and the variable does not appear in any intervening
masked subsystem or model workspaces, the Simulink® software uses
the value of the variable in the model workspace. A model’s workspace
effectively provides it with its own name space, allowing you to create
variables for the model without risk of conflict with other models.

• When the model is loaded, the workspace is initialized from a data source.

The data source can be the model’s MDL-file, a MAT-file, or M-code stored
in the model file (see “Data source” on page 3-65 for more information).

• You can interactively reload and save MAT-file and M-code data sources.

• Only Simulink.Parameter and Simulink.Signal objects for which the
storage class is set to Auto can reside in a model workspace. You must
create all other Simulink software data objects in the base MATLAB
workspace to ensure the objects are unique within the global Simulink
context and accessible to all models.

Note Subclasses of Simulink.Parameter and Simulink.Signal classes,
including mpt.Parameter and mpt.Signal objects (Real-Time Workshop®

Embedded Coder license required), can reside in a model workspace only
if their storage class is set to Auto.
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• In general, parameter variables in a model workspace are not tunable.

However, you can tune model workspace variables declared as model
arguments for referenced models (see “Using Model Arguments” on page
5-28 for more information).

Note When resolving references to variables used in a referenced model, the
referenced model’s variables are resolved as if the parent model did not exist.
For example, suppose a referenced model references a variable that is defined
in both the parent model’s workspace and in the MATLAB workspace but not
in the referenced model’s workspace. In this case, the MATLAB workspace
is used. (See Chapter 5, “Referencing a Model”.)

Note When you use a workspace variable as a block parameter, the Simulink
software creates a copy of the variable during the compilation phase of the
simulation and stores the variable in memory. This can cause your system to
run out of memory during simulation, or in the process of generating code.
Your system might run out of memory if

• You have large models with many parameters

• You have a model with parameters that have a large number of elements

This issue does not affect the amount of memory that is used to represent
parameters in generated code.

Changing Model Workspace Data
The procedure for modifying a workspace depends on the workspace’s data
source.

Changing Workspace Data Whose Source Is the Model File
If a model workspace’s data source is data stored in the model, you can
use Model Explorer (see “The Model Explorer” on page 13-2) or MATLAB
commands to change the model’s workspace (see “Using MATLAB®

Commands to Change Workspace Data” on page 3-63).
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For example, to create a variable in a model workspace, using Model Explorer,
first select the workspace in Model Explorer’s Model Hierarchy pane. Then
select MATLAB Variable from Model Explorer’s Add menu or toolbar.
You can similarly use the Add menu or Model Explorer’s toolbar to add a
Simulink.Parameter object to a model workspace.

To change the value of a model workspace variable, select the workspace,
then select the variable in Model Explorer’s Contents pane and edit the value
displayed in the Contents pane or in Model Explorer’s object Dialog pane. To
delete a model workspace variable, select the variable in the Contents pane
and select Delete from Model Explorer’s Edit menu or toolbar. To save the
changes, save the model.

Changing Workspace Data Whose Source Is a MAT-File
You can also use Model Explorer or MATLAB commands to modify workspace
data whose source is a MAT-file. In this case, if you want to make the changes
permanent, you must save the changes to the MAT-file, using the Save To
Source button on the Model Workspace dialog box (see “Model Workspace
Dialog Box” on page 3-64). To discard changes to the workspace, use the
Reinitialize From Source button on the Model Workspace dialog box.

Changing Workspace Data Whose Source Is M-Code
The safest way to change data whose source is M-code is to edit and reload the
source, i.e., edit the M-code and then clear the workspace and reexecute the
code, using the Reinitialize From Source button on the Model Workspace
dialog box. You can use the Export to MAT-File and Import From MAT-file
buttons to save and reload alternative versions of the workspace that result
from editing the M code source or the workspace variables themselves.

Using MATLAB® Commands to Change Workspace Data
To use MATLAB commands to change data in a model workspace, first get the
workspace for the currently selected model:

hws = get_param(bdroot, 'modelworkspace');

This command returns a handle to a Simulink.ModelWorkspace object
whose properties specify the source of the data used to initialize the model
workspace. Edit the properties to change the data source. Use the workspace’s
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methods to list, set, and clear variables, evaluate expressions in, and save and
reload the workspace.

For example, the following MATLAB sequence of commands creates variables
specifying model parameters in the model’s workspace, saves the parameters,
modifies one of them, and then reloads the workspace to restore it to its
previous state.

hws = get_param(bdroot, 'modelworkspace');
hws.DataSource = 'MAT-File';
hws.FileName = 'params';
hws.assignin('pitch', -10);
hws.assignin('roll', 30);
hws.assignin('yaw', -2);
hws.saveToSource;
hws.assignin('roll', 35);
hws.reload;

Model Workspace Dialog Box
The Model Workspace dialog box enables you to specify a model workspace’s
source and model reference arguments (See Chapter 5, “Referencing a
Model”.) To display the dialog box, select the model workspace in Model
Explorer’s Model Hierarchy pane. To use MATLAB commands to change
data in a model workspace, see “Using MATLAB® Commands to Change
Workspace Data” on page 3-63.

3-64



Using Model Workspaces

The dialog box contains the following controls.

Data source
Specifies the source of this workspace’s data. The options are

• Mdl-File

Specifies that the data source is the model itself. Selecting this option
causes additional controls to appear (see “MDL-File Source Controls” on
page 3-66).

• MAT-File

Specifies that the data source is a MAT file. Selecting this option causes
additional controls to appear (see “MAT-File Source Controls” on page 3-66).

• M-code
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Specifies that the data source is M code stored in the model file. Selecting
this option causes additional controls to appear (see “M-Code Source
Controls” on page 3-67).

MDL-File Source Controls
Selecting Mdl-File as the Data source for a workspace causes the Model
Workspace dialog box to display additional controls.

Import From MAT-File. This button lets you import data from a MAT-file.
Selecting the button causes a file selection dialog box to be displayed. Use the
dialog box to select the MAT file that contains the data you want to import.

Export To MAT-File. This button lets you save the selected workspace as a
MAT-file. Selecting the button displays a file selection dialog box. Use the
dialog box to select the MAT file to contain the saved data.

Clear Workspace. This button clears all data from the selected workspace.

MAT-File Source Controls
Selecting MAT-File as the Data source for a workspace causes the Model
Workspace dialog box to display additional controls.
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File name. File name or path name of the MAT file that is the data source
for the selected workspace. If a file name, the name must reside on the
MATLAB path.

Reinitialize From Source. Clears the workspace and reloads the data from
the MAT-file specified by the File name field.

Save To Source. Save the workspace in the MAT-file specified by the File
name field.

Import From MAT-File. Loads data from a specified MAT file into the
selected model workspace without first clearing the workspace. Selecting this
option causes a file selection dialog box to be displayed. Use the dialog box to
enter the name of the MAT-file that contains the data to be imported.

Export To MAT-File. Saves the data in the selected workspace in a MAT-file.
Selecting the button causes a file selection dialog box to be displayed. Use the
dialog box to select the MAT file to contain the saved data.

Clear Workspace. Clears the selected workspace.

M-Code Source Controls
Selecting M-Code as the Data source for a workspace causes the Model
Workspace dialog box to display additional controls.
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M-Code. Specifies M-code that initializes the selected workspace. To change
the initialization code, edit this field, then select the Reinitialize from
source button on the dialog box to clear the workspace and execute the
modified code.

Reinitialize from Source. Clears the workspace and executes the contents
of the M-Code field.

Import From MAT-File. Loads data from a specified MAT file into the
selected model workspace without first clearing the workspace. Selecting this
option causes a file selection dialog box to be displayed. Use the dialog box to
enter the name of the MAT-file that contains the data to be imported.

Export To MAT-File. Saves the data in the selected workspace in a MAT-file.
Selecting the button causes a file selection dialog box to be displayed. Use the
dialog box to select the MAT file to contain the saved data.

Clear Workspace. Clears the selected workspace.

Model Arguments
This field allows you to specify arguments that can be passed to instances
of this model referenced by another model. See Chapter 5, “Referencing a
Model” and “Using Model Arguments” on page 5-28 for more information.
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Resolving Symbols

In this section...

“About Symbol Resolution” on page 3-69

“Hierarchical Symbol Resolution” on page 3-70

“Specifying Numeric Values with Symbols” on page 3-71

“Specifying Other Values with Symbols” on page 3-71

“Limiting Signal Resolution” on page 3-72

“Explicit and Implicit Resolution” on page 3-72

“Programmatic Symbol Resolution” on page 3-73

About Symbol Resolution
When you create a Simulink® model, you can use symbols to provide values
and definitions for many types of entities in the model. Model entities that
can be defined with symbols include block parameters, configuration set
parameters, data types, signals, signal properties, and bus architecture.

A symbol that provides a value or definition must be a legal MATLAB®

identifier. Such an identifier starts with an alphabetic character, followed by
up to 63 alphanumeric or underscore characters. A symbol provides a value or
definition in a Simulink model by corresponding to some item that:

• Exists in an accessible workspace

• Has a name that matches the symbol

• Provides the required information

The process of searching for and finding an item that corresponds to a symbol
is called resolving the symbol. The matching item can provide the needed
information directly, or it can itself be a symbol, which must then resolve to
some other item that provides the information.

When the Simulink software compiles a model, it tries to resolve every symbol
in the model, except symbols in M-code that runs in a callback or as part of
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mask initialization. Depending on the particular case, the item to which a
symbol resolves can be a variable, object, or function.

Hierarchical Symbol Resolution
The Simulink software attempts to resolve a symbol by searching through
the accessible workspaces in hierarchical order for a MATLAB variable or
Simulink object whose name is the same as the symbol. The search path
is identical for every symbol. The search begins with the block that uses
the symbol, or creates a signal that is named by the symbol, and proceeds
upward. Except when simulation occurs via the sim command, the search
order is the following:

1 Any mask workspaces, in order from the block upwards (see “Mask
Workspace” on page 17-4)

2 The model workspace of the model that contains the block (see “Using
Model Workspaces” on page 3-61)

3 The MATLAB base workspace (See “MATLAB Workspace”)

If the Simulink software finds a matching item in the course of this search,
the search terminates successfully at that point, and the symbol resolves to
the matching item. The result is the same as if the value of that item had
appeared literally instead of the symbol that resolved to the item. An object
defined at a lower level shadows any object defined at a higher level.

If no matching item exists on the search path, the Simulink software attempts
to evaluate the symbol as a function. If the function is defined and returns
an appropriate value, the symbol resolves to whatever the function returned.
Otherwise, the symbol remains unresolved, and an error occurs. Evaluation as
a function occurs as the final step whenever a hierarchical search terminates
without having found a matching workspace item.

If the model that contains the symbol is a referenced model, and the search
reaches the model workspace but does not succeed there, the search jumps
directly to the base workspace without trying to resolve the symbol in the
workspace of any parent model. Thus a given symbol will resolve to the
same item irrespective of whether the model that contains the symbol is a
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referenced model. See Chapter 5, “Referencing a Model” for information about
model referencing.

Specifying Numeric Values with Symbols
Any block parameter that requires a numeric value can be specified by
providing a literal value, a symbol, or an expression, which can contain
symbols and literal values. Each is symbol evaluated separately, as if none
of the others existed. Different symbols in an expression can thus resolve to
items on different workspaces, and to different types of item.

When a single symbol appears and resolves successfully, its value provides the
value of the parameter. When an expression appears, and all symbols resolve
successfully, the value of the expression provides the value of the parameter.
If any symbol cannot be resolved, or resolves to a value of inappropriate type,
an error occurs.

For example, suppose that the Gain parameter of a Gain block is given as
cos(j*(k+2)). The symbol cos will resolve to the MATLAB cosine function,
and j and k must resolve to numeric values, which could be obtained from the
same or different types of items in the same or different workspaces. If the
symbols resolve to numeric values, the value returned by the cosine function
becomes the value of the Gain parameter.

Specifying Other Values with Symbols
Most symbols and expressions that use them provide numeric values, but the
same techniques that provide numeric values can provide any type of value
that is appropriate for its context. Another common use of symbols is to name
objects that provide definitions of some kind. For example, a signal name can
resolve to a signal object (Simulink.Signal) that defines the properties of
the signal, and a Bus Creator block’s Bus object parameter can name a bus
object (Simulink.Bus) that defines the properties of the bus. Symbols can be
used when defining data types, can specify input data sources and logged data
destinations, and can serve many other purposes.

From the standpoint of hierarchical symbol resolution, all of these different
uses of symbols, whether singly or in expressions, are the same: each symbol
is resolved, if possible, independently of any others, and the result becomes
available where the symbol appeared. The only difference between one symbol
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and another is the specific item to which the symbol resolves and the use
made of that item. The only requirement is that every symbol must resolve to
something that can legally appear at the location of the symbol.

Limiting Signal Resolution
Hierarchical symbol resolution traverses the complete search path by default.
You can truncate the search path by using the Permit Hierarchical
Resolution option of any subsystem. This option controls what happens if
the search reaches that subsystem without resolving to a workspace variable.
The Permit Hierarchical Resolution values are:

• All

Continue searching up the workspace hierarchy trying to resolve the
symbol. This is the default value.

• None

Do not continue searching up the hierarchy. Attempt to resolve the symbol
as a function.

• ExplicitOnly

Continue searching up the hierarchy only if the symbol specifies a block
parameter value, data store memory (where no block exists), or a signal
or state that explicitly requires resolution. Do not continue searching for
an implicit resolution. See “Explicit and Implicit Resolution” on page 3-72
for more information.

If the search does not find a match in the workspace, and terminates because
the value is ExplicitOnly or None, the Simulink software evaluates the
symbol as a function. The search succeeds or fails depending on the result of
the evaluation, as previously described.

Explicit and Implicit Resolution
Models and some types of model entities have associated parameters that can
affect symbol resolution. For example, suppose that a model includes a signal
named Amplitude, and that a Simulink.Signal object named Amplitude
exists in an accessible workspace. If the Amplitude signal’s Signal name
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must resolve to Simulink signal object option is checked, the signal will
resolve to the object. See “Signal Properties Dialog Box” for more information.

If the option is not checked, the signal may or may not resolve to the object,
depending on the value of Configuration Parameters > Data Validity >
Signal resolution. This parameter can suppress resolution to the object
even though it is available, or it can specify that resolution occurs on the basis
of the name match alone. See “Diagnostics Pane: Data Validity” > “Signal
resolution” for more information.

Resolution that occurs because an option like Signal name must resolve
to Simulink signal object requires it is called explicit symbol resolution.
Resolution that occurs on the basis of name match alone, without an explicit
specification, is called implicit symbol resolution.

Programmatic Symbol Resolution
When you use the sim command to run a simulation programmatically, you
have an option that does not exist with interactive simulation: you can specify
a workspace other than the MATLAB base workspace as the last workspace
searched in hierarchical symbol resolution.

Most simulation is interactive, so most Simulink documentation does
not mention this possibility. For information about substituting another
workspace for the base workspace during programmatic simulation, see the
sim command reference page.
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Working with Data Stores

In this section...

“About Data Stores” on page 3-74

“Defining Data Stores” on page 3-74

“Accessing Data Stores” on page 3-76

“Data Store Examples” on page 3-77

About Data Stores
Data stores are signals that are accessible at any point in a model hierarchy
at or below the level in which they are defined. Because they are accessible
across model levels, data stores allow subsystems and referenced models to
share data without having to use I/O ports to pass the data from level to level.

See Chapter 5, “Referencing a Model” for information about referenced
models, and “Data Store Examples” on page 3-77 for examples of using data
stores to share data among subsystems and model references.

Defining Data Stores
Defining a data store entails creating an object whose properties specify the
properties of the data store. You can use either Data Store Memory blocks
or instances of Simulink.Signal class to define data stores. Each approach
has advantages. Data Store Memory blocks give you more control over the
scope of data stores within a model and allow initialization of data stores.
Simulink.Signal objects avoid cluttering a model with blocks and allows
data stores to be visible across model reference boundaries.

Using Data Store Memory Blocks to Define Data Stores
To use a Data Store Memory block to define a data store, drag an instance of
the block into the model at the topmost level from which you want the data
store to be visible. For example, to define a data store that is visible at every
level in a model (except in model references), drag the Data Store Memory
block into the root level of the model. To define a data store that is visible
only in a particular subsystem (and the subsystems that it contains), drag
the block into the subsystem. Once you have created the Data Store Memory
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block, use its parameter dialog box to define the data stores properties,
including its name, data type, complexity.

Using Signal Objects to Define Data Stores
To use a signal object to define a data store, create an instance of
Simulink.Signal object in a workspace that is visible to every model that
needs to access the data store. For example, to define a data store that is
visible to a top model and all the models that it references, use Model Explorer
or MATLAB® commands to create the signal object in the base (i.e., MATLAB)
workspace. To define a data store that is visible only in a particular model,
create the signal object in the model’s workspace (see “Changing Model
Workspace Data” on page 3-62). You can use Simulink.Signal objects to
define data stores that are visible in only one model (a local data store) or in a
top model and the models that the top model references (a global data store).

When creating the object, assign it to a workspace variable whose name is
the name you want to be assigned to the data store. Once you have created
the object, use Model Explorer or MATLAB commands to set the following
properties of the signal object to the values that you want the corresponding
data store property to have.

• DataType

• Dimensions

• Complexity

• SampleTime

• SamplingMode

• StorageClass

For example, the following commands define a data store named Error in the
MATLAB workspace:

Error = Simulink.Signal;
Error.Description = 'Use to signal that subsystem output ...
is invalid';
Error.DataType = 'boolean';
Error.Complexity = 'real';
Error.Dimensions = 1;
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Error.SamplingMode='Sample based';
Error.SampleTime = 0.1;

Note A signal object that defines a local store, i.e., that resides in a model
workspace, must inherit the value of its StorageClass property, i.e., the value
must be auto (the default). In the case of a signal object that defines a global
store, i.e., that resides in the base workspace, the only properties that can
inherit their values are StorageClass and SampleTime. You must specify
explicit values for all of the other relevant properties of the object. In either
case, when using a signal object to define a data store, you must specify the
object’s SamplingMode as 'Sample based'.

Accessing Data Stores
To set the value of a data store at each time step, create an instance of a Data
Store Write block at the level of your model that computes the value, set its
Data store name parameter to the name of the data store to be updated, and
connect the output of the block that computes the value to the input of the
Data Store Write block, e.g.,

To get the value of a data store at each time step, create an instance of a
Data Store Read block at the level of your model that needs the value, set the
block’s Data store name parameter to the name of the data store to be read,
and connect the output of the data store read block to the input of the block
that need’s the data store’s value, e.g.,
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When connected to a global data store, a data store access block displays the
word Global above the data store’s name.

This is done to remind you that the data store is defined by a signal object in
the MATLAB workspace rather than by a Data Store Memory block.

Data Store Examples
The following examples illustrate the use of these constructs to define and
access data stores.
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Local Data Store Example
The following model illustrates creation and access of a local data store, i.e., a
data store that is visible only in a model or particular subsystem.

This model uses a data store to permit subsystem A to signal that its output
is invalid. If subsystem A’s output is invalid, the model uses the output
of subsystem B.

Global Data Store Example
The following model replaces the subsystems of the previous example with
functionally identical submodels to illustrate use of a global data store to
share data in a model reference hierarchy.
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In this example, the top model uses a signal object in the MATLAB workspace
to define the error data store. This is necessary because data stores are
visible across model boundaries only if they are defined by signal objects
in the MATLAB workspace.
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Consulting the Model Advisor

In this section...

“About the Model Advisor” on page 3-80

“Starting Model Advisor” on page 3-80

“Model Advisor Window” on page 3-81

“Navigating Model Advisor Checks” on page 3-83

“Model Advisor Result Explorer” on page 3-90

“Model Advisor Reports” on page 3-92

“Checking Code-Generation Targets” on page 3-94

“Model Advisor Demo” on page 3-94

“Running the Model Advisor Programmatically” on page 3-94

About the Model Advisor
The Model Advisor checks a model or subsystem for conditions and
configuration settings that can result in inaccurate or inefficient simulation
of the system represented by the model or in generation of inefficient code
from the model. It produces a report that lists all the suboptimal conditions
or settings that it finds, suggesting better model configuration settings
where appropriate. See “Model Advisor Checks” in the Simulink® Reference
documentation for more information on individual checks.

Starting Model Advisor
You can use any of the following methods to start the Model Advisor.

• Select Model Advisor from Model Editor’s Tools menu.

• In the Contents pane of the Model Explorer (see “The Model Explorer”
on page 13-2), select Advice for model, where model is the name of the
model that you want to check.

• At the MATLAB® prompt, enter modeladvisor(model), where model is
a handle or name of the model or subsystem you want to check (see the
modeladvisor function reference page for more information).
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• Select Model Advisor from the context (right-click) menu of a subsystem
that you want to check.

Note The Model Advisor uses the Simulink project (slprj) directory (see
“Simulation Targets” on page 5-16 for more information) in the current
directory to store reports and other information. If such a directory does
not exist in the current directory, the Model Advisor creates it. For this
reason, you should, before starting the Model Advisor, ensure that the current
directory is writable. If the directory is not writable, an error message is
displayed when you start the Model Advisor.

Model Advisor Window
When you start the Model Advisor, the Model Advisor window is displayed.
Expanding the folders displays the available checks.
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The left pane lists the checks that the Model Advisor performs. By default,
the Model Advisor groups the checks by product. Select By Task to display
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checks related to specific tasks, such as updating the model to be compatible
with the current Simulink version.

The right pane provides instructions on how to view, enable, and disable
checks, and provides a legend explaining the displayed symbols.

You can select some or all of the checks and then run an individual check or
all selected checks. Some checks have input parameters where you can specify
information provided for the check to run (see “Check for proper Merge block
usage” for an example). The results of the checks are displayed in the Model
Advisor window. Additionally, the Model Advisor generates an HTML report
of the check results, which you can opt to view in a separate browser window.

Note When you open the Model Advisor on a model that you have previously
checked, the Model Advisor tool initially displays the check results generated
the last time you checked the model. If you recheck the model, the new results
replace the previous results in the Model Advisor window. You can also reset
the status of the checks to not run by right-clicking the Model Advisor Task
Manager folder and selecting Reset from the folder context menu.

Navigating Model Advisor Checks
The following procedure demonstrates how to use the Model Advisor to
perform checks on your model and view the check results.

1 Open the vdp demo model by entering vdp on the MATLAB command line.

2 Open the Model Advisor by selecting Model Advisor from the Model
Editor’s Tools menu. The Model Advisor window starts and displays
checks for the vdp demo model, as shown in “Model Advisor Window” on
page 3-81. By default, most of the checks are selected.

3 Select By Product in the left pane. This changes the right pane to a By
Product view.
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4 Select the Show report after run check box. This option causes an HTML
report of check results to be displayed after the checks run.
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5 Run the selected checks by clicking the Run Selected Checks button.
After the checks run, an HTML report of the check results is displayed
in a browser window.

Tip While you can use Model Advisor reports to fix checks, you should use
the Model Advisor window for interactive check fixing. Use Model Advisor
reports to view a summary of checks rather than to fix checks.
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6 Return to the Model Advisor window, which has been updated with the
check results.

3-87



3 Creating a Model

7 Select an individual check to open a detailed view of the results in the right
pane. For example, selecting Check optimization settings changes the
right pane to the following view. Unose this view to examine and exercise
a check individually.
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Model Advisor Result Explorer
Some checks in the Model Advisor have an Explore Result button that starts
the Model Advisor Result Explorer. The Model Advisor Result Explorer allows
you to quickly locate, view, and change elements of a model.

In the example below, a default Inport block is added to the vdp model. If
you run Check root model Inport block specifications, the result is a
warning, which enables the Explore Result button. Clicking the button
opens the Model Advisor Result Explorer window.
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The Model Advisor Result Explorer is a reduced version of the Model Explorer
to assist you in modifying only the items that are necessary for the Model
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Advisor check. See “The Model Explorer” on page 13-2 for more information
about using this window.

Model Advisor Reports
When the Model Advisor runs checks, it generates an HTML report of check
results. Each folder in the Model Advisor Task Hierarchy contains a report for
all of the items in that folder. You can access any report by selecting a folder
and clicking the link in the Report box.

Tip While you can use Model Advisor reports to fix checks, you should use the
Model Advisor window for interactive check fixing. Use Model Advisor reports
to view a summary of checks rather than to fix checks.

As you run checks, the reports are updated with the latest information for
each check within the folder. A message appears in the report when the
checks are run at different times. The timestamps in the report indicate when
checks have been run. All checks have either run during the current run
timestamp, indicated in the top right of the report, or during previous runs,
indicated by a timestamp following the check name.
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Checking Code-Generation Targets
If Real-Time Workshop® software is installed on your system, before running
the Model Advisor on a model, select the target you plan to use in the
Real-Time Workshop pane of the Configuration Parameters dialog box (see
“Configuration Parameters Dialog Box”). The Model Advisor works most
effectively with ERT and ERT-based targets (targets based on the Real-Time
Workshop® Embedded Coder™ software).

Model Advisor Demo
Enter sldemo_mdladv at the MATLAB command line to run a demo that
illustrates usage of the Model Advisor:

If Real-Time Workshop software is installed on your system, the following
models illustrate usage of the Model Advisor:

• rtwdemo_advisor1

• rtwdemo_advisor2

• rtwdemo_advisor3

You can also run these demos from the MATLAB command line. For example,
the command

modeladvisor('rtwdemo_advisor1')

starts the rtwdemo_advisor1 model. Note that demo models
rtwdemo_advisor2 and rtwdemo_advisor3 require Stateflow® and
Fixed-Point Toolbox™ software.

Running the Model Advisor Programmatically
You can create M-file programs that run the Model Advisor programmatically.
For example, you can create an M-file program to check that your model passes
a specified set of the Model Advisor checks every time you open the model or
start a simulation or generate code from the model. For more information, see
the Simulink.ModelAdvisor class in the Simulink online reference.
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Managing Model Versions

In this section...

“How Simulink® Helps You Manage Model Versions” on page 3-95

“Model File Change Notification” on page 3-96

“Specifying the Current User” on page 3-97

“Model Properties Dialog Box” on page 3-99

“Creating a Model Change History” on page 3-107

“Version Control Properties” on page 3-108

How Simulink® Helps You Manage Model Versions
The Simulink® software has these features to help you to manage multiple
versions of a model:

• Model File Change Notification helps you manage work with source control
operations and multiple users

• As you edit a model, the Simulink software generates version control
information about the model, including a version number, who created and
last updated the model, and an optional change history. The Simulink
software automatically saves these Version Control Properties with
the model

• The Model Properties dialog box lets you edit some of the version control
information stored in the model and select various version control options

• The Model Info block lets you display version control information, including
information maintained by an external version control system, as an
annotation block in a model diagram

• The Simulink software version control parameters let you access version
control information from the MATLAB® command line or an M-file

• The Source Control submenu of the File menu allows you to check
models into and out of your source control system. See “Source Control
Interface” in the online MATLAB documentation for more information.
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Model File Change Notification
You can use the Simulink Preferences window to specify whether to notify if
the model has changed on disk when updating, simulating, editing, or saving
the model. This can occur, for example, with source control operations and
multiple users.

Note To programmatically check whether the model has changed on disk
since it was loaded, use the function slIsFileChangedOnDisk.

To access the Simulink Preferences window,

• Select File > Preferences in the Simulink product.

• Select File > Preferences in MATLAB to open the MATLAB Preferences,
then select Simulink in the left pane, and click the button Launch
Simulink Preferences.

The Model File Change Notification options are in the right pane. You can use
the three independent options as follows:

• If you select the Updating or simulating the model check box, you can
choose what form of notification you want from the Action list:

- Warning — in the MATLAB command window.
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- Error — in the MATLAB command window if simulating from the
command line, or if simulating from a menu item, in the Simulation
Diagnostics window.

- Reload model (if unmodified) — if the model is modified, you see the
prompt dialog. If unmodified, the model is reloaded.

- Show prompt dialog — in the dialog, you can choose to close and reload,
or ignore the changes.

• If you select the First editing the model check box, and the file has
changed on disk, and the block diagram is unmodified in Simulink:

- Any command-line operation that causes the block diagram to be
modified (e.g., a call to set_param) will result in a warning:

Warning: Block diagram 'mymodel' is being edited but file has
changed on disk since it was loaded. You should close and
reload the block diagram.

- Any graphical operation that modifies the block diagram (e.g., adding a
block) causes a warning dialog to appear.

• If you select the Saving the model check box, and the file has changed
on disk:

- The save_system function displays an error, unless the
OverwriteIfChangedOnDisk option is used.

- Saving the model by using the menu (File > Save) or a keyboard
shortcut causes a dialog to be shown. In the dialog, you can choose to
overwrite, save with a new name, or cancel the operation.

Specifying the Current User
When you create or update a model, your name is logged in the model for
version control purposes. The Simulink software assumes that your name
is specified by at least one of the following environment variables: USER,
USERNAME, LOGIN, or LOGNAME. If your system does not define any of these
variables, the Simulink software does not update the user name in the model.

3-97



3 Creating a Model

UNIX® systems define the USER environment variable and set its value to the
name you use to log on to your system. Thus, if you are using a UNIX system,
you do not have to do anything to enable the Simulink software to identify
you as the current user.

Windows® systems, on the other hand, might define some or none of the
“user name” environment variables that the Simulink software expects,
depending on the version of Windows installed on your system and whether it
is connected to a network. Use the MATLAB command getenv to determine
which of the environment variables is defined. For example, enter

getenv('user')

at the MATLAB command line to determine whether the USER environment
variable exists on your Windows system. If not, you must set it yourself.

On Windows, use the Environment variables pane of the System Properties
dialog box to set the USER environment variable (if it is not already defined).
For Windows XP, access the Environment variables pane by clicking the
Environment Variables button on the Advanced pane of the System
Properties dialog box.

3-98



Managing Model Versions

To display the System Properties dialog box, select
Start > Settings > Control Panel to open the Control Panel. Double-click
the System icon. To set the USER variable, enter USER in the Variable field
and enter your login name in the Value field. Click Set to save the new
environment variable. Then click OK to close the dialog box.

Model Properties Dialog Box
The Model Properties dialog box allows you to set various version control
parameters and model callback functions. To display the dialog box, choose
Model Properties from the File menu.
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The dialog box includes the following panes.

Main Pane
The Main pane summarizes information about the current version of this
model.

Callbacks Pane
The Callbacks pane lets you specify functions to be invoked at specific points
in the simulation of the model.
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In the left pane, select the callback. In the right pane, enter the name of
the function you want to be invoked for the selected callback. See “Creating
Model Callback Functions” on page 3-53 for information on the callback
functions listed on this pane.

History Pane
The History pane allows you to enable, view, and edit this model’s change
history.
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The History pane has two control groups: the Model information group
and the Model History group.

Model Information Controls
The contents of the Model information control group depend on the state of
the Read Only check box.

Read Only Check Box Selected. When Read Only is selected, the dialog
box shows the following fields grayed out.

• Created by

Name of the person who created this model. The Simulink software sets
this property to the value of the USER environment variable when you
create the model.
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• Created on

Date and time this model was created.

• Last saved by

Name of the person who last saved this model. The Simulink software sets
the value of this parameter to the value of the USER environment variable
when you save a model.

• Last saved on

Date that this model was last saved. The Simulink software sets the value
of this parameter to the system date and time whenever you save a model.

• Model version

Version number for this model.

Read Only Check Box Deselected. When Read Only is deselected, the
dialog box shows the format strings or values for the following fields. You can
edit all but the Created on field, as described.
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• Created by

Name of the person who created this model. The Simulink software sets
this property to the value of the USER environment variable when you
create the model. Edit this field to change the value.

• Created on
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Date and time this model was created. Do not edit this field.

• Last saved by

Enter a format string describing the format used to display the Last saved
by value in the History pane and the ModifiedBy entry in the history log
and Model Info blocks. The value of this field can be any string. The string
can include the tag %<Auto>. The Simulink software replaces occurrences
of this tag with the current value of the USER environment variable.

• Last saved on

Enter a format string describing the format used to display the Last saved
on date in the History pane and the ModifiedOn entry in the history log
and the in Model Info blocks. The value of this field can be any string.
The string can contain the tag %<Auto>. The Simulink software replaces
occurrences of this tag with the current date and time.

• Model version

Enter a format string describing the format used to display the model
version number in the Model Properties pane and in Model Info blocks.
The value of this parameter can be any text string. The text string can
include occurrences of the tag %<AutoIncrement:#> where # is an integer.
The Simulink software replaces the tag with an integer when displaying
the model’s version number. For example, it displays the tag

1.%<AutoIncrement:2>

as

1.2

The Simulink software increments # by 1 when saving the model. For
example, when you save the model,

1.%<AutoIncrement:2>

becomes

1.%<AutoIncrement:3>

and the model version number is reported as 1.3.
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Model History Controls
The model history controls group contains a scrollable text field and an option
list. The text field displays the history for the model in a scrollable text field.
To change the model history, edit the contents of this field. The option list
allows you to enable or disable the Simulink software model history feature.
To enable the history feature, select When saving model from the Prompt to
update model history list. This causes the Simulink software to prompt you
to enter a comment when saving the model. Typically you would enter any
changes that you have made to the model since the last time you saved it. This
information is stored in the model’s change history log. See “Creating a Model
Change History” on page 3-107 for more information. To disable the change
history feature, select Never from the Prompt to update model history list.

Model Description Controls
This pane allows you to enter a description of the model. When typing help
followed by the model name at the MATLAB prompt, the contents of the
Model description field appear in the Command Window.
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Creating a Model Change History
You can create and store a record of changes to a model in the model itself.
The Simulink software compiles the history automatically from comments
that you or other users enter when they save changes to a model.

Logging Changes
To start a change history, select When saving model from the Prompt to
update model history list on the History pane on the Model Properties
dialog box. The next time you save the model, a Log Change dialog box
is displayed.
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To add an item to the model’s change history, enter the item in the Modified
Comments edit field and click Save. If you do not want to enter an item for
this session, clear the Include "Modified Contents" in "Modified History"
option. To discontinue change logging, clear the Show this dialog box next
time when save option.

Version Control Properties
Version control information is stored as model parameters in a model. You can
access this information from the MATLAB command line or from an M-file,
using the Simulink get_param command. The following table describes the
model parameters used by Simulink to store version control information.

Property Description

Created Date created.

Creator Name of the person who created this
model.
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Property Description

LastModifiedBy User name of the person who last modified
this model.

ModifiedBy Person who last modified this model.

ModifiedByFormat Format of the ModifiedBy parameter.
Value can be any string. The string can
include the tag %<Auto>. The Simulink
software replaces the tag with the current
value of the USER environment variable.

ModifiedDate Date modified.

ModifiedDateFormat Format of the ModifiedDate parameter.
Value can be any string. The string can
include the tag %<Auto>. The Simulink
software replaces the tag with the current
date and time when saving the model.

ModifiedComment Comment entered by user who last
updated this model.

ModifiedHistory History of changes to this model.

ModelVersion Version number.

ModelVersionFormat Format of model version number. Can be
any string. The string can contain the
tag %<AutoIncrement:#> where # is an
integer. The Simulink software replaces
the tag with # when displaying the version
number. It increments # when saving the
model.

Description Description of model.

LastModificationDate Date last modified.
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Model Discretizer

In this section...

“What is the Model Discretizer?” on page 3-110

“Requirements” on page 3-110

“How to Discretize a Model from the Model Discretizer GUI” on page 3-111

“Viewing the Discretized Model” on page 3-120

“How to Discretize Blocks from the Simulink® Model” on page 3-123

“How to Discretize a Model from the MATLAB® Command Window” on
page 3-134

What is the Model Discretizer?
Model Discretizer selectively replaces continuous Simulink® blocks with
discrete equivalents. Discretization is a critical step in digital controller
design and for hardware in-the-loop simulations.

Model Discretizer enables you to

• Identify a model’s continuous blocks.

• Change a block’s parameters from continuous to discrete.

• Apply discretization settings to all continuous blocks in the model or to
selected blocks.

• Create configurable subsystems that contain multiple discretization
candidates along with the original continuous block(s).

• Switch among the different discretization candidates and evaluate the
resulting model simulations.

Requirements
To use Model Discretizer, you must have Control System Toolbox™, Version
5.2 or later, installed.
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How to Discretize a Model from the Model Discretizer
GUI
To discretize a model:

• Start the Model Discretizer

• Specify the Transform Method

• Specify the Sample Time

• Specify the Discretization Method

• Discretize the Blocks

3-111



3 Creating a Model

The f14 model, shown below, demonstrates the steps in discretizing a model.

Start Model Discretizer
To open the tool, select Tools > Control Design > Model Discretizer from
the model editor’s menu bar.
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The Simulink Model Discretizer appears.

Alternatively, you can open Model Discretizer from the MATLAB® Command
Window using the slmdldiscui function.
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The following command opens the Simulink Model Discretizer window
with the f14 model:

slmdldiscui('f14')

To open a new model or library from Model Discretizer, select Load model
from the File menu.

Specify the Transform Method
The transform method specifies the type of algorithms used in the
discretization. For more information on the different transform methods,
see “Linear, Time-Invariant Models” in the Control System Toolbox
documentation.

The Transform method drop-down list contains the following options:

• zero-order hold

Zero-order hold on the inputs.

• first-order hold

Linear interpolation of inputs.

• tustin

Bilinear (Tustin) approximation.

• tustin with prewarping

Tustin approximation with frequency prewarping.

• matched pole-zero

Matched pole-zero method (for SISO systems only).

Specify the Sample Time
Enter the sample time in the Sample time field.

You can specify an offset time by entering a two-element vector for discrete
blocks or configurable subsystems. The first element is the sample time and
the second element is the offset time. For example, an entry of [1.0 0.1]
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would specify a 1.0 second sample time with a 0.1 second offset. If no offset is
specified, the default is zero.

You can enter workspace variables when discretizing blocks in the s-domain.
See “Discrete blocks (Enter parameters in s-domain)” on page 3-115.

Specify the Discretization Method
Specify the discretization method in the Replace current selection with
field. The options are

• “Discrete blocks (Enter parameters in s-domain)” on page 3-115

Creates a discrete block whose parameters are retained from the
corresponding continuous block.

• “Discrete blocks (Enter parameters in z-domain)” on page 3-116

Creates a discrete block whose parameters are “hard-coded“ values placed
directly into the block’s dialog.

• “Configurable subsystem (Enter parameters in s-domain)” on page 3-117

Create multiple discretization candidates using s-domain values for the
current selection. A configurable subsystem can consist of one or more
blocks.

• “Configurable subsystem (Enter parameters in z-domain)” on page 3-118

Create multiple discretization candidates in z-domain for the current
selection. A configurable subsystem can consist of one or more blocks.

Discrete blocks (Enter parameters in s-domain). Creates a discrete block
whose parameters are retained from the corresponding continuous block.
The sample time and the discretization parameters are also on the block’s
parameter dialog box.

The block is implemented as a masked discrete block that uses c2d to
transform the continuous parameters to discrete parameters in the mask
initialization code.

These blocks have the unique capability of reverting to continuous behavior if
the sample time is changed to zero. Entering the sample time as a workspace
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variable ('Ts', for example) allows for easy changeover from continuous to
discrete and back again. See “Specify the Sample Time” on page 3-114.

Note Parameters are not tunable when Inline parameters is selected in
the model’s Configuration Parameters dialog box.

The following figure shows a continuous Transfer Function block next to a
Transfer Function block that has been discretized in the s-domain. The Block
Parameters dialog box for each block appears below the block.

Discrete blocks (Enter parameters in z-domain). Creates a discrete block
whose parameters are “hard-coded” values placed directly into the block’s
dialog box. Model Discretizer uses the c2d function to obtain the discretized
parameters, if needed.

For more help on the c2d function, type the following in the Command
Window:

help c2d
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The following figure shows a continuous Transfer Function block next to a
Transfer Function block that has been discretized in the z-domain. The Block
Parameters dialog box for each block appears below the block.

Note If you want to recover exactly the original continuous parameter values
after the Model Discretization session, you should enter parameters in the
s-domain.

Configurable subsystem (Enter parameters in s-domain). Create
multiple discretization candidates using s-domain values for the current
selection. A configurable subsystem can consist of one or more blocks.

The Location for block in configurable subsystem field becomes active
when this option is selected. This option allows you to either create a new
configurable subsystem or overwrite an existing one.

Note The current directory must be writable in order to save the library or
libraries for the configurable subsystem option.
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Configurable subsystem (Enter parameters in z-domain). Create
multiple discretization candidates in z-domain for the current selection. A
configurable subsystem can consist of one or more blocks.

The Location for block in configurable subsystem field becomes active
when this option is selected. This option allows you to either create a new
configurable subsystem or overwrite an existing one.

Note The current directory must be writable in order to save the library or
libraries for the configurable subsystem option.

Configurable subsystems are stored in a library containing the discretization
candidates and the original continuous block. The library will be named
<model name>_disc_lib and it will be stored in the current directory. For
example a library containing a configurable subsystem created from the f14
model will be named f14_disc_lib.

If multiple libraries are created from the same model, then the filenames
will increment accordingly. For example, the second configurable subsystem
library created from the f14 model will be named f14_disc_lib2.

You can open a configurable subsystem library by right-clicking on the
subsystem in the model and selecting Link options > Go to library block
from the pop-up menu.

Discretize the Blocks
To discretize blocks that are linked to a library, you must either discretize the
blocks in the library itself or disable the library links in the model window.

You can open the library from Model Discretizer by selecting Load model
from the File menu.

You can disable the library links by right-clicking on the block and selecting
Link options -> Disable link from the pop-up menu.

There are two methods for discretizing blocks.
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Select Blocks and Discretize.

1 Select a block or blocks in the Model Discretizer tree view pane.

To choose multiple blocks, press and hold the Ctrl button on the keyboard
while selecting the blocks.

Note You must select blocks from the Model Discretizer tree view. Clicking
blocks in the editor does not select them for discretization.

2 Select Discretize current block from the Discretize menu if a single
block is selected or select Discretize selected blocks from the Discretize
menu if multiple blocks are selected.

You can also discretize the current block by clicking the Discretize button,
shown below.

Store the Discretization Settings and Apply Them to Selected Blocks
in the Model.

1 Enter the discretization settings for the current block.

2 Click Store Settings.

This adds the current block with its discretization settings to the group
of preset blocks.

3 Repeat steps 1 and 2, as necessary.

4 Select Discretize preset blocks from the Discretize menu.
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Deleting a Discretization Candidate from a Configurable
Subsystem
You can delete a discretization candidate from a configurable subsystem by
selecting it in the Location for block in configurable subsystem field and
clicking the Delete button, shown below.

Undoing a Discretization
To undo a discretization, click the Undo discretization button, shown below.

Alternatively, you can select Undo discretization from the Discretize
menu.

This operation undoes discretizations in the current selection and its children.
For example, performing the undo operation on a subsystem will remove
discretization from all blocks in all levels of the subsystem’s hierarchy.

Viewing the Discretized Model
Model Discretizer displays the model in a hierarchical tree view.

Viewing Discretized Blocks
The block’s icon in the tree view becomes highlighted with a “z” when the
block has been discretized.
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The following figure shows that the Aircraft Dynamics Model subsystem has
been discretized into a configurable subsystem with three discretization
candidates.

The other blocks in this f14 model have not been discretized.
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The following figure shows the Aircraft Dynamics Model subsystem of the f14
demo model after discretization into a configurable subsystem containing the
original continuous model and three discretization candidates.
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The following figure shows the library containing the Aircraft Dynamics
Model configurable subsystem with the original continuous model and three
discretization candidates.

Refreshing Model Discretizer View of the Model
To refresh Model Discretizer’s tree view of the model when the model has been
changed, click the Refresh button, shown below.

Alternatively, you can select Refresh from the View menu.

How to Discretize Blocks from the Simulink® Model
You can replace continuous blocks in a Simulink software model with the
equivalent blocks discretized in the s-domain using the Discretizing library.

The procedure below shows how to replace a continuous Transfer Fcn block in
the Aircraft Dynamics Model subsystem of the f14 model with a discretized
Transfer Fcn block from the Discretizing Library. The block is discretized
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in the s-domain with a zero-order hold transform method and a two second
sample time.

1 Open the f14 model.

2 Open the Aircraft Dynamics Model subsystem in the f14 model.

3 Open the Discretizing library window.

Enter discretizing at the MATLAB command prompt.
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The Library: discretizing window opens.

This library contains s-domain discretized blocks.

4 Add the Discretized Transfer Fcn block to the f14/Aircraft Dynamics
Model window.
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a Click the Discretized Transfer Fcn block in Library: discretizing
window.

b Drag it into the f14/Aircraft Dynamics Model window.

5 Open the parameter dialog box for the Transfer Fcn.1 block.
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Double-click the Transfer Fcn.1 block in the f14/Aircraft Dynamics
Model window.

The Block Parameters: Transfer Fcn.1 dialog box opens.

6 Open the parameter dialog box for the Discretized Transfer Fcn block.

Double-click the Discretized Transfer Fcn block in the f14/Aircraft
Dynamics Model window.
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The Block Parameters: Discretized Transfer Fcn dialog box opens.
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Copy the parameter information from the Transfer Fcn.1 block’s dialog box
to the Discretized Transfer Fcn block’s dialog box.

7 Enter 2 in the Sample time field.

8 Select zoh from the Method drop-down list.

3-129



3 Creating a Model

The parameter dialog box for the Discretized Transfer Fcn. now looks like
this.

9 Click OK.
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The f14/Aircraft Dynamics Model window now looks like this.

10 Delete the original Transfer Fcn.1 block.

a Click the Transfer Fcn.1 block.

b Press the Delete key.
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The f14/Aircraft Dynamics Model window now looks like this.

11 Add the Discretized Transfer Fcn block to the model.

a Click the Discretized Transfer Fcn block.

b Drag the Discretized Transfer Fcn block into position to complete the
model.
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The f14/Aircraft Dynamics Model window now looks like this.

3-133



3 Creating a Model

How to Discretize a Model from the MATLAB®

Command Window
Use the sldiscmdl function to discretize Simulink software models from the
MATLAB Command Window. You can specify the transform method, the
sample time, and the discretization method with the sldiscmdl function.

For example, the following command discretizes the f14 model in the s-domain
with a 1–second sample time using a zero-order hold transform method:

sldiscmdl('f14',1.0,'zoh')

For more information on the sldiscmdl function, see “Model Construction” in
Simulink Reference.
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About Conditional Subsystems
A subsystem is a set of blocks that have been replaced by a single block called
a Subsystem block. This chapter describes a special kind of subsystem whose
execution can be externally controlled. For information that applies to all
subsystems, see “Creating Subsystems” on page 3-35.

A conditional subsystem, also known as a conditionally executed subsystem, is
a subsystem whose execution depends on the value of an input signal. The
signal that controls whether a subsystem executes is called the control signal.
The signal enters the Subsystem block at the control input.

Conditional subsystems can be very useful when you are building complex
models that contain components whose execution depends on other
components. The following types of conditional subsystems are supported:

• An enabled subsystem executes while the control signal is positive. It starts
execution at the time step where the control signal crosses zero (from the
negative to the positive direction) and continues execution while the control
signal remains positive. Enabled subsystems are described in more detail
in “Enabled Subsystems” on page 4-4.

• A triggered subsystem executes once each time a trigger event occurs. A
trigger event can occur on the rising or falling edge of a trigger signal,
which can be continuous or discrete. Triggered subsystems are described in
more detail in “Triggered Subsystems” on page 4-12.

• A triggered and enabled subsystem executes once on the time step when
a trigger event occurs if the enable control signal has a positive value at
that step. See “Triggered and Enabled Subsystems” on page 4-16 for more
information.

• A control flow subsystem executes one or more times at the current time
step when enabled by a control flow block that implements control logic
similar to that expressed by programming language control flow statements
(e.g., if-then, while, do, and for. See “Modeling Control Flow Logic”
on page 3-42 for more information.
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Note The Simulink® software imposes restrictions on connecting blocks
with a constant sample time to the output port of a conditional subsystem.
See “Using Blocks with Constant Sample Times in Enabled Subsystems”
on page 4-9 for more information.
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Enabled Subsystems

In this section...

“Creating an Enabled Subsystem” on page 4-5

“Blocks an Enabled Subsystem Can Contain” on page 4-7

“Using Blocks with Constant Sample Times in Enabled Subsystems” on
page 4-9

Enabled subsystems are subsystems that execute at each simulation step
where the control signal has a positive value.

An enabled subsystem has a single control input, which can be scalar or
vector valued.

• If the input is a scalar, the subsystem executes if the input value is greater
than zero.

• If the input is a vector, the subsystem executes if any of the vector elements
is greater than zero.

For example, if the control input signal is a sine wave, the subsystem is
alternately enabled and disabled, as shown in this figure. An up arrow
signifies enable, a down arrow disable.

The Simulink® software uses the zero-crossing slope method to determine
whether an enable is to occur. If the signal crosses zero and the slope is
positive, the subsystem is enabled. If the slope is negative at the zero crossing,
the subsystem is disabled.
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Creating an Enabled Subsystem
You create an enabled subsystem by copying an Enable block from the Ports &
Subsystems library into a subsystem. An enable symbol and an enable control
input port is added to the Subsystem block.

Setting Output Values While the Subsystem Is Disabled
Although an enabled subsystem does not execute while it is disabled, the
output signal is still available to other blocks. While an enabled subsystem
is disabled, you can choose to hold the subsystem outputs at their previous
values or reset them to their initial conditions.

Open each Outport block’s dialog box and select one of the choices for the
Output when disabled parameter, as shown in the following dialog box:

• Choose held to cause the output to maintain its most recent value.

• Choose reset to cause the output to revert to its initial condition. Set the
Initial output to the initial value of the output.
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Setting States When the Subsystem Becomes Reenabled
When an enabled subsystem executes, you can choose whether to hold
the subsystem states at their previous values or reset them to their initial
conditions.

To do this, open the Enable block dialog box and select one of the choices for
the States when enabling parameter, as shown in the dialog box following:

• Choose held to cause the states to maintain their most recent values.

• Choose reset to cause the states to revert to their initial conditions.

Outputting the Enable Control Signal
An option on the Enable block dialog box lets you output the enable control
signal. To output the control signal, select the Show output port check box.

This feature allows you to pass the control signal down into the enabled
subsystem, which can be useful where logic within the enabled subsystem is
dependent on the value or values contained in the control signal.
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Blocks an Enabled Subsystem Can Contain
An enabled subsystem can contain any block, whether continuous or discrete.
Discrete blocks in an enabled subsystem execute only when the subsystem
executes, and only when their sample times are synchronized with the
simulation sample time. Enabled subsystems and the model use a common
clock.

Note Enabled subsystems can contain Goto blocks. However, only state ports
can connect to Goto blocks in an enabled subsystem. See the demo model,
clutch, for an example of how to use Goto blocks in an enabled subsystem.

For example, this system contains four discrete blocks and a control signal.
The discrete blocks are

• Block A, which has a sample time of 0.25 second

• Block B, which has a sample time of 0.5 second

• Block C, within the enabled subsystem, which has a sample time of 0.125
second

• Block D, also within the enabled subsystem, which has a sample time of
0.25 second

The enable control signal is generated by a Pulse Generator block, labeled
Signal E, which changes from 0 to 1 at 0.375 second and returns to 0 at 0.875
second.
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The chart below indicates when the discrete blocks execute.

Blocks A and B execute independently of the enable control signal because
they are not part of the enabled subsystem. When the enable control signal
becomes positive, blocks C and D execute at their assigned sample rates until
the enable control signal becomes zero again. Note that block C does not
execute at 0.875 second when the enable control signal changes to zero.
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Using Blocks with Constant Sample Times in Enabled
Subsystems
Certain restrictions are placed on connecting blocks with constant sample
times (see “Constant Sample Time” on page 2-49) to the output port of a
conditional subsystem.

• An error is displayed if you connect a Model or S-Function block with
constant sample time to the output port of a conditional subsystem.

• The sample time of any built-in block with a constant sample time is
converted to a different sample time, such as the fastest discrete rate in
the conditional subsystem.

To avoid the error or conversion, either manually change the sample time of
the block to a non-constant sample time or use a Signal Conversion block.
The example below shows how to use the Signal Conversion block to avoid
these errors.

Consider the following model m1.mdl.

The two Constant blocks in this model have constant sample times. When
you simulate the model, the Simulink software converts the sample time of
the Constant block inside the enabled subsystem to the rate of the Pulse
Generator. If you simulate the model with sample time colors displayed (see
“Displaying Sample Time Colors” on page 3-10), The Pulse Generator and
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Enabled Subsystem in red. However, the Constant and Outport blocks outside
of the enabled subsystem are colored magenta, indicating that these blocks
still have a constant sample time.

Suppose the model above is referenced from a Model block inside an enabled
subsystem in a top-level model, as shown below. (See Chapter 5, “Referencing
a Model”.)

An error is invoked when you try to simulate the top model, indicating that
the second output of the Model block may not be wired directly to the enabled
subsystem’s output port because it has a constant sample time. See Chapter
5, “Referencing a Model”.

To avoid this error, insert a Signal Conversion block between the second
output of the Model block and the enabled subsystem’s Outport block, as
shown below.
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This model is run with no errors. With sample time colors displayed, the
Model and Enabled Subsystem blocks are colored yellow, indicating that these
are hybrid systems, that is, systems that contain multiple sample times.
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Triggered Subsystems

In this section...

“Creating a Triggered Subsystem” on page 4-13

“Blocks That a Triggered Subsystem Can Contain” on page 4-15

Triggered subsystems are subsystems that execute each time a trigger event
occurs.

A triggered subsystem has a single control input, called the trigger input, that
determines whether the subsystem executes. You can choose from three types
of trigger events to force a triggered subsystem to begin execution:

• rising triggers execution of the subsystem when the control signal rises
from a negative or zero value to a positive value (or zero if the initial value
is negative).

• falling triggers execution of the subsystem when the control signal falls
from a positive or a zero value to a negative value (or zero if the initial
value is positive).

• either triggers execution of the subsystem when the signal is either rising
or falling.

Note In the case of discrete systems, a signal’s rising or falling from zero is
considered a trigger event only if the signal has remained at zero for more
than one time step preceding the rise or fall. This eliminates false triggers
caused by control signal sampling.

For example, in the following timing diagram for a discrete system, a rising
trigger (R) does not occur at time step 3 because the signal has remained at
zero for only one time step when the rise occurs.
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A simple example of a triggered subsystem is illustrated.

In this example, the subsystem is triggered on the rising edge of the square
wave trigger control signal.

Creating a Triggered Subsystem
You create a triggered subsystem by copying the Trigger block from the Ports
& Subsystems library into a subsystem. The Simulink® software adds a
trigger symbol and a trigger control input port to the Subsystem block.

To select the trigger type, open the Trigger block dialog box and select one
of the choices for the Trigger type parameter, as shown in the following
dialog box:
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Different symbols are used on the Trigger and Subsystem blocks to indicate
rising and falling triggers (or either). This figure shows the trigger symbols
on Subsystem blocks.

Outputs and States Between Trigger Events
Unlike enabled subsystems, triggered subsystems always hold their outputs
at the last value between triggering events. Also, triggered subsystems
cannot reset their states when triggered; states of any discrete blocks are
held between trigger events.

Outputting the Trigger Control Signal
An option on the Trigger block dialog box lets you output the trigger control
signal. To output the control signal, select the Show output port check box.
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The Output data type field allows you to specify the data type of the output
signal as auto, int8, or double. The auto option causes the data type of the
output signal to be set to the data type (either int8 or double) of the port to
which the signal is connected.

Blocks That a Triggered Subsystem Can Contain
All blocks in a triggered subsystem must have either inherited (-1) or
constant (inf) sample time. This is to indicate that the blocks in the triggered
subsystem run only when the triggered subsystem itself runs, i.e., when it is
triggered. This requirement means that a triggered subsystem cannot contain
continuous blocks, such as the Integrator block.
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Triggered and Enabled Subsystems

In this section...

“Creating a Triggered and Enabled Subsystem” on page 4-17

“A Sample Triggered and Enabled Subsystem” on page 4-18

“Creating Alternately Executing Subsystems” on page 4-18

A third kind of conditional subsystem combines both types of conditional
execution. The behavior of this type of subsystem, called a triggered and
enabled subsystem, is a combination of the enabled subsystem and the
triggered subsystem, as shown by this flow diagram.

A triggered and enabled subsystem contains both an enable input port and
a trigger input port. When the trigger event occurs, the enable input port is
checked to evaluate the enable control signal. If its value is greater than zero,
the subsystem is executed. If both inputs are vectors, the subsystem executes
if at least one element of each vector is nonzero.

The subsystem executes once at the time step at which the trigger event
occurs.
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Creating a Triggered and Enabled Subsystem
You create a triggered and enabled subsystem by dragging both the Enable
and Trigger blocks from the Ports & Subsystems library into an existing
subsystem. The Simulink® software adds enable and trigger symbols and
enable and trigger and enable control inputs to the Subsystem block.

You can set output values when a triggered and enabled subsystem is disabled
as you would for an enabled subsystem. For more information, see “Setting
Output Values While the Subsystem Is Disabled” on page 4-5. Also, you can
specify what the values of the states are when the subsystem is reenabled.
See “Setting States When the Subsystem Becomes Reenabled” on page 4-6.

Set the parameters for the Enable and Trigger blocks separately. The
procedures are the same as those described for the individual blocks.
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A Sample Triggered and Enabled Subsystem
A simple example of a triggered and enabled subsystem is illustrated in the
model below.

Creating Alternately Executing Subsystems
You can use conditional subsystems in combination with Merge blocks to
create sets of subsystems that execute alternately, depending on the current
state of the model.
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The following figure shows a model that uses two enabled blocks and a Merge
block to model a full-wave rectifier – a device that converts AC current to
pulsating DC current.

The block labeled “pos” is enabled when the AC waveform is positive; it passes
the waveform unchanged to its output. The block labeled “neg” is enabled
when the waveform is negative; it inverts the waveform. The Merge block
passes the output of the currently enabled block to the Mux block, which
passes the output, along with the original waveform, to the Scope block.
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The Scope creates the following display.
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Function-Call Subsystems
A function-call subsystem is a subsystem that another block can invoke
directly during a simulation. It is analogous to a function in a procedural
programming language. Invoking a function-call subsystem is equivalent to
invoking the output methods (see “Block Methods” on page 2-12) of the blocks
that the subsystem contains in sorted order (see “How Simulink® Determines
the Sorted Order” on page 6-36). The block that invokes a function-call
subsystem is called the function-call initiator. Stateflow®, Function-Call
Generator, and S-function blocks can all serve as function-call initiators.

To create a function-call subsystem, drag a Function-Call Subsystem
block from the Ports & Subsystems library into your model and connect
a function-call initiator to the function-call port displayed on top of the
subsystem. You can also create a function-call subsystem from scratch by
first creating a Subsystem block in your model and then creating a Trigger
block in the subsystem and setting the Trigger block’s Trigger type to
function-call.

You can configure a function-call subsystem to be triggered (the default) or
periodic by setting the Sample time type of its Trigger port to be triggered
or periodic, respectively. A function-call initiator can invoke a triggered
function-call subsystem zero, once, or multiple times per time step. The
sample times of all the blocks in a triggered function-call subsystem must be
set to inherited (-1).

A function-call initiator can invoke a periodic function-call subsystem only
once per time step and must invoke the subsystem periodically. If the initiator
invokes a periodic function-call subsystem aperiodically, the simulation is
halted and an error message displayed. The blocks in a periodic function-call
subsystem can specify a noninherited sample time or inherited (-1) sample
time. All blocks that specify a noninherited sample time must specify the
sample time, i.e., if one block specifies .1 as its sample time all other blocks
must specify a sample time of .1 or -1. If a function-call initiator invokes a
periodic function-call subsystem at a rate that differs from the sample time
specified by the blocks in the subsystem, the simulation is halted and an
error message is displayed.

For more information about function-call subsystems, see “Function-Call
Subsystems” in “Writing S-Functions” in the online documentation.
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Conditional Execution Behavior

In this section...

“Propagating Execution Contexts” on page 4-24

“Behavior for Switch Blocks” on page 4-25

“Displaying Execution Contexts” on page 4-25

“Disabling Conditional Execution Behavior” on page 4-26

“Displaying Execution Context Bars” on page 4-26

To speed simulation of a model, by default the Simulink® software avoids
unnecessary execution of blocks connected to Switch, Multiport Switch, and
of conditionally executed blocks, a behavior called conditional execution (CE)
behavior. You can disable this behavior for all Switch and Multiport Switch
blocks in a model, or for specific conditional subsystems. See “Disabling
Conditional Execution Behavior” on page 4-26.

The following model illustrates conditional execution behavior.
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The outputs of the Constant block and Gain blocks are computed only while
the enabled subsystem is enabled (that is, at time steps 0.5 to 1.0, 1.5 to 2.0,
and so on). This is because the output of the Constant block is required
and the input of the Gain block changes only while the enabled subsystem
is enabled. When CE behavior is off, the outputs of the Constant and Gain
blocks are computed at every time step, regardless of whether the outputs
are needed or change.

In this example, the enabled subsystem is regarded as defining an execution
context for the Constant and Gain blocks. Although the blocks reside
graphically in the model’s root system, the Simulink software invokes the
blocks’ methods during simulation as if the blocks reside in the enabled
subsystem. This is indicated in the sorted order labels displayed on the
diagram for the Constant and Gain blocks. The notations list the subsystem’s
(id = 1) as the execution context for the blocks even though the blocks exist
graphically at the model’s root level (id = 0).
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Propagating Execution Contexts
In general, the Simulink software defines an execution context as a set of
blocks to be executed as a unit. At model compilation time, the Simulink
software associates an execution context with the model’s root system and with
each of its nonvirtual subsystems. Initially, the execution context of the root
system and each nonvirtual subsystem is simply the blocks that it contains.

When compiling, each block in the model is examined to determine whether it
meets the following conditions:

• Its output is required only by a conditional subsystem or its input changes
only as a result of the execution of a conditionally executed.

• The subsystem’s execution context can propagate across its boundaries.

• The output of the block is not a testpoint (see “Working with Test Points” on
page 8-70).

• The block is allowed to inherit its conditional execution context.

The Simulink software does not allow some built-in blocks, e.g., the
Delay block, ever to inherit their execution context. Also, S-Function
blocks can inherit their execution context only if they specify the
SS_OPTION_CAN_BE_CALLED_CONDITIONALLY option.

• The block is not a multirate block.

• Its sample time is inherited (-1).

If a block meets these conditions and execution context propagation is
enabled for the associated conditional subsystem (see “Disabling Conditional
Execution Behavior” on page 4-26), the Simulink software moves the block
into the execution context of the subsystem. This ensures that the block’s
methods are executed during the simulation loop only when the corresponding
conditional subsystem executes.

Note Execution contexts are not propagated to constant sample time blocks.
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Behavior for Switch Blocks
This behavior treats the input branches of a Switch or Multiport Switch block
as invisible, conditional subsystems, each of which has its own execution
context that is enabled only when the switch’s control input selects the
corresponding data input. As a result, switch branches execute only when
selected by switch control inputs.

Displaying Execution Contexts
To determine the execution context to which a block belongs, select Sorted
order from the model window’s Format menu. The sorted order index for
each block in the model is displayed in the upper-right corner of the block. The
index has the format s:b, where s specifies the subsystem to whose execution
context the block belongs and b is an index that indicates the block’s sorted
order in the subsystem’s execution context, e.g., 0:0 indicates that the block is
the first block in the root subsystem’s execution context.

If a bus is connected to the block’s input, the block’s sorted order is displayed
as s:B, e.g., 0:B indicates that the block belongs to the root system’s execution
context and has a bus connected to its input.

The sorted order index of conditional subsystems is expanded to include
the system ID of the subsystem itself in curly brackets as illustrated in the
following figure.

In this example, the sorted order index of the enabled subsystem is 0:1{1}.
The 0 indicates that the enabled subsystem resides in the model’s root
system. The first 1 indicates that the enabled subsystem is the second block
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on the root system’s sorted list (zero-based indexing). The 1 in curly brackets
indicates that the system index of the enabled subsystem itself is 1. Thus any
block whose system index is 1 belongs to the execution context of the enabled
subsystem and hence executes when it does. For example, the Constant
block’s index, 1:0, indicates that it is the first block on the sorted list of the
enabled subsystem, even though it resides in the root system.

Disabling Conditional Execution Behavior
To disable conditional execution behavior for all Switch and Multiport Switch
blocks in a model, turn off the Conditional input branch execution
optimization on the Optimization pane of the Configuration Parameters
dialog box (see “Optimization Pane”). To disable conditional execution
behavior for a specific conditional subsystem, uncheck the Propagate
execution context across subsystem boundary option on the subsystem’s
parameter dialog box.

Even if this option is enabled, a subsystem’s execution context cannot
propagate across its boundaries under either of the following circumstances:

• The subsystem is a triggered subsystem with a latched input port.

• The subsystem has one or more output ports that specify an initial
condition, i.e., whose initial condition is other than []. In this case, a
block connected to the subsystem’s output cannot inherit the subsystem’s
execution context.

Displaying Execution Context Bars
The Simulink software can optionally display bars next to the ports of
subsystems across which execution contexts cannot propagate, i.e., on
subsystems from which no block can inherit its execution context.
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To display the bars, select Execution Context Indicator from model editor’s
Format > Block Displays menu.
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Referencing a Model

Overview of Model Referencing
(p. 5-3)

Defines model referencing, describes
its advantages, and provides links to
demos and commonly used resources

Creating a Model Reference (p. 5-8) Describes the technique for using a
Model block to convert two separate
models into a parent model and a
referenced model

Converting a Subsystem to a
Referenced Model (p. 5-11)

Describes the technique for
converting an atomic subsystem into
a referenced model that functionally
replaces the subsystem

Referenced Model Simulation Modes
(p. 5-13)

Describes the two modes of
referenced model simulation:
Normal (interpreted) and Accelerator
(compiled code)

Simulation Targets (p. 5-16) Describes the code, called a
simulation target, that Simulink®

generates for an Accelerator mode
referenced model.

Simulink® Model Referencing
Requirements (p. 5-19)

Describes configurational and
structural requirements that a
model must meet in order to be used
as a referenced model.

Parameterizing Model References
(p. 5-26)

Introduces three techniques for
setting values in referenced models
despite the requirement to enable
inline parameters
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Using Model Arguments (p. 5-28) Describes the use of model
arguments, the most powerful and
flexible technique for parameterizing
model references

Refreshing Model Blocks (p. 5-34) Explains the need to refresh model
blocks after changing a model’s
interface to its parent, and notes
some diagnostics

Examining a Model Reference
Hierarchy (p. 5-35)

Describes tools that Simulink
provides for displaying and
traversing the structure of a model
reference hierarchy

Inheriting Sample Times (p. 5-36) Describes the conditions under
which a referenced models can and
cannot inherit its sample time from
its parent model

Defining Function-Call Models
(p. 5-39)

Describes requirements and
techniques for using a function-call
model and a trigger port to control a
referenced model

Simulink® Model Referencing
Limitations (p. 5-43)

Describes limitations on the current
release of model referencing in
both modes, Normal mode only, and
Accelerator mode only
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Overview of Model Referencing

In this section...

“About Model Referencing” on page 5-3

“Referenced Model Advantages” on page 5-5

“Model Referencing Demos” on page 5-6

“Model Referencing Resources” on page 5-7

About Model Referencing
You can include one model in another by using Model blocks. Each instance
of a Model block represents a reference to another model, called a referenced
model or submodel. For simulation and code generation, the referenced
model effectively replaces the Model block that references it. The model that
contains a referenced model is its parent model.

A referenced model’s interface consists of its input and output ports (and
trigger port in the case of a function-call model) and its parameter arguments.
A Model block displays inputs and outputs corresponding to the root-level
inputs and outputs of the model it references, enabling you to incorporate the
referenced model into the block diagram of the parent model. For example, in
the next figure the Model block in the parent model on the left could represent
the submodel on the right:

You can use the ports on a Model block to connect the submodel to other
elements of the parent model. Connecting a signal to a Model block port
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has the same effect as connecting the signal to the corresponding port in
the submodel.

A referenced model can itself contain Model blocks and thus reference
lower-level models, and so on to any depth. The topmost model in a hierarchy
of referenced models is called the top model. Where only one level exists, the
parent model and top model are the same. To prevent cyclic inheritance, a
Model block cannot refer directly or indirectly to a model that is superior to it
in the model reference hierarchy, as shown in this figure:
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A parent model can contain multiple Model blocks that reference the same
submodel as long as the submodel does not define global data. The submodel
can also appear in other parent models at any level. You can parameterize a
referenced model to provide tunability for all instances of the model, or let
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different Model blocks specify different values for variables that define the
submodel’s behavior. See “Parameterizing Model References” on page 5-26 for
details.

By default, the Simulink® software executes a top model interpretively, just
as it would if the model did not include submodels. Simulink can execute
a referenced model interpretively, as if it were an atomic subsystem, or by
compiling the submodel to code and executing the code. See “Referenced
Model Simulation Modes” on page 5-13 for details.

You can use any referenced model as a standalone model, provided that it does
not depend on any data that is available only from a higher-level model. An
appropriately configured model can function as both a standalone model and
as a referenced model without requiring any change to the model itself or to
any entities derived from it.

Referenced Model Advantages
Like subsystems, referenced models allow you to organize large models
hierarchically; Model blocks can represent major subsystems. Like libraries,
referenced models allow you to use the same capability repeatedly without
having to redefine it. However, referenced models provide several advantages
that are unavailable with subsystems and/or library blocks:

• Modular development

You can develop a referenced model independently from the models in
which it is used.

• Inclusion by reference

You can reference a model multiple times without having to make
redundant copies, and multiple models can reference the same model.

• Incremental loading

A referenced model is not loaded until it is needed, which speeds up model
loading.

• Accelerated simulation

Simulink can convert a referenced model to code and simulate the model by
running the code, which is faster than interactive simulation.
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• Incremental code generation

Accelerated simulation requires code generation only if the model has
changed since code was previously generated. Otherwise the existing
code can be reused.

• Independent configuration sets

The configuration set used by a referenced model can differ from that of its
parent or other referenced models.

Model Referencing Demos
Simulink includes several demos that illustrate model referencing. To access
these demos from the MATLAB® command line:

1 In the MATLAB Command Window, type

demos

A list of MATLAB products appears on the left side of the Help window.

2 In the left side of the Help window, select Simulink.

A list of Simulink demos appears on the right side of the Help window.

3 Under Simulink, select Modeling Features.

This category contains model referencing demos, including:

• Component-Based Modeling with Model Reference —
sldemo_mdlref_basic

• Visualizing Model Reference Architectures — sldemo_mdlref_depgraph

• Interface Specification Using Bus Objects — sldemo_mdlref_bus

• Parameterizing Model Reference — sldemo_mdlref_paramargs
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• Converting Subsystems to Model Reference —
sldemo_mdlref_conversion

• Model Reference Function-Call — sldemo_mdlref_fcncall

In addition, the demo sldemo_absbrake (Simulink > Automotive
Applications > Modeling an Anti-Lock Brake System) represents a
wheel speed calculation as a Model block within the context of an anti-lock
braking system (ABS).

Model Referencing Resources
The following are the most commonly needed resources for working with
model referencing:

• The Model block, which represents a model that is included as a referenced
model in another model.

• The Configuration Parameters > Diagnostics > Model Referencing
pane, which controls the diagnosis of problems encountered in model
referencing. See “Diagnostics Pane: Model Referencing” for details.

• The Configuration Parameters > Model Referencing pane, which
provides options that control model referencing and list files on which
referenced models depend. See “Model Referencing Pane” for details.
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Creating a Model Reference
A model becomes a submodel when a Model block in some other model
references it. Any model can function as a submodel, and such use does not
preclude using it as a separate model also. To create a reference to a model
(submodel) in another model (parent model):

1 If the directory containing the submodel to be referenced is not on the
MATLAB® path, add the directory to the MATLAB path.

2 In the submodel:

• Enable Configuration Parameters > Optimization > Inline
parameters. You must enable Inline parameters for all models in a
model reference hierarchy except the hierarchy’s top model. See “Inline
Parameter Requirements” on page 5-23 for details.

• Set Configuration Parameters > Model Referencing > Total
number of instances allowed per top model to One if the model
will be used at most once in any hierarchy, or to Multiple if it will
be used more than once. To reduce overhead, specify Multiple only
when necessary. You can also set the option to Zero, which precludes
referencing the model.

3 Create an instance of the Model block in the parent model by dragging a
Model block instance from the Ports & Subsystems library to the parent
model. The new block is initially unresolved (specifies no submodel) and
has the following appearance:
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4 Open the new Model block’s parameter dialog box by double-clicking the
Model block. See “Navigating a Model Block” for more about accessing
Model block parameters.

5 Enter the name of the submodel in the Model name field. This name must
contain fewer than 60 characters. (See “Name Length Requirement” on
page 5-19.)

• For information about Model Arguments and Model argument
values, see “Using Model Arguments” on page 5-28.

• For information about the Simulation mode, see “Referenced Model
Simulation Modes” on page 5-13.
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6 Click OK or Apply.

If the referenced model contains any root-level inputs or outputs, Simulink®

displays corresponding input and output ports on the Model block instance
that you have created. Use these ports to connect the referenced model to
other ports in the parent model. For information about connecting blocks in a
parent model to a referenced model that has bus inputs or outputs, see “Bus
Usage Requirements” on page 5-25.
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Converting a Subsystem to a Referenced Model
You can convert any atomic subsystem to a referenced model. The conversion
requires that the model containing the subsystem have the following
configuration parameter settings:

• Configuration Parameters > Optimization > Inline parameters must
be enabled.

• Configuration Parameters > Diagnostics > Data Validity > Signal
resolution must be Explicit only.

• Configuration Parameters > Diagnostics > Connectivity > Mux
blocks used to create bus signals must be Error.

After specifying the indicated parameter values, select Convert to Model
Block from the subsystem’s context menu. Simulink® does the following:

• Saves the contents of the subsystem as a new model. Simulink
automatically provides a model name that is based on the block name and
is unique in the MATLAB® path. This name always contains fewer than 60
characters.

• Creates and opens an untitled model that contains a Model block whose
referenced model is the new model that contains the contents of the
subsystem.

If an error occurs during the conversion, the result depends on the error:

• For some errors, a message box appears that gives you the choice of
cancelling or continuing.

• If continuing is impossible, Simulink cancels the conversion without
offering a choice to continue.

Once you have successfully created a Model block and referenced model from
a subsystem, you can delete the subsystem block from the source model
and copy the Model block to the subsystem block’s location. All signals will
automatically reconnect. The source model is now a parent model that
contains a referenced model.
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You can use Simulink.SubSystem.convertToModelReference to convert
subsystems to model references programmatically. The function provides
more capabilities than Convert to Model Block, such as the ability to
replace a subsystem with an equivalent Model block in a single operation. See
the Simulink reference documentation for details.
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Referenced Model Simulation Modes

In this section...

“About Referenced Model Simulation Modes” on page 5-13

“Specifying the Simulation Mode” on page 5-14

“Mixing Simulation Modes” on page 5-14

“Accelerating a Freestanding or Top Model” on page 5-15

About Referenced Model Simulation Modes
Simulink® executes the top model in a model reference hierarchy just as it
would if no referenced models existed. All Simulink simulation modes are
available to the top model. Simulink can execute a referenced model in either
of two modes:

• Normal mode — Simulink executes the submodel interpretively, as if
the submodel were an atomic subsystem implemented directly within the
parent model. Normal mode is slower than Accelerator mode, and works
with only one instance of a given model in a reference hierarchy, but it
requires no delay for code generation and works with most Simulink tools.

• Accelerator mode — Simulink creates a MEX-file for the submodel, then
executes the submodel by running the MEX-file. Accelerator mode is faster
than Normal mode, and works with multiple submodel instances, but it
requires compilation and does not work with most Simulink tools.

Simulation results for a given model are essentially identical in either mode.
Trivial differences may occur due to differences in the optimizations and
libraries used.
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Note Do not confuse Accelerator mode execution of a referenced model with:

• Accelerator mode execution of a freestanding or top model, as described in
Chapter 19, “Accelerating Models”

• Rapid Accelerator mode execution of a freestanding or top model, as
described in “Running Rapid Simulations”.

While the different types of acceleration share many capabilities and
techniques, they are implemented differently, and have somewhat different
requirements and limitations.

Specifying the Simulation Mode
The Model block for each instance of a referenced model controls its simulation
mode. The default referenced model simulation mode is Accelerator mode. To
set or change a submodel’s simulation mode:

1 Access the Model block’s parameter dialog box. (See “Navigating a Model
Block”.)

2 Set the Simulation mode field to Normal or Accelerator.

3 Click OK or Apply.

Mixing Simulation Modes
Simulink models execute in Normal mode by default. When a top model
executes in Normal mode, it can contain both Normal mode and Accelerator
mode submodels. When the same submodel appears more than once in a
hierarchy, at most one of these instances can specify Normal mode. All the
rest must specify Accelerator mode.

Accelerator mode takes precedence over Normal mode when the two are
mixed. Thus a model that executes in Normal mode can include submodels
that execute in Accelerator mode, but a model that executes in Accelerator
mode cannot include any submodels that execute in Normal mode. When a
Normal mode submodel is subordinate to an Accelerated mode submodel,
Simulink posts a warning and temporarily overrides the Normal mode
specification.
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Accelerating a Freestanding or Top Model
You can use Simulink Accelerator mode (see Chapter 19, “Accelerating
Models”) or Rapid Accelerator mode (see “Running Rapid Simulations”) to
achieve faster execution of any Simulink model, including a top model in a
model reference hierarchy.

When you execute a top model in Simulink Accelerator mode or Rapid
Accelerator mode, all submodels execute in Accelerator mode. For any
submodel that specifies Normal mode, Simulink posts a warning and
temporarily overrides the Normal mode specification.
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Simulation Targets

In this section...

“About Simulation Targets” on page 5-16

“Building Simulation Targets” on page 5-17

About Simulation Targets
A simulation target, or SIM target, is a MEX-file that implements a referenced
model that executes in Accelerator mode. Simulink® invokes the simulation
target as needed during simulation to compute the behavior and outputs
of the referenced model. Simulink uses the same simulation target for
all Accelerator mode instances of a given referenced model anywhere in
a reference hierarchy.

Be careful not to confuse a submodel’s simulation target with any of these
other types of target:

• Hardware target — A platform for which Real-Time Workshop® generates
code

• System target — A file that tells Real-Time Workshop how to generate
code for particular purpose

• Rapid Simulation target (RSim) — A system target file supplied with
Real-Time Workshop

• Model reference target — A library module that contains Real-Time
Workshop code for a referenced model

Simulink creates a simulation target only for a submodel that has one or
more Accelerator mode instances in a reference hierarchy. A submodel that
executes only in Normal mode always executes interpretively and does not
use a simulation target. When one instance of a submodel executes in Normal
mode, and one or more instances execute in Accelerator mode, Simulink
creates a simulation target for the Accelerator mode instance(s), but the
Normal mode instance does not use it.

Because Accelerator mode requires code generation, it imposes some
requirements and limitations that do not apply to Normal mode. Aside
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from these constraints, you can generally ignore simulation targets and
their details when you execute a referenced model in Accelerator mode. See
“Limitations on Accelerator Mode Referenced Models” on page 5-47 for details.

Building Simulation Targets
If a simulation target does not exist at the beginning of a simulation, or when
you update a parent model’s block diagram, Simulink by default generates
the needed target from the referenced model. If the simulation target already
exists, Simulink by default checks whether the submodel has changed
significantly since the target was last generated. If so Simulink by default
regenerates the target to reflect changes in the model.

You can change this default behavior to change the rebuild criteria or specify
that Simulink always or never rebuilds targets. See “Rebuild options” for
details. You can command Simulink to generate simulation targets for
Accelerator mode referenced models at any time by updating the model’s
diagram or by executing the slbuild command with appropriate arguments
at the MATLAB® command line.

While generating a simulation target, Simulink displays status messages at
the MATLAB command line to enable you to monitor the target generation
process, which entails generating and compiling code and linking the compiled
target code with compiled code from standard code libraries to create an
executable file.

Simulink creates simulation targets in a subdirectory of the working directory.
This subdirectory is named slprj. If slprj does not exist, Simulink creates
it. Subdirectories in slprj provide separate places for simulation code,
Real-Time Workshop code, and other files.

Reducing Change Checking Time
You can reduce the time that Simulink spends checking whether any or all
simulation targets need to be rebuilt by setting configuration parameter
values as follows:

• In all referenced models throughout the hierarchy, set Configuration
Parameters > Diagnostics > Data Validity > Signal resolution to
Explicit only. (See “Signal resolution”.)
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• In any referenced model for which you want to minimize change checking
time, set Configuration Parameters > Model Referencing > Rebuild
options to If any changes in known dependencies detected. (See
“Rebuild options”.)

These parameter values exist in a referenced model’s configuration set, not
in the individual Model block, so setting either value for any instance of a
referenced model sets it for all instances of that model.
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Simulink® Model Referencing Requirements

In this section...

“About Model Referencing Requirements” on page 5-19

“Name Length Requirement” on page 5-19

“Configuration Parameter Requirements” on page 5-19

“Model Structure Requirements” on page 5-25

About Model Referencing Requirements
A model reference hierarchy must satisfy various Simulink® requirements,
as described in this section. Some limitations also apply, as described in
“Simulink® Model Referencing Limitations” on page 5-43.

Name Length Requirement
The name of a referenced model must contain fewer than 60 characters,
exclusive of the .mdl suffix. An error occurs if the name of a referenced
model is too long.

Configuration Parameter Requirements
A referenced model uses a configuration set in the same way that any other
model does, as described in “Configuration Sets” on page 14-37. By default,
every model in a hierarchy has its own configuration set, which it uses in the
same way that it would if the model executed independently.

Because each model can have its own configuration set, configuration
parameter values can be different in different models. Furthermore, some
parameter values are intrinsically incompatible with model referencing.
Simulink’s response to an inconsistent or unusable configuration parameter
depends on the parameter:

• Where an inconsistency has no significance, or a trivial resolution exists
that carries no risk, Simulink ignores or resolves the inconsistency without
posting a warning.
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• Where a nontrivial and possibly acceptable solution exists, Simulink
resolves the conflict silently; resolves it with a warning; or generates an
error. See “Model configuration mismatch” for details.

• Where no acceptable resolution is possible, Simulink generates an error.
You must then change some or all parameter values to eliminate the
problem.

When a model reference hierarchy contains many submodels that have
incompatible parameter values, or a changed parameter value must propagate
to many submodels, manually eliminating all configuration parameter
incompatibilities can be tedious. You can control or eliminate such overhead
by using configuration references to assign an externally-stored configuration
set to multiple models. See “Referencing Configuration Sets” on page 14-47
for details.

Note Configuration parameters on the Real-Time Workshop® pane of the
Configuration Parameters dialog have no effect on simulation in either
Normal or Accelerated mode. Real-Time Workshop parameters affect only
code generation by Real-Time Workshop itself. Although Accelerated mode
simulation requires code generation to create a simulation target, Simulink
uses default values for all Real-Time Workshop parameters when generating
the target, and restores the original parameter values after code generation
is complete.

The tables in the following sections list Configuration parameter options that
can cause problems if set in certain ways, or if set differently in a referenced
model than in a parent model. Where possible, Simulink resolves violations
of these requirements automatically, but most cases require changes to the
parameters in some or all models.
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Configuration Requirements for All Referenced Model
Simulation

Dialog Box Pane Option Requirement

Start time The start time of the
top model and all
referenced models must
be the same, but need
not be zero.

Stop time Simulink uses the top
model’s Stop time for
simulation, overriding
any differing Stop time
in a submodel.

Solver

Type
Solver

The top model’s
Type and Solver
apply throughout the
hierarchy. See “Solver
Requirements” on page
5-22.

Data Import/Export Initial state Can be on for the top
model, but must be off
for a referenced model.

Inline parameters Can be on or off
for a top model, but
must be on for a
referenced model.
See “Inline Parameter
Requirements” on page
5-23.

Optimization

Application lifespan
(days)

Must be the same for
top and referenced
models.
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Dialog Box Pane Option Requirement

Model Referencing Total number of
instances allowed
per top model

Must not be Zero in
a referenced model.
Specifying One rather
than Multiple is
preferable or required
in some cases. See
“Model Instance
Requirements” on page
5-24.

Hardware
Implementation

Embedded hardware
options

All values must be
the same for top and
referenced models.

Solver Requirements. Model referencing works with both fixed-step and
variable-step solvers. All models in a model reference hierarchy use the same
solver, which is always the solver specified by the top model. An error occurs
if the solver type specified by the top model is incompatible with the solver
type specified by any submodel, as shown in the following table:

Top Model Solver
Type

Submodel Solver
Type

Compatibility

Fixed Step Fixed Step Allowed

Variable Step Variable Step Allowed

Variable Step Fixed-step Allowed unless the
submodel is multi-rate
and specifies both
a discrete sample
time and a continuous
sample time

Fixed Step Variable Step Error

If an incompatibility exists between the top model solver and any submodel
solver, one or both models must change as needed to use compatible solvers.
For information about solvers, see “Solvers” on page 2-18 and “Choosing a
Solver” on page 14-11.
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Inline Parameter Requirements. Simulink requires Configuration
Parameters > Optimization > Inline parameters (see “Inline parameters”)
to be enabled for all referenced models in a reference hierarchy. The top model
can enable or disable inline parameters. If a referenced model disables inlined
parameters, and you try to build the parent model:

• For a Normal mode submodel, Simulink generates an error and cancels the
build. All models and compiled files remain unchanged after the failed
build.

• For an Accelerator mode submodel, Simulink temporarily enables inline
parameters, posts no warning, and builds the model. Inline parameters
remain disabled after the build completes.

Simulink ignores tunable parameter specifications in the “Model Parameter
Configuration Dialog Box” for both the top model and referenced
models. Consequently, you cannot use this dialog box to override the inline
parameters optimization for selected parameters and thereby permit them
to be tuned. “Parameterizing Model References” on page 5-26 describes
alternate techniques.
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Model Instance Requirements. A referenced model must specify that it is
available for such use, and whether it can be used at most once or can have
multiple instances. Configuration Parameters > Model Referencing
> Total number of instances allowed per top model provides this
specification. See “Total number of instances allowed per top model” for more
information. The possible values for this parameter are:

• Zero — The model cannot be referenced. An error occurs if a reference to
the model occurs in another model.

• One — The model can be referenced at most once in a model reference
hierarchy. An error occurs if more than one instance exists. This value may
be preferable or required.

• Multiple — The model can be referenced more than once in a hierarchy,
provided that it contains no constructs that preclude multiple reference.
An error occurs if the model cannot be multiply referenced, even if only
one reference exists.

Setting Total number of instances allowed per top model to Multiple
for a model that is referenced only once can reduce execution efficiency
slightly, but does not affect data values that result from simulation or from
executing code generated by Real-Time Workshop. Specifying Multiple when
only one model instance exists facilitates later reusing the model in the same
hierarchy, or multiple times in a different hierarchy, without having to change
or rebuild the model.

Some model properties and constructs require Total number of instances
allowed per top model to be set to One, limiting the model to being used
only once in a hierarchy. For details, see “General Reusability Limitations” on
page 5-44 and “Accelerator Mode Reusability Limitations” on page 5-48.
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Model Structure Requirements
The following requirements relate to the structure of a model reference
hierarchy independently of configuration parameter requirements.

Signal Propagation Requirements
The signal name must explicitly appear on any signal line connected to an
Outport of a referenced model. A signal that is connected by an unlabeled line
to an Outport of a referenced model cannot propagate out of the Model block
to the parent model.

Bus Usage Requirements
A bus that propagates between a parent model and a referenced model must be
nonvirtual, and the same bus object must specify the properties of the bus in
both the parent and the referenced model. This object must be defined in the
MATLAB® workspace. See “Using Buses” on page 9-5 for more information.

Sample Time Requirements
The first nonvirtual block connected to a root-level Inport or Outport of a
referenced model must have the same sample time as the port to which
it connects. You can use Rate Transition blocks to match input and output
sample times as illustrated in the following diagram.
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Parameterizing Model References

In this section...

“Why Parameterize Model References?” on page 5-26

“Global Nontunable Parameters” on page 5-26

“Global Tunable Parameters” on page 5-27

“Model Arguments” on page 5-27

Why Parameterize Model References?
Due to the constraints described in “Inline Parameter Requirements” on page
5-23, you cannot use the “Model Parameter Configuration Dialog Box” to
tune parameters in referenced models.

Simulink® provides three other techniques that you can use to parameterize
referenced models:

• Global Nontunable Parameters

• Global Tunable Parameters

• Model Arguments

You cannot parameterize a referenced model by using symbols that match
definitions on the workspace of

Global Nontunable Parameters
A global nontunable parameter is a MATLAB® variable or a
Simulink.Parameter object whose storage class is auto. The parameter
can exist on the MATLAB workspace or any model workspace visible to all
referenced models that use the parameter.

Using a global nontunable parameter in a referenced model allows you to
control the behavior of the referenced model by setting the parameter value
before simulation begins. All instances of the model use the same value. You
cannot change the value during simulation, but you can change it between one
simulation and the next. The change requires rebuilding the model in which
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the change occurs, but not any models that it references. See “Specifying
Numeric Parameter Values” on page 6-10 for details.

Global Tunable Parameters
A global tunable parameter is a Simulink.Parameter object whose storage
class is other than auto. The parameter exists on the MATLAB workspace.

Using a global tunable parameter in a referenced model allows you to control
the behavior of the referenced model by setting the parameter value. All
instances of the model use the same value. You can change the value during
simulation or between one simulation and the next. The change does not
requires rebuilding the model in which the change occurs, or any models
that it references. See “Changing the Values of Block Parameters During
Simulation” on page 6-16 for details.

If you want to reference an existing model that uses tunable parameters
defined with the “Model Parameter Configuration Dialog Box”, you must
change the model to implement tunability in some other way. To facilitate
this task, Simulink provides a command that converts tunable parameters
specified in the Model Parameter Configuration dialog box to global tunable
parameters. See tunablevars2parameterobjects for details.

Model Arguments
You can also use model arguments to specify different behavior for different
references to the same model. This is the only technique that lets you specify
different behaviors for different instances of the same model. See “Using
Model Arguments” on page 5-28 for details.
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Using Model Arguments

In this section...

“About Model Arguments” on page 5-28

“Creating the MATLAB® Variables” on page 5-29

“Registering the Model Arguments” on page 5-30

“Assigning Model Argument Values” on page 5-31

About Model Arguments
Model arguments let you parameterize references to the same model so that
each instance of the model behaves differently. Without model arguments, a
variable in a referenced model has the same value in every instance of the
model. Declaring a variable to be a model argument allows each instance of
the model to use a different value for that variable.

To create model arguments for a referenced model, you create MATLAB®

variables in the model workspace, then add the variables to a list of model
arguments associated with the model. You can then specify values for those
variables separately in each Model block that references the model. The
values specified in the Model block replace the values of the MATLAB
variables for that instance of the model.

A referenced model that uses model arguments might also appear as a top
model or a standalone model. No Model block then exists to provide model
argument values, and the model uses the values of the MATLAB variables
themselves, as defined in the model workspace. Thus the same model can be
used without change as a top model, a standalone model, and a parameterized
referenced model.

The demo model sldemo_mdlref_paramargs demonstrates techniques
for using model arguments. The demo passes model argument values to
referenced models through masked Model blocks. Such masking can be
convenient, but is independent of the definition and use of model arguments
themselves. See Chapter 17, “Creating Block Masks” for details about
masking.
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The rest of this section describes techniques for declaring and using model
arguments to parameterize a referenced model independently of any Model
block masking. The steps are:

• Create MATLAB variables in the model workspace.

• Register the variables to be model arguments.

• Assign values to those arguments in Model blocks.

Creating the MATLAB® Variables
To create MATLAB variables that will be used as model arguments:

1 Open the model for which you want to define model arguments.

2 Open the Model Explorer.

3 Select the model’s workspace in Model Explorer’s Model Hierarchy pane:

4 From Model Explorer’s Add menu, select MATLAB Variable.

A new MATLAB variable appears in the Contents pane with a default
name and value.

5 In the Contents pane:
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a Change the default name of the new MATLAB variable to a name that
you want to declare as a model argument.

b If you will also use the model as a top or standalone model, specify the
value that the variable should have in that context. This value must
be numeric.

c If the variable type does not match the dimensions and complexity of the
model argument, specify a value that has the correct type. This type
must be numeric.

6 Repeat adding and naming MATLAB variables until you have defined all
the variables that you need.

Registering the Model Arguments
To register MATLAB variables as model arguments:

1 Again select the model’s workspace in Model Explorer’s Model Hierarchy
pane.

The Dialog pane displays the Model Workspace dialog.

2 In the Model Workspace dialog, enter the names of the MATLAB variables
that you want to declare as model arguments as a comma-separated list in
the Model arguments field.

For example, if you added two MATLAB variables named init_value and
incr, and declared them to be model arguments, the Contents and Dialog
panes of the Model Explorer could look like this:
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3 Click Apply to confirm the entered names.

Assigning Model Argument Values
If a model declares model arguments, you must assign values to those
arguments in each Model block that references the model. Failing to assign a
value to a model argument causes an error: the value of the model argument
does not default to the value of the corresponding MATLAB variable. That
value is available only to a standalone or top model. To assign values to a
referenced model’s arguments:

1 Open the Model block’s parameter dialog box by right-clicking the block
and choosing Model Reference Parameters from the context menu.

The second field, Model arguments, specifies the same MATLAB
variables, in the same order, that you previously typed into the Model
arguments field of the Model Workspace dialog. This field cannot be
edited. It provides a reminder of which model arguments need values
assigned, and in what order.
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2 In the Model argument values field, enter a comma-delimited list of
values for the model arguments that appear in the Model arguments
field. The values are assigned to arguments in positional order, so they
must appear in the same order as the corresponding arguments.

You can enter the values as literal values, variable names, MATLAB
expressions, and Simulink® parameter objects. Any symbols used resolve to
values as described in “Hierarchical Symbol Resolution” on page 3-70. All
values must be numeric (including objects with numeric values).

The value for each argument must have the same dimensions and
complexity as the MATLAB variable that defines the model argument in
the model workspace. The data types need not match. If necessary, the
Simulink software will cast a model argument value to the data type of the
corresponding MATLAB variable.
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3 Click OK or Apply to confirm the values for the Model block.

When the model executes in the context of that Model block, the Model
arguments will have the values specified in the Model block’s Model
argument values field.

5-33



5 Referencing a Model

Refreshing Model Blocks
Refreshing a Model block updates its internal representation to reflect
changes in the interface of the model that it references. For example, you
must refresh a Model block if its referenced model has gained or lost a port.
When more than one Model block references a model whose interface has
changed, all of the Model blocks must be refreshed. Changes that have no
effect on a referenced model’s interface to its parent do not require refreshing.

To refresh all of a model’s Model blocks, select Refresh Model Blocks from
the model’s Edit menu. To update a specific Model block, select Refresh
from the block’s context menu.

Simulink® provides diagnostics that you can use to detect changes in the
interfaces of referenced models that could require refreshing the Model blocks
that reference them. The diagnostics include:

• “Model block version mismatch”

• “Port and parameter mismatch”
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Examining a Model Reference Hierarchy
Simulink® provides tools and functions that you can use to examine a model
reference hierarchy:

• “Using the Model Dependency Viewer” on page 13-49 — Show the structure
of a model reference hierarchy and allows you to open any referenced model.

• view_mdlrefs function — Invoke the Model Dependency Viewer to display
a graph of model reference dependencies.

• find_mdlrefs function — Finds all models directly or indirectly referenced
by a given model.

Displaying Version Numbers
To display the version numbers of the models referenced by a model, choose
Model block version from the Block displays submenu of the parent
model’s Format menu. Simulink displays the version numbers in the icons of
the corresponding Model block instances.

The version number displayed on a Model block’s icon refers to the version of
the model used to create the block, or used most recently to refresh the block.
See “Managing Model Versions” on page 3-95 and “Refreshing Model Blocks”
on page 5-34 for more information.
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Inheriting Sample Times
The sample times of a Model block are the sample times of the model that
it references. If the referenced model needs to run at specific rates, the
referenced model specifies the required rates. Otherwise, the referenced
model inherits its sample time from the parent model.

Without the ability to inherit sample times, a Model block could not be placed
in a triggered, function call, or iterator subsystem. Additionally, allowing
a Model block to inherit sample time maximizes its reuse potential. For
example, a model might fix the data types and dimensions of all its input and
output signals, but could be reused with different sample times, for example,
discrete at 0.1, discrete at 0.2, triggered, and so on.

A referenced model inherits its sample time if and only if all the following
are true:

• None of its blocks specify sample times (other than inherited and constant).

• It does not have any continuous states.

• It does not contain any blocks that use absolute time.

• It specifies a fixed-step solver and the Fixed-step size is auto.

• It does not contain any S-functions that make use of their specific sample
time internally.

• After sample time propagation, it has only one sample time (not counting
constant and triggered sample time).

• It does not contain any blocks that preclude sample time inheritance, as
listed in “Blocks That Preclude Sample-Time Inheritance” on page 5-37.

You can use a referenced model that inherits its sample time anywhere in
a parent model. By contrast, you cannot use a referenced model that has
intrinsic sample times in a triggered, function call, or iterator subsystem.
To avoid rate transition errors, you must ensure that blocks connected to a
referenced model with intrinsic samples times operate at the same rates as
the referenced model.

If you want a Model block to be used in a model where it can inherit a sample
time, you must constrain the solver declared for that model. On the Solver
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configuration pane, set solver Type to Fixed-step and Periodic sample
time constraint to Ensure sample time independent.

To determine whether a referenced model inherits its sample time, set the
Periodic sample time constraint on the Solver configuration parameters
dialog pane to Ensure sample time independent. If the model is unable
to inherit sample times, this setting causes Simulink® to display an error
message when building the model. See “Periodic sample time constraint”
for more about this option.

To determine the intrinsic sample time of a referenced model (or the fastest
intrinsic sample time for multirate referenced models), first update some
model that references it. Then select a Model block that references the
referenced model and enter the following command at the MATLAB®

command line:

get_param(gcb, 'CompiledSampleTime')

Blocks That Preclude Sample-Time Inheritance
Using a block whose output depends on an inherited sample time in a
referenced model can cause simulation to produce unexpected or erroneous
results. For this reason, when building a submodel that does not need to run
at a specified rate, Simulink checks whether the model contains any blocks,
including any S-Function blocks, whose outputs are functions of the inherited
simulation time. If so, Simulink specifies a default sample time and displays
an error if you have set the Periodic sample time constraint on the Solver
configuration parameters dialog pane to Ensure sample time independent.
See “Periodic sample time constraint” for more about this option.

The outputs of the following built-in blocks depend on their sample time and
hence preclude a referenced model from inheriting its sample time from the
parent model:

• Discrete-Time Integrator

• From Workspace (if it has input data that contains time)

• Probe (if probing sample time)

• Rate Limiter

• Sine Wave
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Simulink assumes that the output of an S-function does not depend on
inherited sample time unless the S-function explicitly declares the contrary.
See Writing S-Functions for information on how to create S-functions that
declare whether their output depends on their inherited sample time.

To avoid simulation errors with referenced models that inherit their sample
time, you must not include S-functions in the referenced models that fail
to declare whether their output depends on their inherited sample time.
Simulink by default warns you if your model contains such blocks when you
update or simulate the model. See “Unspecified inheritability of sample
time” for details.
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Defining Function-Call Models

In this section...

“About Function-Call Models” on page 5-39

“Function-Call Model Demo” on page 5-39

“Creating a Function-Call Model” on page 5-39

“Referencing a Function-Call Model” on page 5-40

“Function-Call Model Requirements” on page 5-41

About Function-Call Models
Simulink® allows certain blocks, such as a Function-Call Generator or
an appropriately configured custom S-function, to control execution of a
referenced model during a time step, using a function-call signal. See
“Function-Call Subsystems” on page 4-21 for more information. A referenced
model capable of being invoked in this way is called a function-call model.

Function-Call Model Demo
To view a function-call model demo, select Simulink > Modeling
Features > Model Reference > Model Reference Function-Call from the
Demos pane of the MATLAB® Help Browser or execute sldemo_mdlref_fcncall
at the MATLAB command line.

Creating a Function-Call Model
To create a function-call model:

1 Insert a Trigger block at the root level of the model.

2 Set the Trigger block’s Trigger type parameter to function-call.

3 Create and connect any other blocks required to implement the model.
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4 Ensure that the model satisfies the conditions imposed on function-call
models. See “Function-Call Model Requirements” on page 5-41 for details.

You can now simulate the function-call model either by itself or by running a
model that references the function-call model directly or indirectly.

Referencing a Function-Call Model
To create a reference to a function-call model:

1 Create a Model block in the referencing model that references the
function-call model. See “Creating a Model Reference” on page 5-8 for
details.

The top of the Model block displays a function-call port corresponding to
the function-call trigger port in the function-call model.

2 Connect a Stateflow® chart, Function-Call Generator block, or other
function-call-generating block to the Model block’s function-call port. The
signal connected to the port must be scalar.

3 Connect the Model blocks inputs and outputs if any to the appropriate
blocks in the parent model.
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4 Create and connect any other blocks required to implement the parent
model.

5 Ensure that the referencing model satisfies the conditions for a model to
reference other models. See “Simulink® Model Referencing Requirements”
on page 5-19 and “Simulink® Model Referencing Limitations” on page
5-43 for details.

You can now simulate the model that references the function-call model.

Function-Call Model Requirements
To be a function-call model, a referenced model must meet the following
requirements in addition to the requirements that every referenced model
must meet.

• A function-call model cannot have an outport that is driven only by Ground
blocks, including hidden Ground blocks inserted by Simulink. To meet
this requirement, do the following:

a Insert a Signal Conversion block into the signal connected to the outport.

b Enable the inserted block’s Override optimizations and always copy
signal option.

• If the function-call model specifies a fixed-step solver and contains one or
more blocks that use absolute or elapsed time, the referencing model must
trigger the function-call model at the rate specified by the 'Fixed-step
size' option on the Solver page of the Configuration Parameters
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dialog. Otherwise, the referencing model may trigger the function-call
model at any rate.

• A function-call model must not have direct internal connections between its
root-level input and output ports. Simulink does not honor the None and
Warning settings for the Invalid root Inport/Outport block connection
diagnostic for a referenced function-call model. It reports all invalid root
port connections as errors.

• If the Sample time type is periodic, the sample-time period must not
contain an offset.

• The signal connected to a Model block’s function-call port must be scalar.

5-42



Simulink® Model Referencing Limitations

Simulink® Model Referencing Limitations

In this section...

“Requirements” on page 5-43

“Limitations on All Model Referencing” on page 5-43

“Limitations on Normal Mode Referenced Models” on page 5-46

“Limitations on Accelerator Mode Referenced Models” on page 5-47

Requirements
The following Simulink® limitations apply to model referencing. In addition,
a model reference hierarchy must satisfy all of the requirements listed in
“Simulink® Model Referencing Requirements” on page 5-19.

Limitations on All Model Referencing

Index Base Limitations
In the following two cases, Simulink does not propagate 0-based or 1-based
indexing information to referenced-model root-level ports connected to blocks
that accept indexes, like the Assignment block, or produce indexes, like the
For Iterator block.

• If a root-level input port of the referenced model is connected to index
inputs in the model that have different 0-based or 1-based indexing
settings, Simulink does not set the 0-based or 1-based indexing property of
the root-level Inport.

• If a root-level output port of the referenced model is connected to index
outputs in the model that have different 0-based or 1-based indexing
settings, Simulink does not set the 0-based or 1-based indexing property of
the root-level Outport.

In these cases, the lack of propagation can cause Simulink to fail to detect
incompatible index connections.
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General Reusability Limitations
If a referenced model has any of the following properties, the model must
specify Configuration Parameters > Model Referencing > Total number
of instances allowed per top model as One. No other instances of the
model can exist in the hierarchy. If the parameter is not set correctly, or more
than one instance of the model exists in the hierarchy, an error occurs. The
properties are:

• The model references another model which has been set to single instance

• The model contains a state or signal with non-auto storage class

• The model uses any of the following Stateflow® constructs:

- Machine-parented data

- Machine-parented events

- Stateflow graphical functions

5-44



Simulink® Model Referencing Limitations

Simulink® Tool Limitations

• Working with the Simulink Debugger in a parent model, you can set
breakpoints at Model block boundaries, allowing you to look at the block’s
input and output values, but you cannot set a breakpoint inside the
submodel that the Model block references. See Chapter 18, “Simulink®

Debugger” for more information.

• The Model Coverage tool, which is part of Simulink Verification and
Validation, works for at most one referenced model at a time. That model
must execute in Normal mode. See “Using Model Coverage” for more
information.

• Simulink Design Verifier does not work with model referencing.

Stateflow® Limitations

• A model that contains a Stateflow chart cannot be referenced multiple
times in the same model reference hierarchy if:

- The Stateflow chart contains exported graphical functions.

- The Stateflow model contains machine-parented data or events.

Other Limitations

• Referenced models cannot use asynchronous rates internally. However,
a function-call model referenced in a top model can be triggered by an
asynchronous source within the top model. See “Defining Function-Call
Models” on page 5-39 for more information.

• Mask callbacks cannot add Model blocks or change existing Model block
parameter values. Violating this requirement generates an error. See
Chapter 17, “Creating Block Masks” for more information.

• A referenced model can input or output only those user-defined data types
that are fixed-point or defined by Simulink.DataType or Simulink.Bus
objects.

• Model blocks referencing models that contain assignment blocks that are
not in an iterator subsystem cannot be placed in an iterator subsystem.
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• If you want to initialize the states of a model that references other models
with states, you must specify the initial states in structure format.

• The Model Browser does not display Model blocks in its tree view. Use the
Model Explorer to browse a referenced model hierarchy.

• A referenced model cannot directly access the signals in a multi-rate bus.
Connecting Multi-Rate Buses to Referenced Models describes a technique
for overcoming this limitation.

• A continuous sample time cannot be propagated to a Model block that is
sample-time independent.

• You cannot log the output of a Ground block in a referenced model even if
you testpoint it.

• Goto/From blocks cannot cross model reference boundaries.

• You cannot print a referenced model from a top model.

Limitations on Normal Mode Referenced Models

Simulink® Tool Limitations

• Enabling the Simulink Profiler on a parent model does not enable profiling
for referenced models. Profiling must be enabled separately for each
submodel. See “Capturing Performance Data” on page 19-33.

• Model coverage cannot be specified for any referenced model if coverage
is specified for the top model. Coverage can be specified for at most one
referenced model at a time. That model must execute in Normal mode.
See “Using Model Coverage”.

Other Limitations

• When the same submodel appears more than once in a hierarchy, at most
one of these instances can specify Normal mode. All the rest must specify
Accelerator mode.
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Limitations on Accelerator Mode Referenced Models

Customization Limitations

• Accelerator mode simulation ignores custom code settings in the
Configuration Parameter dialog box and custom code blocks when
generating the simulation target for a referenced model.

• Some restrictions exist on grouped custom storage classes in referenced
models. See “Custom Storage Class Limitations” for details.

• Data type replacement is not supported for simulation target code
generation for referenced models.

• Simulation targets do not include Stateflow target custom code.

Data Logging Limitations

• To Workspace blocks, Scope blocks, and all types of runtime display, such as
the display of port values and signal values, have no effect when specified
in referenced models executing in Accelerator mode. The result during
simulation is the same as if the constructs did not exist.

• Referenced models executing in Accelerator mode cannot log data to
MAT-files. If data logging is enabled for a referenced model, Simulink
disables the option before code generation and re-enables it afterwards.
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Accelerator Mode Reusability Limitations
If a referenced model has any of the following properties, and the model
executes in Accelerator mode, the model must specify Configuration
Parameters > Model Referencing > Total number of instances allowed
per top model as One. No other instances of the model can exist in the
hierarchy, in either Normal mode or Accelerator mode. If the parameter is not
set correctly, or more than one instance of the model exists in the hierarchy,
an error occurs. The properties are:

• The model contains a subsystem that is marked as function

• The model contains an S-function that is:

- Inlined but has not set the option SS_OPTION_WORKS_WITH_CODE_REUSE

- Not inlined

• The model contains a function-call subsystem that:

- Has been forced by Simulink to be a function

- Is called by a wide signal
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S-Function Limitations

• If a referenced model contains an S-function that should be inlined using a
Target Language Compiler file, the S-function must use the ssSetOptions
macro to set the SS_OPTION_USE_TLC_WITH_ACCELERATOR option in its
mdlInitializeSizes method. The simulation target will not inline the
S-function unless this flag is set.

• The Real-Time Workshop® S-function target does not support model
referencing.

• A referenced model cannot use noninlined S-functions in the following
cases:

- The model uses a variable-step solver.

- The S-function was generated by Real-Time Workshop.

- The S-function supports use of fixed-point numbers as inputs, outputs,
or parameters.

- The model is referenced more than once in the model reference hierarchy.
To work around this limitation, make copies of the referenced model,
assign different names to the copies, and reference a different copy at
each location that needs the model.

Simulink® Tool Limitations

• Simulink tools that require access to a model’s internal data or
configuration (including Model Coverage, the Report Generator, the
Simulink Debugger, and the Simulink Profiler) have no effect on referenced
models executing in Accelerator mode. Specifications made and actions
taken by such tools are ignored and effectively do not exist.

Subsystem Limitations

• If a subsystem contains Model blocks, you cannot build a subsystem module
by right-clicking the subsystem or by using Tools > Real-Time Workshop
> Build subsystem.
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• If you generate code for an atomic subsystem as a reusable function, inputs
or outputs that connect the subsystem to a referenced model can affect code
reuse, as described in “Reusable Code and Referenced Models”.

Target Limitations

• Real-Time Workshop grt_malloc targets do not support model reference.

• The Real-Time Workshop S-function target does not support model
referencing.

Other Limitations

• Errors or unexpected behavior can occur if a Model block is part of a cycle,
the Model block is a direct feedthrough block, and an algebraic loop results.
See “Model Blocks and Direct Feedthrough” for details.

• The External mode option is not supported. If it is enabled, it is ignored
by Accelerator mode.
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run-time interface to access block
data during a simulation.
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About Blocks

In this section...

“What are Blocks?” on page 6-2

“Block Data Tips” on page 6-2

“Virtual Blocks” on page 6-2

What are Blocks?
Blocks are the elements from which the Simulink® software builds models.
You can model virtually any dynamic system by creating and interconnecting
blocks in appropriate ways. This section discusses how to use blocks to build
models of dynamic systems.

Block Data Tips
Information about a block is displayed in a pop-up window when you allow the
pointer to hover over the block in the diagram view. To disable this feature or
control what information a data tip includes, select Block data tips options
from the Simulink View menu.

Virtual Blocks
When creating models, you need to be aware that Simulink blocks fall into
two basic categories: nonvirtual and virtual blocks. Nonvirtual blocks play an
active role in the simulation of a system. If you add or remove a nonvirtual
block, you change the model’s behavior. Virtual blocks, by contrast, play no
active role in the simulation; they help organize a model graphically. Some
Simulink blocks are virtual in some circumstances and nonvirtual in others.
Such blocks are called conditionally virtual blocks. The following table lists
Simulink virtual and conditionally virtual blocks.

Block Name Condition Under Which Block Is Virtual

Bus Selector Virtual if input bus is virtual.

Demux Always virtual.
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Block Name Condition Under Which Block Is Virtual

Enable Virtual unless connected directly to an Outport
block.

From Always virtual.

Goto Always virtual.

Goto Tag Visibility Always virtual.

Ground Always virtual.

Inport Virtual unless the block resides in a conditionally
executed or atomic subsystem and has a direct
connection to an Outport block.

Mux Always virtual.

Outport Virtual when the block resides within any
subsystem block (conditional or not), and does not
reside in the root (top-level) Simulink window.

Selector Virtual only when the block’s Number of input
dimensions parameter specifies 1 and its Index
Option specifies either Select all, Index vector
(dialog), or Starting index (dialog).

Signal Specification Always virtual.

Subsystem Virtual unless the block is conditionally executed
and/or the block’s Treat as Atomic Unit option
is selected.

Terminator Always virtual.

Trigger Virtual when the Outport port is not present.
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Editing Blocks

In this section...

“Copying and Moving Blocks from One Window to Another” on page 6-4

“Moving Blocks in a Model” on page 6-5

“Copying Blocks in a Model” on page 6-7

“Deleting Blocks” on page 6-7

Copying and Moving Blocks from One Window to
Another
As you build your model, you often copy blocks from Simulink® block libraries
or other libraries or models into your model window. To do this:

1 Open the appropriate block library or model window.

2 Drag the block to copy into the target model window. To drag a block,
position the cursor over the block, then press and hold down the mouse
button. Move the cursor into the target window, then release the mouse
button.

You can also drag blocks from the Simulink Library Browser into a model
window. See “Browsing Block Libraries” on page 7-13 for more information.

Note The names of Sum, Mux, Demux, Bus Creator, and Bus Selector blocks
are hidden when you copy them from the Simulink block library to a model.
This is done to avoid unnecessarily cluttering the model diagram. (The shapes
of these blocks clearly indicate their respective functions.)

You can also copy blocks by using the Copy and Paste commands from the
Edit menu:

1 Select the block you want to copy.

2 Choose Copy from the Edit menu.
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3 Make the target model window the active window.

4 Choose Paste from the Edit menu.

Simulink assigns a name to each copied block. If it is the first block of its type
in the model, its name is the same as its name in the source window. For
example, if you copy the Gain block from the Math library into your model
window, the name of the new block is Gain. If your model already contains a
block named Gain, Simulink adds a sequence number to the block name (for
example, Gain1, Gain2). You can rename blocks; see “Manipulating Block
Names” on page 6-30.

When you copy a block, the new block inherits all the original block’s
parameter values.

Moving Blocks in a Model
To move a single block from one place to another in a model window, drag the
block to a new location. Simulink automatically repositions lines connected to
the moved block.

To move more than one block, including connecting lines:

1 Select the blocks and lines. If you need information about how to select
more than one block, see “Selecting Multiple Objects” on page 3-5.

2 Drag the objects to their new location and release the mouse button.

To move a block, disconnecting lines:

1 Select the block.

2 Press the Shift key, then drag the block to its new location and release
the mouse button.

You can also move a block by selecting the block and pressing the arrow keys.

Moving blocks from one window to another is similar to copying blocks, except
that you hold down the Shift key while you select the blocks.
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You can use the Undo command from the Edit menu to remove an added
block.

Aligning Blocks
Simulink uses an invisible five-pixel grid to simplify the alignment of blocks.
When you move a block to a new location, the block snaps to the nearest
line on the grid.

To facilitate aligning blocks at larger intervals, Simulink allows you to display
a larger grid in a model window. To display the grid, enter the following
command at the MATLAB® command prompt.

set_param('<model name>','showgrid','on')

The default width of the grid is 20 pixels. To change the grid spacing, enter

set_param('<model name>','gridspacing',<number of pixels>)

For example, to change the grid spacing to 25 pixels, enter

set_param('<model name>','gridspacing',25)

Note The new spacing must be a multiple of five pixels to ensure that the
displayed grid aligns with the invisible snap grid.

For either of the above commands, you can also select the model, then enter
gcs instead of <model name>.

Positioning Blocks Programmatically
You can position (and resize) a block programmatically, using its Position
parameter. For example, the following command

set_param(gcb, 'Position', [5 5 20 20]);

moves the currently selected block to a location 5 points down and 5 points to
the right of the top left corner of the block diagram and sets the block’s height
and width to 15 points, respectively.
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Note The maximum size of a block diagram’s height and width is 32767
points. An error message is displayed if you try to moving or resize a block to
a position that exceeds the diagram’s boundaries.

Copying Blocks in a Model
You can copy blocks in a model as follows. While holding down the Ctrl key,
select the block with the left mouse button, then drag it to a new location.
You can also do this by dragging the block using the right mouse button.
Duplicated blocks have the same parameter values as the original blocks.
Sequence numbers are added to the new block names.

Note The model editor sorts block names alphabetically when generating
names for copies pasted into a model. This can cause the names of pasted
blocks to be out of order. For example, supposed you copy a row of 16 gain
blocks named Gain, Gain1, Gain2...Gain15 and paste them into the model.
The names of the pasted blocks occur in the following order: Gain16, Gain17,
Gain24...Gain23.

Deleting Blocks
To delete one or more blocks, select the blocks to be deleted and press the
Delete or Backspace key. You can also choose Clear or Cut from the Edit
menu. The Cut command writes the blocks into the clipboard, which enables
you to paste them into a model. Using the Delete or Backspace key or the
Clear command does not enable you to paste the block later.

You can use the Undo command from the Edit menu to replace a deleted
block.
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Working with Block Parameters

In this section...

“About Block Parameters” on page 6-8

“Mathematical Versus Configuration Parameters” on page 6-8

“Setting Block Parameters” on page 6-9

“Specifying Numeric Parameter Values” on page 6-10

“Checking Parameter Values” on page 6-12

“Changing the Values of Block Parameters During Simulation” on page 6-16

“Inlining Parameters” on page 6-18

“Block Properties Dialog Box” on page 6-20

“State Properties Dialog Box” on page 6-27

About Block Parameters
All Simulink® blocks have attributes that you can specify. Some
user-specifiable attributes are common to all Simulink blocks, for example,
a block’s name and foreground color. Other attributes are specific to a
block, for example, the gain of a Gain block. Simulink associates a variable,
called a block parameter, with each user-specifiable attribute of a block. You
specify the attribute by setting its associated parameter to a corresponding
value. For example, to set the foreground color of a block to red, you set the
value of its foreground color parameter to the string 'red'. The Simulink
parameter reference lists the names, usages, and valid settings for Simulink
block parameters (see “Common Block Parameters” and “Block-Specific
Parameters”).

Mathematical Versus Configuration Parameters
Block parameters fall into two broad categories. A mathematical parameter
is a parameter used to compute the value of a block’s output, for example,
the Gain parameter of a Gain block. All other parameters are configuration
parameters, for example, a Gain block’s Name parameter. In general, you
can change the values of mathematical but not configuration parameters
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during simulation (see “Changing the Values of Block Parameters During
Simulation” on page 6-16).

Setting Block Parameters
You can use the Simulink set_param command to set the value of any
Simulink block parameter. In addition, you can set many block parameters
via Simulink dialog boxes and menus. These include:

• Format menu

The Model Editor’s Format menu allows you to specify attributes of the
currently selected block that are visible on the model’s block diagram, such
as the block’s name and color (see “Changing a Block’s Appearance” on page
6-28 for more information).

• Block Properties dialog box

Specifies various attributes that are common to all blocks (see “Block
Properties Dialog Box” on page 6-20 for more information).

• Block Parameter dialog box

Every block has a dialog box that allows you to specify values for attributes
that are specific to that type of block. See “Displaying a Block’s Parameter
Dialog Box” on page 6-9 for information on displaying a block’s parameter
dialog box. For information on the parameter dialog of a specific block, see
“Blocks — Alphabetical List” in the online Simulink reference.

• Model Explorer

The Model Explorer allows you to quickly find one or more blocks and set
their properties, thus facilitating global changes to a model, for example,
changing the gain of all of a model’s Gain blocks. See “The Model Explorer”
on page 13-2 for more information.

Displaying a Block’s Parameter Dialog Box
To display a block’s parameter dialog box, double-click the block in the model
or library window. You can also display a block’s parameter dialog box by
selecting the block in the model’s block diagram and choosing BLOCK
Parameters from the model window’s Edit menu or from the block’s context
(right-click) menu, where BLOCK is the name of the block you selected, e.g.,
Constant Parameters.
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Note Double-clicking a block to display its parameter dialog box works for all
blocks with parameter dialog boxes except for Subsystem blocks. You must
use the Model Editor’s Edit menu or the block’s context menu to display a
Subsystem block’s parameter dialog box.

Specifying Numeric Parameter Values
Many block parameters, including mathematical parameters, accept
MATLAB® expression strings as values. When Simulink compiles a model, for
example, at the start of a simulation or when you update the model, Simulink
sets the compiled values of the parameters to the result of evaluating the
expressions.

• “Using Workspace Variables in Parameter Expressions” on page 6-10

• “Resolving Variable References in Block Parameter Expressions” on page
6-11

• “Using Parameter Objects to Specify Parameter Values” on page 6-11

• “Determining Parameter Data Types” on page 6-12

Using Workspace Variables in Parameter Expressions
Block parameter expressions can include variables defined in the model’s
mask and model workspaces and in the MATLAB workspace. Using a
workspace variable facilitates updating a model that sets multiple block
parameters to the same value, i.e., it allows you to update multiple parameters
by setting the value of a single workspace variable. For more information,
see “Resolving Symbols” on page 3-69 and “Specifying Numeric Values with
Symbols” on page 3-71.

Using a workspace variable also allows you to change the value of a parameter
during simulation without having to open a block’s parameter dialog box. For
more information, see “Changing the Values of Block Parameters During
Simulation” on page 6-16.
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Note If you plan to generate code from a model, you can use workspace
variables to specify the name, data type, scope, volatility, tunability, and other
attributes of variables used to represent the parameter in the generated code.
For more information, see “Parameter Storage, Interfacing, and Tuning” in
the Real-Time Workshop® documentation.

Resolving Variable References in Block Parameter Expressions
When evaluating a block parameter expression that contains a variable,
Simulink by default searches the workspace hierarchy. If the variable is
not defined in any workspace, Simulink halts compilation of the model
and displays an error message. See “Resolving Symbols” on page 3-69 and
“Specifying Numeric Values with Symbols” on page 3-71 for more information.

Using Parameter Objects to Specify Parameter Values
You can use Simulink.Parameter objects in parameter expressions
to specify parameter values. For example, K and 2*K are both valid
parameter expressions where K is a workspace variable that references a
Simulink.Parameter object. In both cases, Simulink uses the parameter
object’s Value property as the value of K. For more information, see “Resolving
Symbols” on page 3-69 and “Specifying Numeric Values with Symbols” on
page 3-71.

Using parameter objects to specify parameters can facilitate tuning
parameters in some applications (see “Using a Parameter Object to Specify
a Parameter As Noninlined” on page 6-19 and “Parameterizing Model
References” on page 5-26 for more information).

Note Do not use expressions of the form p.Value where p is a parameter
object in parameter expressions. Such expressions cause evaluation errors
when Simulink compiles the model.
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Determining Parameter Data Types
When Simulink compiles a model, each of the model’s blocks determines a
data type for storing the values of its parameters whose values are specified
by MATLAB parameter expressions.

Most blocks use internal rules to determine the data type assigned to a
specific parameter. Exceptions include the Gain block, whose parameter
dialog box allows you to specify the data type assigned to the compiled value
of its Gain parameter. You can configure your model to check whether the
data type assigned to a parameter can accommodate the parameter value
specified by the model (see “Data Validity Diagnostics Overview”).

Obtaining Parameter Information. You can use get_param to find the
system and block parameter values for your model. See “Model and Block
Parameters” for a list of arguments get_param accepts.

The model’s signal attributes and parameter expressions must be evaluated
before some parameters are properly reported. This evaluation occurs during
the simulation compilation phase. Alternatively, you can compile your model
without first running it, and then obtain parameter information. For instance,
to access the port width, data types and dimensions of the blocks in your
model, enter the following at the command prompt:

modelname([],[],[],'compile')
q=get_param(gcb,'PortHandles');
get_param(q.Inport,'CompiledPortDataType')
get_param(q.Inport,'CompiledPortWidth')
get_param(q.Inport,'CompiledPortDimensions')
modelname([],[],[],'term')

Checking Parameter Values
Several blocks perform range checking of their mathematical parameters.
Generally, blocks that allow you to enter minimum and maximum values
check to ensure that the values of applicable parameters lie within the
specified range. See the following topics for more information:

• “Blocks That Perform Parameter Range Checking” on page 6-13

• “Specifying Ranges for Parameters” on page 6-13
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• “Performing Parameter Range Checking” on page 6-14

Blocks That Perform Parameter Range Checking
The following blocks perform range checking for their parameters:

Block Parameters Checked

Constant Constant value

Data Store Memory Initial value

Gain Gain

Interpolation Using Prelookup Table data

Lookup Table Table data

Lookup Table (2-D) Table data

Lookup Table (n-D) Table data

Relay Output when on
Output when off

Repeating Sequence Interpolated Vector of output values

Repeating Sequence Stair Vector of output values

Saturation Upper limit
Lower limit

Specifying Ranges for Parameters
In general, use the Output minimum and Output maximum parameters
that appear on a block parameter dialog box to specify a range of valid values
for the block parameters. The following exceptions apply:

• For the Gain block, use the Parameter minimum and Parameter
maximum fields to specify a range for the Gain parameter.

• For the Data Store Memory block, use the Minimum and Maximum fields
to specify a range for the Initial value parameter.

When specifying minimum and maximum values that constitute a range,
enter only expressions that evaluate to a scalar, real number with double data
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type. The default value, [], is equivalent to -Inf for the minimum value and
Inf for the maximum value. The scalar values that you specify are subject to
expansion, for example, when the block parameters that Simulink checks are
nonscalar (see “Scalar Expansion of Inputs and Parameters” on page 8-24).

Note You cannot specify the minimum or maximum value as NaN.

Specifying Ranges for Complex Numbers. When you specify a minimum
or maximum value for a parameter that is a complex number, the specified
minimum and maximum apply separately to the real part and to the
imaginary part of the complex number. If the value of either part of the
number is less than the minimum, or greater than the maximum, the complex
number is outside the specified range. No range checking occurs against any
combination of the real and imaginary parts, such as (sqrt(a^2+b^2))

Performing Parameter Range Checking
You can initiate parameter range checking in the following ways:

• When you click the OK or Apply button on a block parameter dialog box,
the block performs range checking for its parameters. However, the block
checks only the parameters that it can readily evaluate. For example, the
block does not check parameters that use an undefined workspace variable.

• When you start a simulation or select Update Diagram from the Simulink
Edit menu, Simulink performs parameter range checking for all blocks in
that model.

Simulink performs parameter range checking by comparing the values of
applicable block parameters with both the specified range (see “Specifying
Ranges for Parameters” on page 6-13) and the block data type. That is,
Simulink performs the following check:

DataTypeMin ≤ MinValue ≤ VALUE ≤ MaxValue ≤ DataTypeMax

where

• DataTypeMin is the minimum value representable by the block data type.
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• MinValue is the minimum value the block should output, specified by, e.g.,
Output minimum.

• VALUE is the numeric value of a block parameter.

• MaxValue is the maximum value the block should output, specified by, e.g.,
Output maximum.

• DataTypeMax is the maximum value representable by the block data type.

When Simulink detects a parameter value that violates the check, it displays
an error message. For example, consider a model that contains a Constant
block whose

• Constant value parameter specifies the variable const, which you have
yet to define in a workspace.

• Output minimum and Output maximum parameters are set to 2 and 8,
respectively.

• Output data type parameter is set to uint8.

In this situation, Simulink does not perform parameter range checking when
you click the OK button on the Constant block dialog box because the variable
const is undefined. But suppose you define its value by entering

const = 10

at the MATLAB prompt, and then you update the diagram (see “Updating a
Block Diagram” on page 1-13). Simulink displays the following error message:
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Changing the Values of Block Parameters During
Simulation
Simulink lets you change the values of many block parameters during
simulation. Such parameters are called tunable parameters. In general,
only parameters that represent mathematical variables, such as the Gain
parameter of the Gain block, are tunable. Parameters that specify the
appearance or structure of a block, e.g., the number of inputs of a Sum block,
or when it is evaluated, e.g., a block’s sample time or priority, are not tunable.
You can tell whether a particular parameter is tunable by examining its edit
control in the block’s dialog box or Model Explorer during simulation. If the
control is disabled, the parameter is nontunable.

Note You cannot tune inline parameters. See “Inlining Parameters” on page
6-18 for more information.

Tuning a Block Parameter
You can use a block’s dialog box or the Model Explorer to modify the tunable
parameters of any block, except a source block (see “Changing Source Block
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Parameters During Simulation” on page 6-17). To use the block’s parameter
dialog box, open the block’s parameter dialog box, change the value displayed
in the dialog box, and click the dialog box’s OK or Apply button.

You can also tune a parameter at the MATLAB command line, using either
the set_param command or by assigning a new value to the MATLAB
workspace variable that specifies the parameter’s value. In either case, you
must update the model’s block diagram for the change to take effect (see
“Updating a Block Diagram” on page 1-13).

Changing Source Block Parameters During Simulation
Opening the dialog box of a source block with tunable parameters (see “Source
Blocks with Tunable Parameters” on page 6-17) causes a running simulation
to pause. While the simulation is paused, you can edit the parameter values
displayed on the dialog box. However, you must close the dialog box to have
the changes take effect and allow the simulation to continue. Similarly,
starting a simulation causes any open dialog boxes associated with source
blocks with tunable parameters to close.

Note If you enable the Inline parameters option, Simulink does not pause
the simulation when you open a source block’s dialog box because all of the
parameter fields are disabled and can be viewed but cannot be changed.

The Model Explorer disables the parameter fields that it displays in the list
view and the dialog pane for a source block with tunable parameters while
a simulation is running. As a result, you cannot use the Model Explorer to
change the block’s parameters. However, while the simulation is running, the
Model Explorer displays a Modify button in the dialog view for the block.
Clicking the Modify button opens the block’s dialog box. Note that this
causes the simulation to pause. You can then change the block’s parameters.
You must close the dialog box to have the changes take effect and allow the
simulation to continue. Your changes appear in the Model Explorer after you
close the dialog box.

Source Blocks with Tunable Parameters. Source blocks with tunable
parameters include the following blocks.

6-17



6 Working with Blocks

• Simulink source blocks, including

- Band-Limited White Noise

- Chirp Signal

- Constant

- Pulse Generator

- Ramp

- Random Number

- Repeating Sequence

- Signal Generator

- Sine Wave

- Step

- Uniform Random Number

• User-developed masked subsystem blocks that have one or more tunable
parameters and one or more output ports, but no input ports.

• S-Function and M-file (level 2) S-Function blocks that have one or more
tunable parameters and one or more output ports but no input ports.

Inlining Parameters
The Inline parameters optimization (see “Inline parameters” ) controls how
mathematical block parameters appear in code generated from the model.
When this optimization is off (the default), a model’s mathematical block
parameters appear as variables in the generated code. As a result, you can
tune the parameters both during simulation and when executing the code.
When this option is on, the parameters appear in the generated code as
inlined numeric constants. This reduces the generated code’s memory and
processing requirements. However, because the inline parameters appear as
constants in the generated code, you cannot tune them during code execution.
Furthermore, to ensure that simulation faithfully models the generated code,
Simulink prevents you from changing the values of block parameters during
simulation when the Inline parameters option is on.
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Specifying Some Parameters as Noninline
Suppose that you want to take advantage of the Inline parameters
optimization while retaining the ability to tune some of your model’s
parameters. You can do this by declaring some parameters as noninline,
using either the “Model Parameter Configuration Dialog Box” or a
Simulink.Parameter object. In either case, you must use a workspace
variable to specify the value of the parameter.

Note The documentation for the Real-Time Workshop refers to workspace
variables used to specify the value of noninline parameters as tunable
workspace parameters. In this context, the term parameter refers to a
workspace variable used to specify a parameter as opposed to the parameter
itself.

Note When compiling a model with the inline parameters option on, Simulink
checks to ensure that the data types of the workspace variables used to specify
the model’s noninline parameters are compatible with code generation. If
not, Simulink halts the compilation and displays an error. See “Tunable
Workspace Parameter Data Type Considerations” for more information.

Using a Parameter Object to Specify a Parameter As Noninlined.
If you use a parameter object to specify a parameter’s value (see “Using
Parameter Objects to Specify Parameter Values” on page 6-11), you can also
use the object to specify the parameter as noninlined. To do this, set the
parameter object’s RTWInfo.StorageClass property to any value but 'Auto'
(the default).

K=Simulink.Parameter;
K.RTWInfo.StorageClass = 'SimulinkGlobal';

If you set the RTWInfo.StorageClass property to any value other than Auto,
you should not include the parameter in the tunable parameters table in the
model’s Model Parameter Configuration dialog box.
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Note Simulink halts model compilation and displays an error message if
it detects a conflict between the properties of a parameter as specified by
a parameter object and the properties of the parameter as specified in the
Model Parameter Configuration dialog box.

Block Properties Dialog Box
This dialog box lets you set a block’s properties. To display this dialog, select
the block in the model window and then select Block Properties from the
Edit menu.

The dialog box contains the following tabbed panes:

• “General Pane” on page 6-21

• “Block Annotation Pane” on page 6-23

• “Callbacks Pane” on page 6-25
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General Pane
This pane allows you to set the following properties.

Description. Brief description of the block’s purpose.

Priority. Execution priority of this block relative to other blocks in the model.
See “Assigning Block Priorities” on page 6-39 for more information.
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Tag. Text that is assigned to the block’s Tag parameter and saved with the
block in the model. You can use the tag to create your own block-specific
label for a block.
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Block Annotation Pane
The block annotation pane allows you to display the values of selected block
parameters in an annotation that appears beneath the block’s icon.

Enter the text of the annotation in the text field that appears on the right side
of the pane. The text can include any of the block property tokens that appear
in the list on the left side of the pane. A block property token is simply the
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name of a block parameter preceded by %< and followed by >. When displaying
the annotation, the Simulink software replaces the tokens with the values
of the corresponding block parameters. For example, suppose that you enter
the following text and tokens for a Product block:

Multiplication = %<Multiplication>
Sample time = %<SampleTime>

In the model editor window, the annotation appears as follows:

The block property token list on the left side of the pane lists all the
parameters that are valid for the currently selected block (see “Model and
Block Parameters” in the Simulink Reference). To add one of the listed tokens
to the text field on the right side of the pane, select the token and then click
the button between the list and the text field.

You can also create block annotations programmatically. See “Creating Block
Annotations Programmatically” on page 6-26.
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Callbacks Pane
The Callbacks Pane allows you to specify implementations for a block’s
callbacks (see “Using Callback Functions” on page 3-52).

To specify an implementation for a callback, select the callback in the callback
list on the left side of the pane. Then enter MATLAB commands that
implement the callback in the right-hand field. Click OK or Apply to save the
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change. Simulink appends an asterisk to the name of the saved callback to
indicate that it has been implemented.

Creating Block Annotations Programmatically
You can use a block’s AttributesFormatString parameter to display selected
block parameters beneath the block as an “attributes format string,” i.e., a
string that specifies values of the block’s attributes (parameters). “Model and
Block Parameters” in Simulink Reference describes the parameters that a
block can have. Use the Simulink set_param function to set this parameter to
the desired attributes format string.

The attributes format string can be any text string that has embedded
parameter names. An embedded parameter name is a parameter name
preceded by %< and followed by >, for example, %<priority>. Simulink
displays the attributes format string beneath the block’s icon, replacing each
parameter name with the corresponding parameter value. You can use
line-feed characters (\n) to display each parameter on a separate line. For
example, specifying the attributes format string

pri=%<priority>\ngain=%<Gain>

for a Gain block displays

If a parameter’s value is not a string or an integer, Simulink displays N/S
(not supported) for the parameter’s value. If the parameter name is invalid,
Simulink displays ??? as the parameter value.
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State Properties Dialog Box
The State Properties dialog box allows you to specify code generation
options for certain blocks with discrete states. See “Block State Storage and
Interfacing” in Real-Time Workshop User’s Guide for more information.
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Changing a Block’s Appearance

In this section...

“Changing the Orientation of a Block” on page 6-28

“Resizing a Block” on page 6-29

“Displaying Parameters Beneath a Block” on page 6-30

“Using Drop Shadows” on page 6-30

“Manipulating Block Names” on page 6-30

“Specifying a Block’s Color” on page 6-32

Changing the Orientation of a Block
By default, signals flow through a block from left to right. Input ports are on
the left, and output ports are on the right. You can change the orientation of a
block by selecting one of these commands from the Format menu:

• The Flip Block command rotates the block 180 degrees.

• The Rotate Block command rotates a block clockwise 90 degrees.
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The following figure shows how Simulink® orders ports after changing the
orientation of a block using the Rotate Block and Flip Block menu items.
The text in the blocks shows their orientation.

Resizing a Block
To change the size of a block, select it, then drag any of its selection handles.
While you hold down the mouse button, a dotted rectangle shows the new
block size. When you release the mouse button, the block is resized.

For example, the following figure below shows a Signal Generator block
being resized. The lower-right handle was selected and dragged to the cursor
position. When the mouse button is released, the block takes its new size.

This figure shows a block being resized:
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Displaying Parameters Beneath a Block
You can cause Simulink to display one or more of a block’s parameters beneath
the block. You specify the parameters to be displayed in the following ways:

• By entering an attributes format string in the Attributes format string
field of the block’s Block Properties dialog box (see “Block Properties
Dialog Box” on page 6-20)

• By setting the value of the block’s AttributesFormatString property to
the format string, using set_param

Using Drop Shadows
You can add a drop shadow to a block by selecting the block, then choosing
Show Drop Shadow from the Format menu. When you select a block with
a drop shadow, the menu item changes to Hide Drop Shadow. The following
figure shows a Subsystem block with a drop shadow:

Manipulating Block Names
All block names in a model must be unique and must contain at least one
character. By default, block names appear below blocks whose ports are on
the sides, and to the left of blocks whose ports are on the top and bottom, as
the following figure shows:

Note Simulink commands interprets a forward slash, i.e., /, as a block path
delimiter. For example, the path vdp/Mu designates a block named Mu in the
model named vdp. Therefore, avoid using forward slashes (/) in block names
to avoid causing Simulink to interpret the names as paths.
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Changing Block Names
You can edit a block name in one of these ways:

• To replace the block name, click the block name, double-click or drag the
cursor to select the entire name, then enter the new name.

• To insert characters, click between two characters to position the insertion
point, then insert text.

• To replace characters, drag the mouse to select a range of text to replace,
then enter the new text.

When you click the pointer anywhere else in the model or take any other
action, the name is accepted or rejected. If you try to change the name of a
block to a name that already exists or to a name with no characters, Simulink
displays an error message.

You can modify the font used in a block name by selecting the block, then
choosing the Font menu item from the Format menu. Select a font from the
Set Font dialog box. This procedure also changes the font of any text that
appears inside the block.

You can cancel edits to a block name by choosing Undo from the Edit menu.

Note If you change the name of a library block, all links to that block become
unresolved.

Changing the Location of a Block Name
You can change the location of the name of a selected block in two ways:

• By dragging the block name to the opposite side of the block.

• By choosing the Flip Name command from the Format menu. This
command changes the location of the block name to the opposite side of
the block.

For more information about block orientation, see “Changing the Orientation
of a Block” on page 6-28.
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Changing Whether a Block Name Appears
To change whether the name of a selected block is displayed, choose a menu
item from the Format menu:

• The Hide Name menu item hides a visible block name. When you select
Hide Name, it changes to Show Name when that block is selected.

• The Show Name menu item shows a hidden block name.

Specifying a Block’s Color
See “Specifying Block Diagram Colors” on page 3-7 for information on how to
set the color of a block.
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Displaying Block Outputs

In this section...

“Block Output Example” on page 6-33

“Enabling Port Values Display” on page 6-34

“Port Values Display Options” on page 6-35

Block Output Example
For many blocks, Simulink® can display block outputs as data tips on the
block diagram while a simulation is running.

Additionally, you can specify whether and when to display block outputs and
the size and format of the output displays and the rate at which Simulink
updates them during a simulation.
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Note Port values will not be displayed in subsystems that have direct feed
through for all of its signals. To display port values in subsystems, add a unity
gain block to at least one of the signals.

Enabling Port Values Display
To turn display of port output values on or off, select Port Values from the
Model Editor’s View menu. A menu of display options appears. Select one of
the following display options from the menu:

• Show none

Turns port value displaying off.

• Show when hovering

Displays output port values for the block under the mouse cursor.

• Toggle when selected

Selecting a block displays its outputs. Reselecting the block turns the
display off.

When using the Simulink version that runs on the Microsoft® Windows®

operating system, you can turn block output display when hovering on or off
from the Model Editor’s toolbar. To do this, select the block output display
button on the toolbar.
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Port Values Display Options
To specify other display options, select Port Values > Options from the
Model Editor’s View menu. The Block Output Display Options dialog
box appears.

To increase the size of the output display text, move the Font size slider to
the right. To increase the rate at which Simulink updates the displays, move
the Refresh interval slider to the left.
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Controlling and Displaying the Sorted Order

In this section...

“What is Block Sorted Order?” on page 6-36

“How Simulink® Determines the Sorted Order” on page 6-36

“Displaying the Sorted Order” on page 6-38

“Assigning Block Priorities” on page 6-39

What is Block Sorted Order?
The sorted order is an ordering of the blocks in the model that Simulink® uses
as a starting point for determining the order in which to invoke the blocks’
methods (see “Block Methods” on page 2-12) during simulation. Simulink
allows you to display the sorted order for a model and to assign priorities to
blocks that can influence where they appear in the sorted order.

How Simulink® Determines the Sorted Order
Simulink uses the following basic rules to sort the blocks:

• Each block must appear in the sorted order ahead any of the blocks whose
direct-feedthrough ports (see “About Direct-Feedthrough Ports” on page
6-37) it drives.

This rule ensures that the direct-feedthrough inputs to blocks will be valid
when block methods that require current inputs are invoked.

• Blocks that do not have direct feedthrough inputs can appear
anywhere in the sorted order as long as they precede any blocks whose
direct-feedthrough inputs they drive.

Putting all blocks that do not have direct-feedthrough ports at the head of
the sorted order satisfies this rule. It thus allows Simulink to ignore these
blocks during the sorting process.

The result of applying these rules is a sorted order in which blocks without
direct feedthrough ports appear at the head of the list in no particular order
followed by blocks with direct-feedthrough ports in the order required to
supply valid inputs to the blocks they drive.
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During the sorting process, Simulink checks for and flags the occurrence
of algebraic loops, that is, signal loops in which a direct-feedthrough
output of a block is connected directly or indirectly to the corresponding
direct-feedthrough input of the block. Such loops seemingly create a deadlock
condition, because the block needs the value of the direct-feedthrough input
to compute its output.

However, an algebraic loop can represent a set of simultaneous algebraic
equations (hence the name) where the block’s input and output are the
unknowns. Further, these equations can have valid solutions at each time
step. Accordingly, Simulink assumes that loops involving direct-feedthrough
ports do, in fact, represent a solvable set of algebraic equations and attempts
to solve them each time the block’s output is required during a simulation.
For more information, see “Algebraic Loops” on page 2-31.

About Direct-Feedthrough Ports
In order to ensure that the sorted order reflects data dependencies among
blocks, Simulink categorizes a block’s input ports according to the dependency
of the block’s outputs on its inputs. An input port whose current value
determines the current value of one of the block’s outputs is called a
direct-feedthrough port. Examples of blocks that have direct-feedthrough
ports include the Gain, Product, and Sum blocks. Examples of blocks that
have non-direct-feedthrough inputs include the Integrator block (its output is
a function purely of its state), the Constant block (it does not have an input),
and the Memory block (its output is dependent on its input in the previous
time step).
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Displaying the Sorted Order
To display the sorted order, select Format > Block Displays > Sorted
Order from the Simulink menu. Selecting this option causes Simulink to
display a notation in the top right corner of each block in a block diagram.

The notation for most blocks has the format s:b, where s specifies the index
of the subsystem to whose execution context (see “Conditional Execution
Behavior” on page 4-22) the block belongs and b specifies the block’s position
in the sorted order for that execution context.

The sorted order of a Function-Call Subsystem cannot be determined at
compile time. For these subsystems, Simulink therefore uses either the
notation s:F, if the system has one initiator, where s is the index of the
subsystem that contains the initiator; or the notation M, if the subsystem
has more than one initiator.

A bus-capable block does not execute as a unit, and therefore does not have
a unique sorted order. Such a block displays its sorted order as s:B. See
“Bus-Capable Blocks” on page 9-8 for more information.

A virtual block, such as the Mux block in the preceding figure, exists only
graphically. Virtual blocks do not execute, so they are not part of a model’s
sorted order and do not display any sorted order notation.
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Assigning Block Priorities
You can assign priorities to nonvirtual blocks or virtual subsystem blocks in
a model (see “Virtual Blocks” on page 6-2). Higher priority blocks appear
before lower priority blocks in the sorted order, though not necessarily before
blocks that have no assigned priority.

You can assign block priorities interactively or programmatically. To set
priorities programmatically, use the command

set_param(b,'Priority','n')

where b is a block path and n is any valid integer. (Negative numbers and
0 are valid priority values.) The lower the number, the higher the priority;
that is, 2 is higher priority than 3. To set a block’s priority interactively, enter
the priority in the Priority field of the block’s Block Properties dialog box
(see “Block Properties Dialog Box” on page 6-20).

Simulink honors the block priorities that you specify only if they are
consistent with the Simulink block sorting algorithm. If Simulink is unable to
honor a block priority, it displays a Block Priority Violation diagnostic
message (see “Diagnostics Pane: Solver”).
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Accessing Block Data During Simulation

In this section...

“About Block Run-Time Objects” on page 6-40

“Accessing a Run-Time Object” on page 6-40

“Listening for Method Execution Events” on page 6-41

“Synchronizing Run-Time Objects and Simulink® Execution” on page 6-42

About Block Run-Time Objects
Simulink® provides an application programming interface, called the block
run-time interface, that enables programmatic access to block data, such
as block inputs and outputs, parameters, states, and work vectors, while a
simulation is running. You can use this interface to access block run-time
data from the MATLAB® command line, the Simulink Debugger, and from
Level-2 M-file S-functions (see “Writing S-Functions in M” in the online
Simulink documentation).

Note You can use this interface even when the model is paused or is running
or paused in the debugger.

The block run-time interface consists of a set of Simulink data object classes
(see “Working with Data Objects” on page 10-27) whose instances provide data
about the blocks in a running model. In particular, the interface associates
an instance of Simulink.RunTimeBlock, called the block’s run-time object,
with each nonvirtual block in the running model. A run-time object’s methods
and properties provide access to run-time data about the block’s I/O ports,
parameters, sample times, and states.

Accessing a Run-Time Object
Every nonvirtual block in a running model has a RuntimeObject parameter
whose value, while the simulation is running, is a handle for the blocks’
run-time object. This allows you to use get_param to obtain a block’s run-time
object. For example, the following statement
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rto = get_param(gcb,'RuntimeObject');

returns the run-time object of the currently selected block.

Note Virtual blocks (see “Virtual Blocks” on page 6-2) do not have run-time
objects. Blocks eliminated during model compilation as an optimization also
do not have run-time objects (see “Block reduction”). A run-time object exists
only while the model containing the block is running or paused. If the model
is stopped, get_param returns an empty handle. When you stop or pause a
model, all existing handles for run-time objects become empty.

Listening for Method Execution Events
One application for the block run-time API is to collect diagnostic data at key
points during simulation, such as the value of block states before or after
blocks compute their outputs or derivatives. The block run-time API provides
an event-listener mechanism that facilitates such applications. For more
information, see the Simulink Reference for the add_exec_event_listener
command. For an example of using method execution events, enter

sldemo_msfcn_lms

at the MATLAB command line. This Simulink model contains the S-function
adapt_lms.m, which performs a system identification to determine the
coefficients of an FIR filter. The S-function’s PostPropagationSetup method
initializes the block run-time object’s DWork vector such that the second
vector stores the filter coefficients calculated at each time step.

In the Simulink model, double-clicking on the annotation below the S-function
block executes its OpenFcn. This function first opens a figure for plotting the
FIR filter coefficients. It then executes the function add_adapt_coef_plot.m
to add a PostOutputs method execution event to the S-function’s block
run-time object using the following lines of code.

% Get the full path to the S-function block
blk = 'sldemo_msfcn_lms/LMS Adaptive';

% Attach the event-listener function to the S-function
h = add_exec_event_listener(blk, ...
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'PostOutputs', @plot_adapt_coefs);

The function plot_adapt_coefs.m is registered as an event listener that is
executed after every call to the S-function’s Outputs method. The function
accesses the block run-time object’s DWork vector and plots the filter
coefficients calculated in the Outputs method. The calling syntax used in
plot_adapt_coefs.m follows the standard needed for any listener. The first
input argument is the S-function’s block run-time object, and the second
argument is a structure of event data, as shown below.

function plot_adapt_coefs(block, eventData)

% The figure's handle is stored in the block's UserData
hFig = get_param(block.BlockHandle,'UserData');
tAxis = findobj(hFig, 'Type','axes');

tAxis = tAxis(2);
tLines = findobj(tAxis, 'Type','Line');

% The filter coefficients are stored in the block run-time
% object's second DWork vector.
est = block.Dwork(2).Data;

set(tLines(3),'YData',est);

Synchronizing Run-Time Objects and Simulink®

Execution
Run-time objects can be used at the MATLAB command line to obtain the
value of a block’s output by entering the following commands.

rto = get_param(gcb,'RuntimeObject')
rto.OutputPort(1).Data

However, the displayed data may not be the block’s true output if the run-time
object is not sychronized with the Simulink execution. Simulink only ensures
the run-time object and Simulink execution are synchronized when the
run-time object is used either within a Level-2 M-file S-function or in an
event listener callback. When called at the MATLAB command line, the
run-time object can return incorrect output data if other blocks in the model
are allowed to share memory.
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To ensure the Data field contains the correct block output, turn off the Signal
storage reuse option (see “Signal storage reuse”) on the Optimization pane
in the Configuration Parameters dialog box.
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About Block Libraries
Libraries are collections of blocks intended to serve as prototypes for creating
instances of block types in models. Simulink® software uses a special type
of model file to store block libraries.

You create instances of block types by dragging and dropping or copying
library blocks into models. When you copy a library block into a model,
Simulink software creates a link between the instance, called a reference
block, and its prototype in the library. The link allows changes in the
prototype to propagate automatically to the instances in a model. Libraries
ensure that your models automatically include the most recent versions of
blocks developed by yourself or others.

Simulink comes with a library of commonly used block types called the
Simulink block library. See “Starting the Simulink® Engine” on page 1-2 for
information on displaying and using this library. Additional libraries are
available from The MathWorks. You can also create your own block libraries
(see “Creating Block Libraries” on page 7-20 ).

Note Although the Real-Time Workshop® block library is provided with
Simulink to enable model sharing, help for blocks in that library is available
only if you have a Real-Time Workshop license.
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Working with Reference Blocks

In this section...

“About Reference Blocks” on page 7-3

“Creating a Reference Block” on page 7-3

“Updating a Reference Block” on page 7-4

“Modifying Reference Blocks” on page 7-4

“Finding a Reference Block’s Library Block Prototype” on page 7-5

“Getting Information About Library Blocks Referenced by a Model” on
page 7-5

About Reference Blocks
A reference block is an instance of a block type in a model that contains a link
to a library block that serves as the block type’s prototype. The link consists of
the path of the library block that serves as the instance’s prototype. The link
allows the reference block to update whenever the corresponding prototype in
the library changes (“Updating a Reference Block” on page 7-4). This ensures
that your model always uses the latest version of the block.

Note The data tip for a reference block shows the name of the library block
it references (see “Block Data Tips” on page 6-2).

You can change the values of a reference block’s parameters but you cannot
mask the block or edit its mask. Also, you cannot set callback parameters for
a reference block. If the reference block’s prototype is a subsystem, you can
make nonstructural changes to the contents of the referenced subsystem (see
“Modifying Reference Blocks” on page 7-4).

Creating a Reference Block
To create a reference block in a model or another library:

1 Open your model.
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2 Open the Simulink® Library Browser (see “Opening the Library Browser”
on page 7-12).

3 Use the Library Browser to find the library block that serves as a prototype
of the block you want to create (see “Browsing Block Libraries” on page 7-13
and “Searching Block Libraries” on page 7-17).

4 Drag the library block from the Library Browser’s Library pane and drop
it into your model.

Updating a Reference Block
Simulink updates out-of-date reference blocks in a model or library at these
times:

• When the model or library is loaded

• When you select Update Diagram from the Edit menu or run the
simulation

• When you use the find_system command

• When you query the LinkStatus parameter of a block, using the get_param
command (see “Determining Link Status” on page 7-8 )

Note Querying the StaticLinkStatus parameter of a block does not
update any out-of-date reference blocks.

Modifying Reference Blocks
You cannot make structural changes to reference blocks, such as adding or
deleting lines or blocks to the block diagram of a masked subsystem. If you
want to make such changes, you must disable the reference block’s link to its
library prototype (see “Disabling Links to Library Blocks” on page 7-7 ).

You can, however, change the values of any masked subsystem reference
block parameter that does not alter the block’s structure, e.g., by adding or
deleting lines, blocks, or ports. An example of a nonstructural change is a
change to the value of a mathematical block parameter, such as the Gain
parameter of the Gain block. A link to a library block from a reference block
whose parameter values differ from those of the corresponding library block is
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called a parameterized link. When saving a model containing a parameterized
link, Simulink saves the changes to the local copy of the subsystem together
with the path to the library copy in the model’s model (.mdl) file. When you
reopen the system, Simulink copies the library subsystem into the loaded
model and applies the saved changes.

Tip To determine whether a reference block’s parameter values differ from
those of its library prototype, open the reference block’s block diagram in an
editor window. The title bar of the editor window displaying the subsystem
displays “parameterized link” if the reference block parameter values differ
from the library block’s parameter values.

Self-Modifying Linked Subsystems
Simulink allows linked subsystems to change their own structural contents
without disabling the link. This allows you to create masked subsystems
that modify their structural contents based on mask parameter dialog box
values. See “Creating Self-Modifying Masks for Library Blocks” on page 17-48
for more information.

Finding a Reference Block’s Library Block Prototype
To find the source library and block linked to a reference block, select the
reference block. Then choose Go To Library Link from the Link Options
submenu of the model window’s Edit or context menu. If the library is open,
Simulink selects and highlights the library block and makes the source
library the active window. If the library is not open, Simulink opens it and
selects the library block.

Getting Information About Library Blocks Referenced
by a Model
Use the libinfo command to get information about reference blocks in a
system.
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Working with Library Links

In this section...

“Displaying Library Links” on page 7-6

“Disabling Links to Library Blocks” on page 7-7

“Determining Link Status” on page 7-8

“Breaking a Link to a Library Block” on page 7-9

“Fixing Unresolved Library Links” on page 7-10

Displaying Library Links
You can configure a model to display an arrow in the bottom left corner of each
block that represents a library link.

This arrow allows you to tell at a glance whether a block represents a link
to a library block or a local instance of a block. To enable display of library
links, select Library Link Display from the model window’s Format menu
and then select either User (displays only links to user libraries) or All
(displays all links).

The color of the link arrow indicates the status of the link.

Color Status

Black Active link

Grey Inactive link

Red Active and modified
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Disabling Links to Library Blocks
Simulink allows you to disable the link between a reference block in a model
and the library block that serves as its prototype. Disabling a link allows you
to make structural changes to a subsystem reference block. To disable a link,
select the link, choose Link options from the model window’s Edit or context
menu, then choose Disable link. Simulink displays “disabled link” in the
title bar of a Model Editor window that displays the local copy of a disabled
link to a masked subsystem in a library. To restore a disabled link, choose
Restore link from the Link Options menu.

Note If you attempt to use the Model Editor to make a structural change to
the local copy of an active library link, for example, by editing the subsystem’s
diagram, Simulink offers to disable the link to the subsystem. If you accept,
Simulink disables the link and makes the change. Otherwise, it does not
allow you to make the structural change. Simulink does not prevent you from
using set_param to attempt to make a structural change to an active link.
However, the results of the change are undefined.

Propagating Link Modifications
If you restore a disabled link that has structural changes, Simulink prompts
you to either propagate or discard the changes. If you choose to propagate the
changes, Simulink updates the library version of the subsystem specified
by the restored link with the changes made in the model’s version of that
subsystem. If you choose to discard the changes, Simulink replaces the
version of the subsystem in the model with the version in the library. In either
case, the end result is that the versions of the subsystem in the library and
the model are exactly the same.

If you restore a disabled link to a block with nonstructural changes, Simulink
enables the link without prompting you to propagate or discard the changes.
To see the nonstructural parameter differences between the model’s version of
a library block and the library block itself, choose View changes from the
Link options menu.

If you want to propagate or discard nonstructural changes, select the modified
copy of the library block in the model, choose Link options from the model
window’s Edit or context menu, then choose Propagate/Discard changes.
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A dialog box appears that asks whether you want to propagate or discard the
changes. If you elect to propagate the changes, Simulink applies the changes
made to the model’s copy of the library block to the library block itself. If you
elect to discard the changes, Simulink removes the changes from the model’s
copy of the block. In either case, the library and model versions of the block
become the same.

Determining Link Status
All blocks have a LinkStatus parameter and a StaticLinkStatus parameter
that indicate whether the block is a reference block. The parameters can
have these values.

Status Description

none Block is not a reference block.

resolved Link is resolved.

unresolved Link is unresolved.

implicit Block resides in library block and is itself not a link to
a library block. For example, suppose that A is a link
to a subsystem in a library that contains a Gain block.
Further, suppose that you open A and select the Gain
block. Then, get_param(gcb, 'LinkStatus') returns
implicit.

inactive Link is disabled.

restore Restores a broken link to a library block and discards
any changes made to the local copy of the library
block. For example, set_param(gcb, 'LinkStatus',
'restore') replaces the selected block with a link to a
library block of the same type, discarding any changes
in the local copy of the library block. Note that this
parameter is a “write-only” parameter, i.e., it is usable
only with set_param. You cannot use get_param to get
it.

propagate Restores a broken link to a library block and propagates
any changes made to the local copy to the library.
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Note Using get_param to query a block’s LinkStatus also resolves any
out-of-date block references. It is, therefore, useful when you need to
programmatically update library links in a model. Conversely, querying the
StaticLinkStatus property does not resolve any out-of-date references. You
should query the StaticLinkStatus property when the call to get_param is
used in the callback of a child block querying the link status of its parent.

Breaking a Link to a Library Block
You can break the link between a reference block and its library block to cause
the reference block to become a simple copy of the library block, unlinked to
the library block. Changes to the library block no longer affect the block.
Breaking links to library blocks may enable you to transport a model as a
standalone model, without the libraries.

To break the link between a reference block and its library block, first disable
the block. Then select the block and choose Break Link from the Link
Options menu. You can also break the link between a reference block and its
library block from the command line by changing the value of the LinkStatus
parameter to 'none' using this command:

set_param('refblock', 'LinkStatus', 'none')

You can save a system and break all links between reference blocks and
library blocks using this command:

save_system('sys', 'newname', 'BreakLinks')
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Note Breaking library links in a model does not guarantee that you can run
the model standalone, especially if the model includes blocks from third-party
libraries or optional Simulink blocksets. It is possible that a library block
invokes functions supplied with the library and hence can run only if the
library is installed on the system running the model. Further, breaking a link
can cause a model to fail when you install a new version of the library on a
system. For example, suppose a block invokes a function that is supplied
with the library. Now suppose that a new version of the library eliminates
the function. Running a model with an unlinked copy of the block results in
invocation of a now nonexistent function, causing the simulation to fail. To
avoid such problems, you should generally avoid breaking links to third-party
libraries and optional Simulink blocksets.

Fixing Unresolved Library Links
If Simulink is unable to find either the library block or the source library on
your MATLAB® path when it attempts to update the reference block, the link
becomes unresolved. Simulink issues an error message and displays these
blocks using red dashed lines. The error message is

Failed to find block "source-block-name"
in library "source-library-name"
referenced by block
"reference-block-path".

The unresolved reference block appears like this (colored red).

To fix a bad link, you must do one of the following:

• Delete the unlinked reference block and copy the library block back into
your model.

• Add the directory that contains the required library to the MATLAB path
and select Update Diagram from the Edit menu.
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• Double-click the unlinked reference block to open its dialog box (see the
Bad Link block reference page). On the dialog box that appears, correct the
pathname in the Source block field and click OK.
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Browsing and Searching Block Libraries

In this section...

“About the Simulink® Library Browser” on page 7-12

“Opening the Library Browser” on page 7-12

“Browsing Block Libraries” on page 7-13

“Searching Block Libraries” on page 7-17

“Opening a Library” on page 7-19

“Creating and Opening Models” on page 7-19

“Copying Blocks” on page 7-19

About the Simulink® Library Browser
The Simulink® Library Browser (see “Library Browser”) allows you to browse
and search the block libraries installed on your system. In particular, you can
use the Library Browser to determine at a glance what libraries are installed
on your system, view their contents, and search for library blocks by name.
You can also use the Library Browser to copy blocks from block libraries into
your models.

Tip You can use the Library Browser to browse libraries that you create
as well as standard Simulink and Simulink blockset libraries. See “Adding
Libraries to the Library Browser” on page 7-30 for more information.

Opening the Library Browser
You can open the Library Browser by

• clicking the Library Browser button

in the toolbar of the MATLAB® desktop or a Simulink model editor window

or

7-12



Browsing and Searching Block Libraries

• entering

simulink

at the MATLAB command line.

Tip To keep the Library Browser above all other windows on your desktop,
select the Pushpin button on the browser’s toolbar.

Browsing Block Libraries

• “Determining What Block Libraries Are Installed on your System” on page
7-13

• “Viewing the Contents of a Block Library” on page 7-15

• “Getting Help for a Library Block” on page 7-17

Determining What Block Libraries Are Installed on your System
To determine what block libraries are installed on your system, open the
Simulink Library Browser (see “Opening the Library Browser” on page 7-12).
The Library Browser’s Libraries pane displays a tree-structure directory of
the block libraries installed on your system.
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Tip

• If the directory is too big to fit into the Libraries pane, the pane displays
scroll bars. Use the scroll bars to move off-screen libraries into view.

• You can expand or collapse directory entries to show or hide sublibraries.
To expand or collapse an entry, click the entry’s +/- button.

• Click a library’s name in the directory to display the library’s contents in
the Library Browser’s Library pane.

Viewing the Contents of a Block Library
To view the contents of a block library, select the library’s entry in the Library
Browser’s Libraries pane. The Library Browser displays the contents in
its Library pane.
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Getting Help for a Library Block
To get help for a library block displayed in the Library Browser’s Library
pane, select the block and then select Help from the block’s context
(right-click) menu or the Library Browser’s Help menu.

Tip The Library Browser’s Block Description pane displays a brief
description of the selected block’s purpose and usage.

Searching Block Libraries
To search for library blocks whose names contain a specified character string:

1 Enter the character string in the text field of the Library Browser’s Search
tool.

2 Uncheck, if necessary, all the options on the Search tool’s options menu.

Note The options are unchecked by default.

3 Select the tool’s Search button.

The Search tool finds the blocks whose names contain a string that matches,
without regard to character case, the specified string and displays the results
in the Library Browser’s Found pane.
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Tip Use the Search tool’s options menu to find blocks whose names match
character case, whole words, or MATLAB regular expressions.
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Opening a Library
To open a library, right-click the library’s entry in the browser. Simulink
displays an Open Library button. Select the Open Library button to
open the library.

Creating and Opening Models
To create a model, select the New button on the Library Browser’s toolbar. To
open an existing model, select the Open button on the toolbar.

Copying Blocks
To copy a block from the Library Browser into a model, select the block in the
browser, drag the selected block into the model window, and drop it where
you want to create the copy.
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Creating Block Libraries

In this section...

“Creating a Library” on page 7-20

“Creating a Sublibrary” on page 7-21

“Modifying a Library” on page 7-21

“Locking Libraries” on page 7-22

“Making Backward-Compatible Changes to Libraries” on page 7-22

Creating a Library
You can create your own block library and add it to the Simulink® Library
Browser (see “Adding Libraries to the Library Browser” on page 7-30).

Tip If your library contains many blocks, consider grouping the blocks into a
hierarchy of sublibraries (see “Creating a Sublibrary” on page 7-21).

To create a library:

1 Select Library from the New submenu of the File menu.

Simulink creates a model (*.mdl) file for storing the new library and
displays the file in a new model editor window.

Tip You can also use the new_system command to create the library and
the open_system command to open the new library.

2 Drag blocks from models or other libraries into the new library.
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Note If you want to be able to create links in models to a block in the
library, you must provide a mask (see Chapter 17, “Creating Block Masks”)
for the block. You can also provide a mask for a subsystem in a library but
you do not need to do so in order to create links to it in models.

3 Save the library’s model file under a new name.

Creating a Sublibrary
Creating a sublibrary entails inserting a reference in the model (.mdl) file of
one library to the model file of another library. The referenced file is called a
sublibrary of the parent (i.e., referencing) library. The sublibrary is said to be
included by reference in the parent library.

To include a library in another library as a sublibrary:

1 Open the parent library.

2 Unlock the parent library (see “Modifying a Library” on page 7-21 ).

3 Add a Subsystem block to the parent library.

4 Delete the subsystem’s default input and output ports.

5 Create a mask for the subsystem that displays text or an image that
conveys the sublibrary’s purpose.

6 Set the subsystem’s OpenFcn parameter to the name of the sublibrary’s
model file.

7 Save the parent library.

Modifying a Library
When you open a library, it is automatically locked and you cannot modify its
contents. To unlock the library, select Unlock Library from the Edit menu.
Closing the library window locks the library.
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Locking Libraries
To lock a block library, save and close the library or set its Lock parameter to
'on' at the MATLAB® command line, using the set_param command. Locking
a library prevents a user from inadvertently modifying a library, for example,
by moving a block in the library or adding or deleting a block from the library.
If you attempt to modify a locked library, Simulink displays a dialog box that
allows you to unlock the library and make the change. You must then relock
the library from the MATLAB command line to prevent further changes.

Making Backward-Compatible Changes to Libraries
Simulink provides the following features to facilitate making changes to
library blocks without invalidating models that use the library blocks.

Forwarding Tables
Library forwarding tables enable Simulink to update models to reflect
changes in the names or locations of the library blocks that they reference.
For example, suppose that you rename a block in a library. You can use a
forwarding table for that library to enable Simulink to update models that
reference the block under its old name to reference it under its new name.

Simulink allows you to associate a forwarding table with any library. The
forwarding table for a library specifies the old locations and new locations of
blocks that have moved within the library or to another library. You associate
a forwarding table with a library by setting its ForwardingTable parameter to
a cell array of two-element cell arrays, each of which specifies the old and new
path of a block that has moved. For example, the following command creates a
forwarding table and assigns it to a library named Lib1.

set_param('Lib1', 'ForwardingTable', {{'Lib1/A', 'Lib2/A'}
{'Lib1/B', 'Lib1/C'}});

The forwarding table specifies that block A has moved from Lib1 to Lib2. and
that block B is now named C. Suppose that you open a model that contains
links to Lib1/A and Lib1/B. Simulink updates the link to Lib1/A to refer
to Lib2/A and the link to Lib1/B to refer to Lib1/C. The changes become
permanent when you subsequently save the model.
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Creating Aliases for Mask Parameters
Simulink lets you create aliases, i.e., alternate names, for a mask’s
parameters. A model can then refer to the mask parameter by either
its name or its alias. This allows you to change the name of a mask
parameter in a library block without having to recreate links to the block in
existing models (see “Example: Using Mask Parameter Aliases to Create
Backward-Compatible Parameter Name Changes” on page 7-23).

To create aliases for a masked block’s mask parameters, use the set_param
command to set the block’s MaskVarAliases parameter to a cell array that
specifies the names of the aliases in the same order as the mask names
appear in the block’s MaskVariables parameter.

Example: Using Mask Parameter Aliases to Create
Backward-Compatible Parameter Name Changes. The following
example illustrates the use of mask parameter aliases to create
backward-compatible parameter name changes.

1 Create a library named mymdl.

2 Create the masked subsystem described in “Masked Subsystem Example”
on page 17-6 in mymdl.

3 Name the masked subsystem Line.

4 Set the masked subsystem’s annotation property (see “Block Annotation
Pane” on page 6-23 ) to display the value of its m and b parameters, i.e., to

m = %<m>
b = %<b>

The library appears as follows:

7-23



7 Working with Block Libraries

5 Save mylib.

6 Create a model named mymdl.

7 Create an instance of the Line block in mymdl.

8 Rename the instance LineA.

9 Change the value of LineA’s m parameter to -1.5.

10 Change the value of LineA’s b parameter to 3.

11 Set LineA’s annotation property to display the values of its m and b
parameters.
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12 Configure mymdl to use a fixed-step, discrete solver with a 0.1-s step size.

13 Save mymdl.

14 Simulate mymdl.

Note that the model simulates without error.

15 Close mymdl.

16 Unlock mylib.

17 Rename the m parameter of the Line block in mylib to slope.

18 Rename Line’s b parameter to intercept.

19 Change Line’s mask icon and annotation properties to reflect the parameter
name changes.
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20 Save mylib.

21 Reopen mymdl.
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Note that LineA’s icon has reverted to the appearance of its library master
(i.e., mylib/Line) and that its annotation displays question marks for the
values of m and b. These changes reflect the parameter name changes in
the library block . In particular, Simulink cannot find any parameters
named m and b in the library block and hence does not know what to do
with the instance values for those parameters. As a result, LineA reverts
to the default values for the slope and intercept parameters, thereby
inadvertently changing the behavior of the model. The following steps show
how to use parameter aliases to avoid this inadvertent change of behavior.

22 Close mymdl.

23 Unlock mylib.

24 Select the Line block in mylib.

25 Execute the following command at the MATLAB command line.

set_param(gcb, 'MaskVarAliases',{'m', 'b'})

This specifies that m and b are aliases for the Line block’s slope and
intercept parameters.

26 Reopen mymdl.

7-27



7 Working with Block Libraries

Note that LineA’s appearance now reflects the value of the slope parameter
under its original name, i.e., m. This is because when Simulink opened the
model it found that m is an alias for slope and assigned the value of m stored
in the model file to LineA’s slope parameter.

27 Change LineA’s block annotation property to reflect LineA’s parameter
name changes, i.e., replace

m = %<m>
b = %<b>

with

m = %<slope>
b = %<intercept>

LineA now appears as follows.
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Note that LineA’s annotation shows that, thanks to parameter aliasing,
Simulink has correctly applied the parameter values stored for LineA in
mymdl’s model file to the block’s renamed parameters.
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Adding Libraries to the Library Browser
To cause your own top-level library (and its sublibraries) to appear in the
Simulink® Library Browser:

1 Create a directory in the MATLAB® path for the top-level library and its
sublibraries.

Each top-level library that you want to appear in the Library Browser must
be stored in its own directory on the MATLAB path. In other words, two
top-level libraries cannot exist in the same directory.

2 Create or copy the top-level library and its sublibraries into its directory.

The directory for each top-level library to be displayed in the Library
Browser must contain a file named slblocks.m that describes the library.
The easiest way for you to create such a file is to use an existing slblocks.m
file as a template and edit it to describe your library. The next two steps
direct you to perform this task.

3 Create a copy of the matlabroot/toolbox/simulink/blocks/slblocks.m
file in the library’s directory.

The file that you have copied is the slblocks.m file for the standard
Simulink libraries.

4 Edit the file as necessary to specify the name, open function, mask, and
structure of your library.

The comments in the slblocks.m file explain how to specify the information
about your library that the Library Browser needs.

Sample slblocks.m file
The following slblocks.m file describes a custom block library named “My
Library.”

function blkStruct = slblocks

%SLBLOCKS Defines a block library.

% Library's name. The name appears in the Library Browser's
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% contents pane.

blkStruct.Name = ['My' sprintf('\n') 'Library'];

% The function that will be called when the user double-clicks on

% the library's name. ;

blkStruct.OpenFcn = 'mylib';

% The argument to be set as the Mask Display for the subsystem. You

% may comment this line out if no specific mask is desired.

% Example: blkStruct.MaskDisplay =

'plot([0:2*pi],sin([0:2*pi]));';

% No display for now.

% blkStruct.MaskDisplay = '';

% End of blocks

To find additional examples of slblocks.m files on your system, enter

which('slblocks.m', '-all')

at the MATLAB command prompt.
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Working with Signals

Signal Basics (p. 8-3) Explores key signal concepts,
including signal data types, virtual
signals, signal dimensions, and
signal properties.

Validating Signal Connections
(p. 8-17)

How to detect signal compatibility
errors before simulating a model.

Displaying Signal Sources and
Destinations (p. 8-18)

How to identify a signal’s source or
destination blocks.

Determining Output Signal
Dimensions (p. 8-21)

Explains the rules that determine
the dimensions of signals that blocks
output.

Checking Signal Ranges (p. 8-26) How to perform signal range
checking during simulation.

Introducing the Signal and Scope
Manager (p. 8-33)

Describes the Signal and Scope
Manager

Using the Signal and Scope Manager
(p. 8-39)

Shows how to connect viewers and
generators

The Signal Selector (p. 8-44) How to use the Signal Selector to
connect signal generators to block
inputs and block outputs to signal
viewers.

Logging Signals (p. 8-49) How to save signal values to
the MATLAB® workspace during
simulation.

Initializing Signals and Discrete
States (p. 8-62)

How to specify a signal or state’s
initial value.
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Working with Test Points (p. 8-70) How to ensure the visibility of a
model’s signals.

Displaying Signal Properties
(p. 8-73)

How to display signal properties on
a block diagram.

Working with Signal Groups (p. 8-77) How to create and use
interchangeable groups of signals,
for example, to test a model.
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Signal Basics

In this section...

“About Signals” on page 8-3

“Creating Signals” on page 8-4

“Naming Signals” on page 8-4

“Displaying Signal Values” on page 8-6

“Signal Line Styles” on page 8-7

“Signal Labels” on page 8-7

“Signal Data Types” on page 8-9

“Signal Dimensions” on page 8-9

“Complex Signals” on page 8-12

“Virtual Signals” on page 8-13

“Control Signals” on page 8-15

“Signal Glossary” on page 8-16

About Signals
The term signal refers to a time varying quantity that has values at all
points in time. You can specify a wide range of signal attributes, including
signal name, data type (e.g., 8-bit, 16-bit, or 32-bit integer), numeric type
(real or complex), and dimensionality (one-dimensional, two-dimensional, or
multidimensional array). Many blocks can accept or output signals of any
data or numeric type and dimensionality. Others impose restrictions on the
attributes of the signals they can handle.

Simulink® defines signals as the outputs of dynamic systems represented by
blocks in a Simulink diagram and by the diagram itself. The lines in a block
diagram represent mathematical relationships among the signals defined by
the block diagram. For example, a line connecting the output of block A to
the input of block B indicates that the signal output by B depends on the
signal output by A.
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On the block diagram, signals are represented with lines that have an
arrowhead. The source of the signal corresponds to the block that writes to the
signal during evaluation of its block methods (equations). The destinations of
the signal are blocks that read the signal during the evaluation of the block’s
methods (equations).

Note It is tempting but misleading to think of Simulink signals as traveling
along the lines that connect blocks the way electrical signals travel along a
telephone wire. This analogy is misleading because it suggests that a block
diagram represents physical connections between blocks, which is not the
case. Simulink signals are mathematical, not physical, entities and the lines
in a block diagram represent mathematical, not physical, relationships among
blocks.

Composite Signals
Simulink provides two capabilities, muxes and buses, that you can use to
group multiple signals into a composite signal, route the composite signal
from block to block, and extract constituent signals from the composite
where needed. Composite signals have no functional effect, but can simplify
the appearance of a model when many parallel signals exist. See “About
Composite Signals” on page 9-2 for details.

Creating Signals
You can create signals by creating source blocks in your model. For example,
you can create a signal that varies sinusoidally with time by dragging an
instance of the Sine block from the Simulink Sources library into the model.
See “Sources” for information on blocks that you can use to create signals in a
model. You can also use the Signal & Scope Manager to create signals in your
model without using blocks. See “Introducing the Signal and Scope Manager”
on page 8-33 for more information.

Naming Signals
You can give any signal a name. The syntactic requirements for a signal
name vary depending on how the name will be used. The three most common
cases are:
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• The signal is named so that it can be resolved to a Simulink.Signal object.
(See Simulink.Signal.) The signal name must then be a legal MATLAB®

identifier. Such an identifier starts with an alphabetic character, followed
by at most 63 alphanumeric or underscore characters.

• The signal has a name so the signal can be identified and referenced by
name in a data log. (See “Logging Signals” on page 8-49.) Such a signal
name can contain space and newline characters. These can improve
readability but sometimes require special handling techniques, as described
in “Handling Spaces and Newlines in Logged Signal Names” on page 8-58.

• The signal name exists only to clarify the diagram, and has no
computational significance. Such a signal name can contain anything and
never needs special handling.

To avoid any doubt about whether a signal name will serve all present
and future purposes, make every signal name a legal MATLAB identifier.
Otherwise, unexpected requirements may require going back and changing
signal names to follow a more restrictive syntax.

Assigning a Signal Name
To assign a name to a signal, double-click the signal. An edit box appears next
to the signal near where you double-clicked. Enter the desired name, then
click somewhere outside the edit box. The signal now has the specified name,
and a label showing that name appears at the location where you entered
it. For a named multibranched signal, you can put a duplicate label on any
branch of the signal by double-clicking the branch.

Another way to name a signal is to right-click the signal, choose Signal
Properties from the Context menu, enter a name in the Signal Name field,
then click OK or Apply. A label showing the name then appears on every
branch of the signal. See “Signal Properties Dialog Box” for more information.

You can also use the API to set the name parameter of the port or line that
represents the signal:

p = get_param(gcb, 'PortHandles')
l = get_param(p.Inport, 'Line')
set_param(l, 'Name', 's9')
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Changing a Signal Name
To change the name of a signal, click to set the cursor in any label that shows
the name, than change the text as needed; or edit the name in the Signal
Properties > Signal Name field. All labels automatically update to reflect
the change.

To change the location of a label that displays a signal name, drag it with the
mouse. You cannot drag a label away from its signal, but only to a different
location adjacent to the signal.

Deleting a Signal Name
To delete a signal’s name, leaving it nameless, delete all characters in the
name, in any label on the signal or in the Signal Properties > Signal
Name field. To delete a label without deleting the signal name, click near the
edge of the label to select its surrounding box, then press Delete. The label
disappears, but the signal name itself is unaffected.

Displaying Signal Values
As with creating signals, you can use either blocks or the Signal & Scope
Manager to display the values of signals during a simulation. For example,
you can use either the Scope block or the Signal & Scope Manager to graph
time-varying signals on an oscilloscope-like display during simulation. See
“Sinks” in the Simulink block reference for information on blocks that you
can use to display signals in a model.
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Signal Line Styles
Simulink uses a variety of line styles to display different types of signals in the
model window. Assorted line styles help you to differentiate the signal types
in Simulink diagrams. The signal types and their line styles are as follows:

Signal Type Line Style Description

Scalar and
Nonscalar

Simulink uses a thin, solid line to represent a
diagram’s scalar and nonscalar signals.

Nonscalar When the Wide nonscalar lines option is
enabled, Simulink uses a thick, solid line to
represent a diagram’s nonscalar signals. See
also “Using Muxes” on page 9-3.

Control Simulink uses a thin, dash-dot line to
represent a diagram’s control signals.

Virtual Bus Simulink uses a triple line with a solid core
to represent a diagram’s virtual signal buses.
See “Using Buses” on page 9-5.

Nonvirtual
Bus

Simulink uses a triple line with a dotted core
to represent a diagram’s nonvirtual signal
buses. See “Using Buses” on page 9-5.

Other than using the Wide nonscalar lines option to display nonscalar
signals as thick, solid lines, you cannot customize or control the line style with
which Simulink displays signals. See “Wide Nonscalar Lines” on page 8-76 for
more information about this option.

Note As you construct a block diagram, Simulink uses a thin, solid line to
represent all signal types. The lines are then redrawn using the specified line
styles only after you update or start simulation of the block diagram.

Signal Labels
A signal label is text that appears next to the line that represents a signal
that has a name. The signal label displays the signal’s name. In addition, if
the signal is a virtual signal (see “Virtual Signals” on page 8-13) and its Show
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propagated signals property is on (see “Show propagated signals”), the label
displays the names of the signals that make up the virtual signal.

Simulink creates a label for a signal when you assign it a name in the “Signal
Properties Dialog Box”. You can change the signal’s name by editing its label
on the block diagram. To edit the label, left-click the label. Simulink replaces
the label with an edit field. Edit the name in the edit field, then click outside
the label to apply the change.

A signal’s label displays the signal’s name. A virtual signal’s label optionally
displays the signals it represents in angle brackets. You can edit a signal’s
label, thereby changing the signal’s name.

To create a signal label (and thereby name the signal), double-click the line
that represents the signal. The text cursor appears. Enter the name and click
anywhere outside the label to exit label editing mode.

Note When you create a signal label, take care to double-click the line. If
you click in an unoccupied area close to the line, you will create a model
annotation instead.

Labels can appear above or below horizontal lines or line segments, and left or
right of vertical lines or line segments. Labels can appear at either end, at
the center, or in any combination of these locations.

To move a signal label, drag the label to a new location on the line. When you
release the mouse button, the label fixes its position near the line.

To copy a signal label, hold down the Ctrl key while dragging the label to
another location on the line. When you release the mouse button, the label
appears in both the original and the new locations.

To edit an existing signal label, select it:

• To replace the label, click the label, double-click or drag the cursor to select
the entire label, then enter the new label.
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• To insert characters, click between two characters to position the insertion
point, then insert text.

• To replace characters, drag the mouse to select a range of text to replace,
then enter the new text.

To delete all occurrences of a signal label, delete all the characters in the
label. When you click outside the label, the labels are deleted. To delete a
single occurrence of the label, hold down the Shift key while you select the
label, then press the Delete or Backspace key.

To change the font of a signal label, select the signal, choose Font from the
Format menu, then select a font from the Set Font dialog box.

Signal Data Types
Data type refers to the format used to represent signal values internally. The
data type of Simulink signals is double by default. However, you can create
signals of other data types. Simulink supports the same range of data types as
MATLAB. See “Working with Data Types” on page 10-2 for more information.

Signal Dimensions
Simulink blocks can output one-, two-, or multidimensional signals. A
one-dimensional (1-D) signal consists of a stream of one-dimensional arrays
output at a frequency of one array (vector) per simulation time step. A
two-dimensional (2-D) signal consists of a stream of two-dimensional arrays
output at a frequency of one 2-D array (matrix) per block sample time. A
multidimensional signal consists of a stream of multidimensional (2 or more
dimensions) arrays output at a frequency of one array per block sample time
(see “Multidimensional Arrays” in the MATLAB Programming Fundamentals
documentation for information on multidimensional arrays). The Simulink
user interface and documentation generally refer to 1-D signals as vectors
and 2-D or multidimensional signals as matrices. A one-element array is
frequently referred to as a scalar. A row vector is a 2-D array that has one
row. A column vector is a 2-D array that has one column.

Only the following Simulink blocks support multidimensional signals.
Simulink supports signals with up to 32 dimensions. Do not use signals with
more than 32 dimensions.
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• Abs

• Assignment

• Bitwise Operator

• Bus Assignment

• Bus Creator

• Bus Selector

• Compare to Constant

• Compare to Zero

• Complex to Magnitude-Angle

• Complex to Real-Imag

• Concatenate

• Constant

• Data Store Memory

• Data Store Read

• Data Store Write

• Data Type Conversion

• Embedded MATLAB Function

• Environment Controller

• From

• From Workspace

• Gain (only if the Multiplication parameter specifies Element-wise(K.*u))

• Goto

• Ground

• IC

• Inport

• Level-2 M-File S-Function

• Logical Operator
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• Magnitude-Angle to Complex

• Manual Switch

• Math Function (no multidimensional signal support for the transpose
and hermitian functions)

• Memory

• Merge

• MinMax

• Model

• Multiport Switch

• Outport

• Product, Product of Elements — only if the Multiplication parameter
specifies Element-wise(.*)

• Probe

• Random Number

• Rate Transition

• Real-Imag to Complex

• Relational Operator

• Reshape

• Scope, Floating Scope

• Selector

• S-Function

• Signal Conversion

• Signal Specification

• Slider Gain

• Squeeze

• Subsystem, Atomic Subsystem, CodeReuse Subsystem

• Add, Subtract, Sum, Sum of Elements — along specified dimension
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• Switch

• Terminator

• To Workspace

• Trigonometric Function

• Unary Minus

• Uniform Random Number

• Unit Delay

• Width

Simulink blocks vary in the dimensionality of the signals they can accept or
output. Some blocks can accept or output signals of any dimensions. Some
can accept or output only scalar or vector signals. To determine the signal
dimensionality of a particular block, see the block’s description in Blocks —
Alphabetical List in the online Simulink reference. See “Determining Output
Signal Dimensions” on page 8-21 for information on what determines the
dimensions of output signals for blocks that can output nonscalar signals.

Note Simulink does not support dynamic signal dimensions during
simulation. That is, the size of a signal must remain constant while the
simulation executes. You can alter a signal’s size only after terminating the
simulation.

Complex Signals
The values of Simulink signals can be complex numbers. A signal whose
values are complex numbers is called a complex signal. You can introduce a
complex-valued signal into a model in the following ways:

• Load complex-valued signal data from the MATLAB workspace into the
model via a root-level Inport block.

• Create a Constant block in your model and set its value to a complex
number.
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• Create real signals corresponding to the real and imaginary parts of a
complex signal, then combine the parts into a complex signal, using the
Real-Imag to Complex conversion block.

You can manipulate complex signals via blocks that accept them. If you are
not sure whether a block accepts complex signals, see the documentation for
the block in Blocks — Alphabetical List in the online Simulink reference.

Virtual Signals
A virtual signal is a signal that represents another signal graphically. Some
blocks, such as Bus Creator, Inport, and Outport blocks, generate virtual
signals either exclusively or optionally. Virtual signals are purely graphical
entities; they have no mathematical or physical significance. Simulink ignores
them when simulating a model, and they do not exist in generated code.

Whenever you update or run a model, Simulink determines the nonvirtual
signal(s) represented by the model’s virtual signal(s), using a procedure
known as signal propagation. When running the model, Simulink uses the
corresponding nonvirtual signal(s), determined via signal propagation, to
drive the blocks to which the virtual signals are connected.

Consider, for example, the following model.

The signals driving Gain blocks G1 and G2 are virtual signals corresponding
to signals s2 and s1, respectively. Simulink determines this automatically
whenever you update or simulate the model.
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Displaying the Nonvirtual Components of Virtual Signals
The Show propagated signals option (see “Signal Properties Dialog Box”)
displays the nonvirtual signals represented by virtual signals in the labels
of the virtual signals.

3

Gain1

2

Gain

3

Display1

4

Display

2

C2

1

C1

s2

s1

s3<s1, s2>

<s1>

<s2> s4

s5

When you change the name of a nonvirtual signal, Simulink immediately
updates the labels of all virtual signals that represent the nonvirtual signal
and whose Show propagated signals is on, except if the path from the
nonvirtual signal to the virtual signal includes an unresolved reference to
a library block. In such cases, to avoid time-consuming library reference
resolutions while you are editing a block diagram, Simulink defers updating
the virtual signal’s label until you update the model’s block diagram either
directly (e.g., by pressing Ctrl+D) or by simulating the model.

Note Virtual signals can represent virtual as well as nonvirtual signals. For
example, you can use a Bus Creator block to combine multiple virtual and
nonvirtual signals into a single virtual signal. If during signal propagation,
Simulink determines that a component of a virtual signal is itself virtual,
Simulink uses signal propagation to determine the nonvirtual components of
the virtual component. This process continues until Simulink has determined
all nonvirtual components of a virtual signal.

To display the signal(s) represented by a virtual signal, click the signal’s label
and enter an angle bracket (<) after the signal’s name. (If the signal has no
name, simply enter the angle bracket.) Click anywhere outside the signal’s
label. Simulink exits label editing mode and displays the signals represented
by the virtual signal in brackets in the label.

8-14



Signal Basics

You can also display the signals represented by a virtual signal by selecting
the Show Propagated Signals option on the signal’s property dialog (see
“Signal Properties Dialog Box” in the online Simulink documentation).

Control Signals
A control signal is a signal used by one block to initiate execution of another
block, e.g., a function-call or action subsystem. When you update or start
simulation of a block diagram, Simulink uses a dash-dot pattern to redraw
lines representing the diagram’s control signals as illustrated in the following
example.
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Signal Glossary
The following table summarizes the terminology used to describe signals in
the Simulink user interface and documentation.

Term Meaning

Complex signal Signal whose values are complex numbers.

Data type Format used to represent signal values internally.
See “Working with Data Types” on page 10-2 for
more information.

Matrix Two-dimensional signal array.

Real signal Signal whose values are real (as opposed to
complex) numbers.

Scalar One-element array.

Signal bus A composite signal made up of other signals,
including other composite signals. You can use
Bus Creator and Inport blocks to create signal
buses. See “Using Buses” on page 9-5.

Signal propagation Process used by Simulink to determine attributes
of signals and blocks, such as data types, labels,
sample time, dimensionality, and so on, that are
determined by connectivity.

Size Number of elements that a signal contains. The
size of a matrix (2-D) signal is generally expressed
as M-by-N, where M is the number of columns and
N is the number of rows making up the signal.

Test point A signal that must be accessible during simulation.
See “Working with Test Points” on page 8-70 for
more information.

Vector One-dimensional signal array.

Virtual signal Signal that represents another signal or set of
signals.

Width Size of a vector signal.
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Validating Signal Connections
Many Simulink® blocks have limitations on the types of signals they can
accept. Before simulating a model, Simulink checks all blocks to ensure that
they can accommodate the types of signals output by the ports to which they
are connected. If any incompatibilities exist, Simulink reports an error and
terminates the simulation.

To detect signal compatibility errors before running a simulation, choose
Update Diagram from the Simulink Edit menu. Simulink reports any
invalid connections found in the process of updating the diagram.
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Displaying Signal Sources and Destinations

In this section...

“About Signal Highlighting” on page 8-18

“Highlighting Signal Sources” on page 8-18

“Highlighting Signal Destinations” on page 8-19

“Removing Highlighting” on page 8-19

“Signal Highlighting and Library Blocks” on page 8-20

About Signal Highlighting
You can highlight a signal and its source or destination block(s), then
remove the highlighting once it has served its purpose. Signal highlighting
crosses subsystem boundaries, allowing you to trace a signal across multiple
subsystem levels. Highlighting does not cross the boundary into or out of a
referenced model. If a signal is composite, all source or destination blocks are
highlighted. (See Chapter 9, “Using Composite Signals”.)

Highlighting Signal Sources
To display a signal’s source block(s), choose Highlight to Source from the
signal’s context menu. Simulink® highlights:

• All branches of the signal anywhere in the model

• All virtual blocks through which the signal passes

• The nonvirtual block(s) that write the value of the signal
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Highlighting Signal Destinations
To display a signal’s destination blocks, choose Highlight to Destination
from the signal’s context menu. Simulink highlights:

• All branches of the signal anywhere in the model

• All virtual blocks through which the signal passes

• The nonvirtual block(s) that read the value of the signal

Removing Highlighting
To remove all highlighting, choose Remove Highlighting from the model’s
context menu, or choose View > Remove Highlighting.
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Signal Highlighting and Library Blocks
If the path from a source block or to a destination block includes an unresolved
reference to a library block, Simulink highlights the path only from or to the
library block, respectively. This is to avoid time-consuming library reference
resolution while you are editing a model. To permit Simulink to display
the complete path, first update the diagram (e.g., by pressing Ctrl+D).
This causes Simulink to resolve all library references and hence display the
complete path to a destination block or from a source block.
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Determining Output Signal Dimensions

In this section...

“About Signal Dimensions” on page 8-21

“Determining the Output Dimensions of Source Blocks” on page 8-21

“Determining the Output Dimensions of Nonsource Blocks” on page 8-22

“Signal and Parameter Dimension Rules” on page 8-22

“Scalar Expansion of Inputs and Parameters” on page 8-24

About Signal Dimensions
If a block can emit nonscalar signals, the dimensions of the signals that the
block outputs depend on the block’s parameters, if the block is a source block;
otherwise, the output dimensions depend on the dimensions of the block’s
input and parameters.

Determining the Output Dimensions of Source Blocks
A source block is a block that has no inputs. Examples of source blocks include
the Constant block and the Sine Wave block. See the “Sources” table in the
online Simulink® block reference for a complete listing of Simulink source
blocks. The output dimensions of a source block are the same as those of
its output value parameters if the block’s Interpret Vector Parameters
as 1-D parameter is off (i.e., not selected in the block’s parameter dialog
box). If the Interpret Vector Parameters as 1-D parameter is on, the
output dimensions equal the output value parameter dimensions unless the
parameter dimensions are N-by-1 or 1-by-N. In the latter case, the block
outputs a vector signal of width N.
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As an example of how a source block’s output value parameter(s)
and Interpret Vector Parameters as 1-D parameter determine the
dimensionality of its output, consider the Constant block. This block outputs
a constant signal equal to its Constant value parameter. The following table
illustrates how the dimensionality of the Constant value parameter and the
setting of the Interpret Vector Parameters as 1-D parameter determine
the dimensionality of the block’s output.

Constant Value
Interpret Vector
Parameters as 1-D Output

scalar off one-element array

scalar on one-element array

1-by-N matrix off 1-by-N matrix

1-by-N matrix on N-element vector

N-by-1 matrix off N-by-1 matrix

N-by-1 matrix on N-element vector

M-by-N matrix off M-by-N matrix

M-by-N matrix on M-by-N matrix

Simulink source blocks allow you to specify the dimensions of the signals
that they output. You can therefore use them to introduce signals of various
dimensions into your model.

Determining the Output Dimensions of Nonsource
Blocks
If a block has inputs, the dimensions of its outputs are, after scalar expansion,
the same as those of its inputs. (All inputs must have the same dimensions, as
discussed in “Signal and Parameter Dimension Rules” on page 8-22).

Signal and Parameter Dimension Rules
When creating a Simulink model, you must observe the following rules
regarding signal and parameter dimensions.
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Input Signal Dimension Rule
All nonscalar inputs to a block must have the same dimensions.

A block can have a mix of scalar and nonscalar inputs as long as all the
nonscalar inputs have the same dimensions. Simulink expands the scalar
inputs to have the same dimensions as the nonscalar inputs (see “Scalar
Expansion of Inputs” on page 8-24) thus preserving the general rule.

Block Parameter Dimension Rule
In general, a block’s parameters must have the same dimensions as the
corresponding inputs.

Two seeming exceptions exist to this general rule:

• A block can have scalar parameters corresponding to nonscalar inputs.
In this case, Simulink expands a scalar parameter to have the same
dimensions as the corresponding input (see “Scalar Expansion of
Parameters” on page 8-25) thus preserving the general rule.

• If an input is a vector, the corresponding parameter can be either an N-by-1
or a 1-by-N matrix. In this case, Simulink applies the N matrix elements to
the corresponding elements of the input vector. This exception allows use
of MATLAB® row or column vectors, which are actually 1-by-N or N-by-1
matrices, respectively, to specify parameters that apply to vector inputs.

Vector or Matrix Input Conversion Rules
Simulink converts vectors to row or column matrices and row or column
matrices to vectors under the following circumstances:

• If a vector signal is connected to an input that requires a matrix, Simulink
converts the vector to a one-row or one-column matrix.

• If a one-column or one-row matrix is connected to an input that requires a
vector, Simulink converts the matrix to a vector.

• If the inputs to a block consist of a mixture of vectors and matrices and
the matrix inputs all have one column or one row, Simulink converts the
vectors to matrices having one column or one row, respectively.
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Note You can configure Simulink to display a warning or error message if a
vector or matrix conversion occurs during a simulation. See “Vector/matrix
block input conversion” for more information.

Scalar Expansion of Inputs and Parameters
Scalar expansion is the conversion of a scalar value into a nonscalar array
of the same dimensions. Many Simulink blocks support scalar expansion of
inputs and parameters. Block descriptions in the Simulink Reference indicate
whether Simulink applies scalar expansion to a block’s inputs and parameters.

Scalar Expansion of Inputs
Scalar expansion of inputs refers to the expansion of scalar inputs to match
the dimensions of other nonscalar inputs or nonscalar parameters. When the
input to a block is a mix of scalar and nonscalar signals, Simulink expands
the scalar inputs into nonscalar signals having the same dimensions as the
other nonscalar inputs. The elements of an expanded signal equal the value of
the scalar from which the signal was expanded.

The following model illustrates scalar expansion of inputs. This model adds
scalar and vector inputs. The input from block Constant1 is scalar expanded
to match the size of the vector input from the Constant block. The input
is expanded to the vector [3 3 3].

When a block’s output is a function of a parameter and the parameter is
nonscalar, Simulink expands a scalar input to match the dimensions of the
parameter. For example, Simulink expands a scalar input to a Gain block to
match the dimensions of a nonscalar gain parameter.
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Scalar Expansion of Parameters
If a block has a nonscalar input and a corresponding parameter is a scalar,
Simulink expands the scalar parameter to have the same number of elements
as the input. Each element of the expanded parameter equals the value of
the original scalar. Simulink then applies each element of the expanded
parameter to the corresponding input element.

This example shows that a scalar parameter (the Gain) is expanded to a
vector of identically valued elements to match the size of the block input, a
three-element vector.
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Checking Signal Ranges

In this section...

“About Signal Range Checking” on page 8-26

“Blocks That Allow Signal Range Specification” on page 8-26

“Specifying Ranges for Signals” on page 8-27

“Checking for Signal Range Errors” on page 8-28

About Signal Range Checking
Many Simulink® blocks allow you to specify a range of valid values for their
output signals. Simulink provides a diagnostic that you can enable to detect
when blocks generate signals that exceed their specified ranges during
simulation. See the sections that follow for more information.

Blocks That Allow Signal Range Specification
The following blocks allow you to specify ranges for their output signals:

• Abs

• Constant

• Data Store Memory

• Data Type Conversion

• Difference

• Discrete Derivative

• Discrete-Time Integrator

• Gain

• Inport

• Interpolation Using Prelookup

• Lookup Table

• Lookup Table (2-D)
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• Math Function

• MinMax

• Multiport Switch

• Outport

• Product, Divide, Product of Elements

• Relay

• Repeating Sequence Interpolated

• Repeating Sequence Stair

• Saturation

• Saturation Dynamic

• Signal Specification

• Sum, Add, Subtract, Sum of Elements

• Switch

See “Blocks — Alphabetical List” in the Simulink Reference for more
information about these blocks and their parameters.

Specifying Ranges for Signals
In general, use the Output minimum and Output maximum parameters
that appear on a block parameter dialog box to specify a range of valid values
for the block output signal. Exceptions include the Data Store Memory, Inport,
Outport, and Signal Specification blocks, for which you use their Minimum
and Maximum parameters to specify a signal range. See “Blocks That Allow
Signal Range Specification” on page 8-26 for a list of applicable blocks.

When specifying minimum and maximum values that constitute a range,
enter only expressions that evaluate to a scalar, real number with double
data type. The default value, [], is equivalent to -Inf for the minimum value
and Inf for the maximum value. The scalar values that you specify are
subject to expansion, for example, when the block inputs are nonscalar or bus
signals (see “Scalar Expansion of Inputs and Parameters” on page 8-24).
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Note You cannot specify the minimum or maximum value as NaN.

Specifying Ranges for Complex Numbers
When you specify an Output minimum and/or Output maximum for a
signal that is a complex number, the specified minimum and maximum values
apply separately to the real part and to the imaginary part of the complex
number. If the value of either part of the number is less than the minimum,
or greater than the maximum, the complex number is outside the specified
range. No range checking occurs against any combination of the real and
imaginary parts, such as (sqrt(a^2+b^2))

Checking for Signal Range Errors
Simulink provides a diagnostic named Simulation range checking, which
you can enable to detect when signals exceed their specified ranges during
simulation. When enabled, Simulink compares the signal values that a block
outputs with both the specified range (see “Specifying Ranges for Signals” on
page 8-27) and the block data type. That is, Simulink performs the following
check:

DataTypeMin ≤ MinValue ≤ VALUE ≤ MaxValue ≤ DataTypeMax

where

• DataTypeMin is the minimum value representable by the block data type.

• MinValue is the minimum value the block should output, specified by, e.g.,
Output minimum.

• VALUE is the signal value that the block outputs.

• MaxValue is the maximum value the block should output, specified by, e.g.,
Output maximum.

• DataTypeMax is the maximum value representable by the block data type.
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Note It is possible to overspecify how a block handles signals that exceed
particular ranges. For example, you can specify values (other than the default
values) for both signal range parameters and enable the Saturate on integer
overflow parameter. In this case, Simulink displays a warning message that
advises you to disable the Saturate on integer overflow parameter.

Enabling Simulation Range Checking
To enable the Simulation range checking diagnostic:

1 In your model window, select Simulation > Configuration Parameters.

Simulink displays the Configuration Parameters dialog box.

2 In the Select tree on the left side of the Configuration Parameters dialog
box, click the Diagnostics > Data Validity category. On the right side
under Signals, set the Simulation range checking diagnostic to error
or warning.

3 Click OK to apply your changes and close the Configuration Parameters
dialog box.

See “Simulation range checking” in the Simulink Graphical User Interface
documentation for more information.

Simulating Models with Simulation Range Checking
To check for signal range errors or warnings:
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1 Enable the Simulation range checking diagnostic for your model (see
“Enabling Simulation Range Checking” on page 8-29).

2 In your model window, select Simulation > Start to simulate the model.

Simulink simulates your model and performs signal range checking. If a
signal exceeds its specified range when the Simulation range checking
diagnostic specifies error, Simulink stops the simulation and displays
an error message:

Otherwise, if a signal exceeds its specified range when the Simulation
range checking diagnostic specifies warning, Simulink displays a
warning message in the MATLAB® Command Window:

Warning: Inconsistent numeric values for port 1 of 'example/Gain': Outp
(21) at major time step 4.2 is greater than maximum (20) from 'example

Each message identifies the block whose output signal exceeds its specified
range, and the time step at which this violation occurs.
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Signal Range Propagation for Virtual Blocks
Some virtual blocks (see “Virtual Blocks” on page 6-2) allow you to specify
ranges for their output signals, for example, the Inport and Outport blocks.
When the Simulation range checking diagnostic is enabled for a model
that contains such blocks, the signal range of the virtual block propagates
backward to the first instance of a nonvirtual block whose output signal it
receives. If the nonvirtual block specifies different values for its own range,
Simulink performs signal range checking with the tightest range possible.
That is, Simulink checks the signal using the larger minimum value and
the smaller maximum value.

For example, consider the following model:

In this model, the Constant block specifies its Output maximum parameter
as 300, and that of the Inport block is set to 100. Suppose you enable the
Simulation range checking diagnostic and simulate the model. The
Inport block back propagates its maximum value to the nonvirtual block that
precedes it, i.e., the Constant block. Simulink then uses the smaller of the
two maximum values to check the signal that the Constant block outputs.
Because the Constant block outputs a signal whose value (200) exceeds the
tightest range, Simulink displays the following error message:
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Introducing the Signal and Scope Manager

In this section...

“What is the Signal & Scope Manager?” on page 8-33

“Displaying the Signal and Scope Manager User Interface” on page 8-34

“Understanding the Signal and Scope Manager User Interface” on page 8-34

What is the Signal & Scope Manager?
The Signal & Scope Manager is a user interface to the Signal Viewers and
Generator objects. From the Signal and Scope Manager you manage all signal
generators and viewers from a central place.

Note The Signal and Scope Manager requires that you have Java™ enabled
when you start MATLAB®. This is the default.

What are Viewer and Generator Objects?
The small icons identifying a viewer or generator are called Viewer and
Generator Objects. These objects are not the same as scope or signal blocks.
Objects are managed by the Signal and Scope Manager, and are placed on
signals. Blocks are dragged from the Library browser and are not managed by
the Signal and Scope manager.
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Displaying the Signal and Scope Manager User
Interface
Access the Signal and Scope Manager from the model editor’s Tools menu.

Alternatively, right click within your model and select Signal & Scope
Manager from the context menu.

Understanding the Signal and Scope Manager User
Interface

The Signal and Scope manager user interface is comprised of three panes:

• Types. Selects the viewer or generator to attach to your model. For more
information, see “Types Pane” on page 8-35.

• Generators/Viewers in model. Selects signal sources and viewers for
your model.

For more information on sources, see “Generators Tab” on page 8-35.

For more information on viewers, see “Viewers Tab” on page 8-36.
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• Signals connected to Generator/Viewer. Manages the connections to
the generators and viewers present in your model. For more information,
see “Signals connected to Generator/Viewer Pane” on page 8-38.

Types Pane
The Types pane shows the generators and viewers associated with the
products installed on your system. Expand a products node list to show all the
generators and viewers available to you.

Note The Simulink® Scope displayed in the Signal and Scope Manager Types
pane is not the same as the Simulink Scope Block. For an explanation of the
differences, see “How Scope Blocks and Signal Viewers Differ” on page 15-3.

Generators Tab
The Generators tab displays a table listing the generators associated with
your model.

Each row corresponds to a generator. The columns specify each generator’s
name and type.
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Viewers Tab
The Viewers tab displays a table listing the viewers present in your model.

Each row corresponds to a viewer. The columns specify each viewer’s name,
type, and number of inputs. If a viewer accepts a variable number of inputs,
the #in entry for the viewer contains a pull-down list that displays the range
of inputs that the viewer can accept. To change the number of inputs accepted
by the viewer, pull down the list and select the desired value.
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Edit Buttons
Use these buttons to manage generators and viewers after you have selected
them in the Generators or Viewers table:

Button Description

Opens the parameter dialog box for the selected generator
or viewer.

From the parameter dialog you view and change object
parameters.

See “Scope Viewer Parameters Dialog Box” on page 15-12
for more information.

Opens the Signal Selector for the selected generator or
viewer.

You use the Signal Selector to connect and disconnect
generators and viewers.

See “The Signal Selector” on page 8-44 for information on
the signal selector.

Deletes the selected generator or viewer.
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Signals connected to Generator/Viewer Pane
This table lists the signals connected to the generator or viewer selected in
the Generators/Viewers control group of the Signal and Scope Manager.

This graphic illustrates the table display when two generators are connected
to a sum block. The Viewers display works in the same way.

Clicking on the name of a generator displays the connected signals. For
instance, the constant is shown connected to the second input of the sum block.

Connection Menu
Selecting a connection in the Signals connected to Generator/Viewer
table and pressing the right button on your mouse displays a context menu.
From this context menu you can:

• Open the Properties dialog

• Highlight the connections in your block diagram

• Open the Signal Selector
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Using the Signal and Scope Manager

In this section...

“Introduction” on page 8-39

“Attaching a New Viewer or Generator” on page 8-39

“Creating a Multiple Axes Viewer” on page 8-40

“Adding Additional Signals to an Existing Viewer” on page 8-41

“Viewing Test Point Data” on page 8-41

“Adding Custom Viewers and Generators” on page 8-42

Introduction
This section shows you how to use the Signal and Scope Manager to perform
some basic Viewer and Generator object tasks.

If you are not familiar with the Signal and Scope manager, or Viewer or
Generator objects, or if you do not know how to display the Signal and Scope
manager, see “Introducing the Signal and Scope Manager” on page 8-33.

To learn how to use and adjust the viewers you have created, see “The Scope
Viewer Toolbar” on page 15-11.

Attaching a New Viewer or Generator
To connect a new viewer or generator to a signal in the currently selected
model:

1 Display the Signal and Scope manager.

2 Select a viewer or generator from the Types pane.

3 Click Attach to Model.

4 Click the Signal Selector button to display the Signal Selector dialog.

For more information, see “The Signal Selector” on page 8-44.
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5 Select the signals to be displayed by this viewer, and close the dialog.

Tip To display a viewer that has been attached, double click on the viewer of
interest in the Viewers pane.

Creating a Multiple Axes Viewer
To create a viewer with more than one axes:

1 Display the Signal and Scope manager.

2 Select a viewer from the Types pane.

3 Click Attach to Model.

4 Click the #in pulldown, and select the total number of axes for the graph.

5 Navigate to the Signals connected to Generator/Viewer pane and
select Axes 1.
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6 Click the Signal Selector button to display the Signal Selector dialog.

For more information, see “The Signal Selector” on page 8-44.

7 Select the signals to add to this axis, and close the dialog.

8 Select the next axes, and repeat steps 6 and 7. Continue in this way until
signals have been added to all axes.

Tip

• Click on the Scope Viewer icon to display the scope.

• Run the simulation after adding the new signals to make them visible.

Adding Additional Signals to an Existing Viewer
To add signals to a viewer you have already created:

1 Display the Signal and Scope manager.

2 Navigate to the Viewers pane, and select the scope to which you will add
signals.

3 Click the Signal Selector button to display the Signal Selector dialog.

For more information, see “The Signal Selector” on page 8-44.

4 Select the signals to add to this viewer, and close the dialog.

Tip Run the simulation after adding the new signals to make them visible.

Viewing Test Point Data
You can use the Signal and Scope Manager to view any signal that is defined
as a test point in a submodel. A test point is a signal that is guaranteed to be
observable when using a signal viewer in a model.
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For more information, see “Working with Test Points” on page 8-70 and
Chapter 5, “Referencing a Model”.

Adding Custom Viewers and Generators
You can add custom signal viewers or generators so that they appear in the
Signal and Scope Manager. The following procedure assumes that you have a
custom viewer named newviewer that you want to add.

Note If the viewer is a compound viewer, such as a subsystem with multiple
blocks, make the top-level subsystem atomic.

1 Open a new Simulink® library.

For example, open the Simulink browser and select File > New > Library.

2 Save the library.

For example, save it as newlib.

3 In the MATLAB® Command Window, set the library type.

For example, use this command to set the library type of newviewer to
viewer,

set_param('newlib','LibraryType','SSMgrViewerLibrary')

To set library type for generators, use the type 'SSMgrGenLibrary' as
in this example:

set_param('newlib','LibraryType','SSMgrGenLibrary')

4 Set the display name of the library, as in this example:.

set_param('newlib','SSMgrDisplayString','My Custom Library')

5 Add the viewer or generator to the library.

6 Set the iotype of the viewer, as in this example:
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set_param('newlib/newviewer','iotype','viewer')

7 Save the library newlib.

Select File > Save.

8 Using the MATLAB editor, create a file named sl_customization.m. In
this file, enter a directive to incorporate the new library as a viewer library.

For example, to save newlib as a viewer library, add the following lines:

function sl_customization(cm)
cm.addSigScopeMgrViewerLibrary('newlib')
%end function

To add a library as a generator library, add a line like the following:

cm.addSigScopeMgrGeneratorLibrary('newlib')

9 Add a corresponding cm.addSigScope line for each viewer or generator
library you want to add.

10 Save the sl_customization.m file on your MATLAB path. Edit this file to
add new viewer or generator libraries.

11 To see the new custom libraries, restart MATLAB and start the Signal
and Scope Manager.
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The Signal Selector

In this section...

“About the Signal Selector” on page 8-44

“Port/Axis Selector” on page 8-45

“Model Hierarchy” on page 8-46

“Inputs/Signals List” on page 8-46

About the Signal Selector
The Signal Selector allows you to connect a generator or viewer object (see
“Introducing the Signal and Scope Manager” on page 8-33) or the Floating
Scope to block inputs and outputs. It appears when you click the Signal
selection button for a generator or viewer object in the Signal & Scope
Manager or on the toolbar of the Floating Scope’s window.

The Signal Selector that appears when you click the Signal selection button
applies only to the currently selected generator or viewer object (or the
Floating Scope). If you want to connect blocks to another generator or viewer
object, you must select the object in the Signal & Scope Manager and launch
another instance of the Signal Selector. The object used to launch a particular
instance of the Signal Selector is called that instance’s owner.

8-44



The Signal Selector

Port/Axis Selector
This list box allows you to select the owner output port (in the case of signal
generators) or display axis (in the case of signal viewers) to which you want to
connect blocks in your model.

The list box is enabled only if the signal generator has multiple outputs or
the signal viewer has multiple axes.
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Model Hierarchy
This tree-structured list lets you select any subsystem in your model.

Selecting a subsystem causes the adjacent port list to display the ports
available for connection in the selected subsystem. To display subsystems
included as library links in your model, click the Library Links button at
the top of the Model hierarchy control. To display subsystems contained
by masked subsystems, click the Look Under Masks button at the top
of the panel.

Inputs/Signals List
The contents of this panel displays input ports available for connection to the
Signal Selector’s owner if the owner is a signal generator or signals available
for connection to the owner if the owner is a signal viewer.
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If the Signal Selector’s owner is a signal generator, the inputs/signals list by
default lists each input port in the system selected in the model hierarchy tree
that is either unconnected or connected to a signal generator.

The label for each entry indicates the name of the block of which the port is an
input. If the block has more than one input, the label indicates the number of
the displayed port. A greyed label indicates that the port is connected to a
signal generator other than the Signal Selectors’ owner. Selecting the check
box next to a port’s entry in the list connects the Signal Selector’s owner to
the port, replacing, if necessary, the signal generator previously connected
to the port.

To display more information on each signal, click the Detailed view button
at the top of the pane. The detailed view shows the path and data type of
each signal and whether the signal is a test point. The controls at the top
and bottom of the panel let you restrict the amount of information shown
in the ports list.

• To show named signals only, select Named signals only from the List
contents control at the top of the pane.

• To show only signals selected in the Signal Selector, select Selected
signals only from the List contents control.
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• To show test point signals only, select Testpointed signals only from
the List contents control.

• To show only signals whose signals match a specified string of characters,
enter the characters in the Show signals matching control at the bottom
of the Signals pane and press the Enter key.

• To show the selected types of signals for all subsystems below the currently
selected subsystem in the model hierarchy, click the Current and Below
button at the top of the Signals pane.

To select or deselect a signal in the Signals pane, click its entry or use the
arrow keys to move the selection highlight to the signal entry and press the
Enter key. You can also move the selection highlight to a signal entry by
typing the first few characters of its name (enough to uniquely identify it).

Note You can continue to select and deselect signals on the block diagram
with the Signal Selector open. For example, shift-clicking a line in the block
diagram adds the corresponding signal to the set of signals that you previously
selected with the Signal Selector. If the simulation is running when you open
and use the Signal Selector, Simulink® updates the Signal Selector to reflect
signal selection changes you have made on the block diagram. However, the
changes do not appear until you select the Signal Selector window itself. You
can also use the Signal Selector before running a model. If no simulation is
running, selecting a signal in the model does not change the Signal Selector.
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Logging Signals

In this section...

“About Signal Logging” on page 8-49

“Signal Logging Limitations” on page 8-50

“Enabling Signal Logging” on page 8-50

“Specifying a Logging Name” on page 8-51

“Limiting the Data Logged for a Signal” on page 8-52

“Logging Referenced Model Signals” on page 8-52

“Viewing Logged Signal Data” on page 8-53

“Accessing Logged Signal Data” on page 8-54

“Example: Logging Signal Data in the F14 Model” on page 8-54

“Handling Spaces and Newlines in Logged Signal Names” on page 8-58

“Extracting Partial Data from a Running Simulation” on page 8-61

About Signal Logging
Logging signals refers to the process of saving signal values to the MATLAB®

workspace during simulation for later retrieval and postprocessing. Simulink®

allows you to log a signal by

• Connecting the signal to a To Workspace block, Scope block, or viewer.

This method allows you to document in the diagram itself the workspace
variables used to store signal data. Results are visible during simulation.
Be aware that Scopes store data and can be memory intensive.

• Connecting the signal to a root-level Outport block.

This method reduces diagram clutter by eliminating the need to use Scope
blocks to log signals. Data is only available when simulation is paused
or completed.

• Setting the signal’s signal logging properties.

This method eliminates the need to add blocks. Data is only available when
simulation is paused or completed.
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All of these methods allow you to specify the names of the workspace
variables used to save signal data and to limit the amount of data logged
for a particular signal.

See Simulink Reference for the To Workspace and Outport blocks for
information on using these blocks to log signal data. See the documentation
of the sim command for some data logging capabilities that are available
only for programmatic simulation.

Signal Logging Limitations
Simulink does not support signal logging for the following types of signals:

• Output of a Function-Call Generator block

• Signal connected to the input of a Merge block

• Outputs of Trigger and Enable blocks

Multidimensional signals are supported.

Bus hierarchy is supported. The hierarchy of a bus signal is preserved in the
logsout object. See Chapter 9, “Using Composite Signals” for details about
muxes and buses.

Enabling Signal Logging
To enable signal logging for a signal, select the Log signal data option on the
signal’s Signal Properties dialog box (see “Signal Properties Dialog Box”).

Note If you enable signal logging for a signal, Simulink designates the signal
as a test point automatically. This is because a signal must be accessible to
be logged (see “Designating a Signal as a Test Point” on page 8-70 for more
information).

Globally Enabling and Disabling Signal Logging
You can globally enable or disable signal logging for a model by checking or
unchecking the Signal logging option on the Data Import/Export pane of
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the Configuration Parameters dialog box (see “Signal logging” ). Simulink
logs signals only if this option is checked. If the option is not checked,
Simulink ignores the signal logging settings for individual signals.

Enabling Signal Logging Programmatically
You can enable signal logging programmatically for selected blocks with the
outport DataLogging property. You can set this property using the set_param
command. For example:

1 At the MATLAB Command Window, open a model. Type

vdp

2 Select a block in that model. For example, select the Mux block.

3 Get the port handles of the selected block.

get_param(gcb,'PortHandles')

4 Enable signal logging for the desired outport port.

set_param(ans.Outport(1),'DataLogging','on')

The logged signal indicator ( ) appears.

Specifying a Logging Name
You can assign a name, called the logging name, to the object used to log
data for a signal during simulation. To specify a log name for a signal, select
Custom from the Logging name list on the signal’s Signal Properties dialog
box and enter the custom name in the adjacent text field.

If you do not specify a custom logging name, Simulink uses the signal name, or
if there is no name, Simulink generates a default name that is composed of the
block name and port number. For example, if the block name is MyBlock and
the signal being logged is the first output of this block, Simulink generates
the following name: SL_MyBlock1.
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Limiting the Data Logged for a Signal
The Data panel of the Signal Properties dialog box lets you limit the
amount of data logged for a signal. For example, you can specify the maximum
amount of data to be logged for a signal or a decimation factor that causes
Simulink to skip a specified number of time steps before logging a signal
value. See “Data” for more information.

Logging Referenced Model Signals
You can log any signal that is defined as a test point in a referenced model.
For information about test points, see “Designating a Signal as a Test Point”
on page 8-70. For information about referenced models, see Chapter 5,
“Referencing a Model”.

To log test pointed signals in referenced models, select the Model block and
then select Log referenced signals from the model editor’s Edit menu or
from the block’s context menu.

The Model Reference Signal Logging dialog box appears.

The dialog box contains the following panes and controls.
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Model Hierarchy
This pane displays the contents of the referenced model as a tree control
with expandable nodes. The top-level node represents the referenced model.
Expanding this node displays the subsystems that the referenced model
contains and any models that it itself references. Expanding a subsystem node
displays the subsystems that it contains and the models that it references.

Refresh Button
Refreshes the dialog box to reflect changes in the model hierarchy.

Signals
This pane displays the test points of the model or subsystem selected in the
Model Hierarchy pane (see “Working with Test Points” on page 8-70). Check
the check box next to a test point’s name to specify that it should be logged.

Log signals as specified by the referenced model
Checking this check box causes Simulink to log the signals that the referenced
model specifies should be logged.

Signal Properties
This pane is enabled if Log signals as specified by the referenced model
is not selected. In this case, the controls on this pane allow you to specify the
signal logging properties of the signal selected in the Signals pane. The
values that you specify override for this instance of the referenced model
those specified by the model itself. The controls correspond to the controls of
the same name on the Signal Properties dialog box. See “Signal Properties
Dialog Box” for information on how to use them.

Viewing Logged Signal Data
To view logged signal data, either check the Inspect signals when
simulation is stopped/paused in the Data Import/Export pane of the
Configuration Parameters dialog box or select Tools > Inspect Logged
Signals from the model editor’s menu bar. The first method causes Simulink
to display logged signals in the MATLAB Time Series Tools viewer (see
in the online MATLAB documentation) whenever a simulation ends or you
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pause a simulation. The second method causes Simulink to display the data
immediately.

Note You must run the simulation first before selecting Tools > Inspect
Logged Signals. Otherwise, selecting this command has no effect.

Accessing Logged Signal Data
Simulink saves signal data that it logs during simulation in a Simulink
data object of type Simulink.ModelDataLogs that resides in the MATLAB
workspace. The name of the object’s handle is logsout by default. The Data
Import/Export configuration pane (see “Data Import/Export Pane”) allows
you to specify another name for this object. See Simulink.ModelDataLogs
in the online Simulink reference for information on extracting signal data
from this object.

The signal logs for particular model elements are contained in the objects in
the following table. The Simulink.ModelDataLogs object is the container
for these objects.

Modeling Element Signal Data Object

Signal in this model Simulink.Timeseries

Model referenced by this model Simulink.ModelDataLogs

Subsystem Simulink.SubsysDataLogs

Bus, mux, vector concatenate Simulink.TsArray

Scope Simulink.ScopeDataLogs

Example: Logging Signal Data in the F14 Model
Enabling signal logging on a signal-by-signal basis allows you to store signal
data without modifying the structure of the Simulink diagram. For example,
use the following steps to log and access the signal data for the vertical
velocity signal w in the F14 model.

1 Open the F14 model by typing f14 at the MATLAB command prompt.
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2 Right-click on the signal labeled w and select the Signal Properties menu.

3 In the Signal Properties dialog box that opens, check the Log signal
data option. Notice that the Test point option automatically becomes
checked and the logging name initializes to the signal’s name.
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4 Click the OK button on the Signal Properties dialog box. The ’blue

antenna’ icon appears on the signal labeled w, indicating that this signal
will be logged during simulation.

5 Ensure that the Signal logging option on the Data Import/Export pane
of the Configuration Parameters dialog box is checked and that the
logging name is set to the default variable logsout.

6 Run the F14 simulation. The logged signal data is stored in a
Simulink.ModelDataLogs object named logsout in the MATLAB
workspace. Typing logsout at the MATLAB command prompt displays
the following

logsout =

Simulink.ModelDataLogs (f14):
Name Elements Simulink Class

w 1 Timeseries
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7 Type logsout.w to view the information stored for the signal w.

logsout.w
Name: 'w'

BlockPath: 'f14/Aircraft Dynamics Model'
PortIndex: 1

SignalName: 'w'
ParentName: 'w'

TimeInfo: [1x1 Simulink.TimeInfo]
Time: [1353x1 double]
Data: [1353x1 double]

8 To inspect the signal using the MATLAB Time Series Tools, select
Inspect Logged Signals from the f14 model editor’s Tools menu (see in
the online MATLAB documentation).
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Handling Spaces and Newlines in Logged Signal
Names
Named signals that are used for signal logging but do not have an associated
Simulink.Signal object can have names that include space and newline
characters, as described in “Naming Signals” on page 8-4. Such names can
improve the readability of a block diagram, but referencing them requires
require special techniques when they appear in a data log. These techniques
allow the MATLAB parser to process the names even though spaces and
newlines are not legal in MATLAB identifiers.

Space and newline characters can also appear in a data log when an unnamed
logged signal originates in a block whose name contains any spaces or
newlines. The Simulink software constructs a name for the signal based on the
block name, and the constructed name inherits the characters that the block
name contains; these characters then appear in the data log. This situation
often arises, because many blocks have spaces in their default names. One
way to avoid it is to name the logged signal, thus avoiding the default name.

The following model includes a signal whose name contains a space, a signal
whose name contains a newline, and an unnamed signal that originates in a
block whose name contains a newline:

If you execute this model with data logging enabled in the Data Import/Export
pane, accepting the default logging object name logsout, and then type

8-58



Logging Signals

logsout in the MATLAB Command Window, MATLAB displays the following
data log:

logsout =

Simulink.ModelDataLogs (model_name):
Name Elements Simulink Class

('x y') 1 Timeseries
('a

b') 1 Timeseries
('SL_Sine

Wave1') 1 Timeseries

You cannot access any of the Timeseries objects in this log using TAB
name completion, or by typing the name to MATLAB, because the space or
newline in each name appears to the MATLAB parser as a separator between
identifiers. For example:

>> logsout.x y

??? logsout.x y
|

Error: Unexpected MATLAB expression.

To reference a Timeseries object whose name contains a space, single-quote
the element containing the space:

>> logsout.('x y')

Name: 'x y'
BlockPath: 'model_name/Sine'
PortIndex: 1

SignalName: 'x y'
ParentName: 'x y'

TimeInfo: [1x1 Simulink.TimeInfo]
Time: [51x1 double]
Data: [51x1 double]

To reference a Timeseries object whose name contains a newline, concatenate
to construct the element containing the newline:
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>> cr=sprintf('\n')
>> logsout.(['a' cr 'b'])

The same technique works when the newline derives from a block name used
to generate a name for an unnamed signal:

>> logsout.(['SL_Sine' cr 'Wave1'])

For names with multiple spaces, newlines, or both, repeat and combine the
two techniques as needed to specify the intended name to MATLAB. No
analogous techniques exist for TAB name completion, which never works with
names that contain space or newline characters.
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Extracting Partial Data from a Running Simulation
Before a simulation ends, you can extract and write the currently logged signal
data (from Simulink.ModelDataLogs) with the set_param WriteDataLogs
command. The currently logged signal is the partial data logged between
when the simulation started and when you request an extraction of the signal
data. If you use this command during the simulation, Simulink writes the
current logging variable values to the MATLAB workspace. If you use this
command at the end of the simulation, Simulink writes the values from the
last simulation to the MATLAB workspace.

To use this command, type the following at the MATLAB Command Window.

set_param(bdroot,'SimulationCommand','WriteDataLogs')
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Initializing Signals and Discrete States

In this section...

“About Initialization” on page 8-62

“Using Block Parameters to Initialize Signals and Discrete States” on page
8-63

“Using Signal Objects to Initialize Signals and Discrete States” on page 8-63

“Using Signal Objects to Tune Initial Values” on page 8-64

“Example: Using a Signal Object to Initialize a Subsystem Output” on page
8-66

“Initialization Behavior Summary for Signal Objects” on page 8-67

About Initialization
Simulink® allows you to specify the initial values of signals and discrete
states, i.e., the values of the signals and discrete states at time 0 of the
simulation. You can use signal objects to specify the initial values of any
signal or discrete state in a model. In addition, for some blocks, e.g., Outport,
Data Store Memory, or Memory, you can use either a signal object or a block
parameter or both to specify the initial value of a block state or output. In
such cases, Simulink checks to ensure that the values specified by the signal
object and the parameter are consistent.

Note When you specify a signal object for signal or discrete state
initialization, or a variable as the value of a block parameter, the Simulink
software resolves the name that you specify to an appropriate object or
variable, as described in “Resolving Symbols” on page 3-69 and “Resolving
Symbols” on page 3-69.
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Using Block Parameters to Initialize Signals and
Discrete States
For blocks that have an initial value or initial condition parameter, you can
use that parameter to initialize a signal. For example, the following Block
Parameters dialog box initializes the signal for a Unit Delay block with an
initial condition of 0.5.

Using Signal Objects to Initialize Signals and Discrete
States
To use a signal object to specify an initial value:

1 Create the signal object in the MATLAB® workspace, as explained in
“Working with Data Objects” on page 10-27.

The name of the signal object must be the same as the name of the signal
or discrete state that the object is initializing.
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Note Consider also setting the Signal name must resolve to Simulink
signal object option in the Signal Properties dialog box. This setting
ensures consistency between signal objects in the MATLAB workspace and
the signals that appear in your model.

2 Set the signal object’s storage class to a value other than 'Auto' or
'SimulinkGlobal'.

3 Set the signal object’s Initial value property to the initial value of the
signal or state. For details on what you can specify, see the description of
Simulink.Signal in the Simulink online reference.

If you can also use a block parameter to set the initial value of the signal or
state, you should set the parameter either to null ([]) or to the same value
as the initial value of the signal object. If you set the parameter value to
null, Simulink uses the value specified by the signal object to initialize
the signal or state. If you set the parameter to any other value, Simulink
compares the parameter value to the signal object value and displays an
error if they differ.

Using Signal Objects to Tune Initial Values
Simulink allows you to use signal objects as an alternative to parameter
objects (see Simulink.Parameter class in the Simulink online reference) to
tune the initial values of block outputs and states that can be specified via
a tunable parameter. To use a signal object to tune an initial value, create
a signal object with the same name as the signal or state and set the signal
object’s initial value to an expression that includes a variable defined in the
MATLAB workspace. You can then tune the initial value by changing the
value of the corresponding workspace variable during the simulation.

For example, suppose you want to tune the initial value of a Memory
block state named M1. To do this, you might create a signal object named
M1, set its storage class to 'ExportedGlobal', set its initial value to K
(M1.InitialValue='K'), where K is a workspace variable in the MATLAB
workspace, and set the corresponding initial condition parameter of the
Memory block to [] to avoid consistency errors. You could then change the
initial value of the Memory block’s state any time during the simulation by
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changing the value of K at the MATLAB command line and updating the
block diagram (e.g., by typing Ctrl+D).

Note To be tunable via a signal object, a signal or state’s corresponding
initial condition parameter must be tunable, e.g., the inline parameter
optimization for the model containing the signal or state must be off or the
parameter must be declared tunable in the Model Parameter Configuration
dialog box. For more information, see “Tunable Parameters” on page 2-9 and
“Changing the Values of Block Parameters During Simulation” on page 6-16.
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Example: Using a Signal Object to Initialize a
Subsystem Output
The following example shows a signal object specifying the initial output of
an enabled subsystem.

Sine Wave
Amplitude = 1

Period = 10 samples
Ts = 0.1

Scope

In1 Out1

Enabled
Subsystem

Enable
Ts = 0.1

Phase Delay = 10 samples

e

s

1

Out1
Initial Output = []

2

Gain

Enable

1

In1

Signal s is initialized to 4.5. To avoid a consistency error, the initial value of
the enabled subsystem’s Outport block must be [] or 4.5.

If you need a signal object and its initial value setting to persist across
Simulink sessions, see “Creating Persistent Data Objects” on page 10-37.
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Initialization Behavior Summary for Signal Objects
The following model and table show different types of signals and discrete
states that you can initialize and the simulation behavior that results for each.

Signal or
Discrete
State

Description Behavior

S1 Root inport • Initialized to S1.InitialValue.

• If you use the Data Import/Export pane of the Configuration
Parameters dialog to specify values for the root inputs, the
initial value is overwritten and may differ at each time step.
Otherwise, the value remains constant.
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Signal or
Discrete
State

Description Behavior

X1 Unit Delay
block — Block
with a discrete
state that
has an initial
condition

• Initialized to X1.InitialValue.

• Simulink checks whether X1.InitialValue matches the
initial condition specified for the block and displays an error
if a mismatch occurs.

• At first write, the output equals X1.InitialValue and the
state equals S1.

• At each time step after the first write, the output equals the
state and the state is updated to equal S1.

• If the block is inside an enabled subsystem, you can use the
initial value as a reset value if the subsystem’s Enable block
parameter States when enabling is set to reset.

X2 Data Store
Memory block

• Data type work (DWork) vector initialized to
X2.InitialValue. For information on work vectors, see
“Using Work Vectors” in Writing S-Functions.

• Simulink checks whether X2.InitialValue matches the
initial condition specified for the block, and displays an error
if a mismatch occurs.

• Data Store Write blocks overwrite the value.

8-68



Initializing Signals and Discrete States

Signal or
Discrete
State

Description Behavior

S2 Output of
an enabled
subsystem

• Initialized to S2.InitialValue or the value of the Outport
block. If multiple initial values are specified for the same
signal, all initial values must be the same.

• The first write occurs when the subsystem is enabled. The
block feeding the subsystem output sets the value.

• The initial value is also used as a reset value if the
subsystem’s Enable block parameter States when enabling
or Outport block parameter Output when disabled is set
to reset.

S3 Persistent
signals

• Initialized to S3.InitialValue.

• The output value is reset by the block at each time step.

• Affects code generation only. For simulation, setting the
initial value for S3 is irrelevant because the values are
overwritten at the model’s simulation start time.
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Working with Test Points

In this section...

“About Test Points” on page 8-70

“Designating a Signal as a Test Point” on page 8-70

“Displaying Test Point Indicators” on page 8-71

About Test Points
A test point is a signal that Simulink® guarantees to be observable when
using a Floating Scope block in a model. Simulink allows you to designate
any signal in a model as a test point.

Designating a signal as a test point exempts the signal from model
optimizations, such as signal storage reuse (see “Signal storage reuse”) and
block reduction (see “Implement logic signals as boolean data (vs. double)”).
These optimizations render signals inaccessible and hence unobservable
during simulation.

Signals designated as test points will not have algebraic loops minimized,
even if Minimize algebraic loop occurrences is selected (for more
information about algebraic loops, see “Algebraic Loops” on page 2-31).

Test points are primarily intended for use when generating code from a
model with Real-Time Workshop®. For more information about test points in
the context of code generation, see “Declaring Test Points” in the Real-Time
Workshop documentation.

Designating a Signal as a Test Point
To designate a signal as a test point, check the Test point option on the
signal’s Signal Properties dialog box (see “Signal Properties Dialog Box”).
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Note If you set the test point property of a signal in a library that is
referenced by a model that is itself referenced by another model, you must
update the referenced model by opening and saving it. Otherwise, Simulink
cannot log or display the referenced signal.

Using Signal Objects to Designate Test Points
You can use Simulink.Signal objects to designate test points from the
MATLAB® workspace. This allows you to designate test points in a model
without having to modify the model itself. To use a Simulink.Signal object to
control a signal’s visibility, the following conditions must be true:

• The model does not specify the signal as a test point, i.e., the Test point
option is unchecked in the Signal Properties dialog box.

• The model specifies the signal’s storage class as auto (the default), i.e.,
the Storage class option in the signal’s Signal Properties dialog box is
set to auto.

• A Simulink.Signal object is associated with the signal, i.e., the MATLAB
workspace contains a signal object having the same name as the signal.

If all these conditions are true, you can designate the signal as a test point by
setting the associated object’s storage class property to any value but auto.

Displaying Test Point Indicators
By default, Simulink displays an indicator next to each signal that serves as
a test point.

Note Simulink displays indicators only for signals whose Test point option
is checked in the Signal Properties dialog box. If you designate a test point
using a Simulink.Signal object, Simulink does not display an indicator.
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These test point indicators enable you to find the test points in a model
at a glance.

The appearance of the indicator changes slightly to indicate test points for
which signal logging is enabled.

To turn display of test point indicators on or off, select Port/Signal
Displays > Test Point Indicators from the Simulink Format menu.
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Displaying Signal Properties

In this section...

“Port/Signal Displays Menu” on page 8-73

“Port Data Types” on page 8-73

“Signal Dimensions” on page 8-74

“Signal Resolution Indicators” on page 8-75

“Wide Nonscalar Lines” on page 8-76

Port/Signal Displays Menu
A model window’s Format >Port/Signal Displays menu offers the following
options for displaying signal properties on the block diagram:

• Sample Time Colors (See “Displaying Sample Time Colors” on page 3-10)

• Linearization Indicators

• Port Data Types (See “Port Data Types” on page 8-73)

• Signal Dimensions (See “Signal Dimensions” on page 8-74)

• Storage Class

• Testpoint Indicators

• Signal Resolution Indicators (See “Signal Resolution Indicators” on page
8-75)

• Viewer Indicators

• Wide Nonscalar Lines (See “Wide Nonscalar Lines” on page 8-76)

Port Data Types
Displays the data type of a signal next to the output port that emits the signal.
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The notation (c) following the data type of a signal indicates that the signal
is complex.

Signal Dimensions
Display the dimensions of nonscalar signals next to the line that carries the
signal.

The format of the display depends on whether the line represents a single
signal or a bus. If the line represents a single vector signal, Simulink®

displays the width of the signal. If the line represents a single matrix signal,
Simulink displays its dimensions as [N1xN2] where Ni is the size of the ith
dimension of the signal. If the line represents a bus carrying signals of the
same data type, Simulink displays N{M} where N is the number of signals
carried by the bus and M is the total number of signal elements carried by the
bus. If the bus carries signals of different data types, Simulink displays only
the total number of signal elements {M}.
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Signal Resolution Indicators
The Simulink Editor by default graphically indicates signals that must resolve
to signal objects. For any labeled signal whose Signal name must resolve
to signal object property is enabled, a signal resolution icon appears to the
left of the signal name. The icon looks like this:

A signal resolution icon indicates only that a signal’s Signal name must
resolve to signal object property is enabled. The icon does not indicate
whether the signal is actually resolved, and does not appear on a signal that
is implicitly resolved without its Signal name must resolve to signal
object property being enabled.

Where multiple labels exist, each label displays a signal resolution icon. No
icon appears on an unlabeled branch. In the next figure, signal x2 must
resolve to a signal object, so a signal resolution icon appears to the left of
the signal name in each label:

To suppress the display of signal resolution icons, in the model window
deselect Format > Port/Signal Displays > Signal Resolution Indicators,
which is selected by default. To restore signal resolution icons, reselect
Signal Resolution Indicators. Individual signals cannot be set to show or
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hide signal resolution indicators independently of the setting for the whole
model. For additional information, see:

• “Resolving Symbols” on page 3-69

• “Initializing Signals and Discrete States” on page 8-62

• Simulink.Signal

Wide Nonscalar Lines
Draws lines that carry vector or matrix signals wider than lines that carry
scalar signals.

See Chapter 9, “Using Composite Signals” for more information about vector
and matrix signals.
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Working with Signal Groups

In this section...

“About the Signal Groups” on page 8-77

“Creating a Signal Group Set” on page 8-77

“Signal Builder Dialog Box” on page 8-78

“Editing Signal Groups” on page 8-81

“Editing Signals” on page 8-81

“Editing Waveforms” on page 8-84

“Signal Builder Time Range” on page 8-90

“Exporting Signal Group Data” on page 8-91

“Printing, Exporting, and Copying Waveforms” on page 8-91

“Simulating with Signal Groups” on page 8-92

“Simulation Options Dialog Box” on page 8-93

About the Signal Groups
The Signal Builder block allows you to create interchangeable groups of signal
sources and quickly switch the groups into and out of a model. Signal groups
can greatly facilitate testing a model, especially when used in conjunction
with Simulink®’s Assertion blocks and Simulink Verification and Validation’s
Model Coverage Tool. For a description of the Model Coverage Tool, see the
“Simulink Verification and Validation User’s Guide” on The MathWorks™
Web site (www.mathworks.com).

Creating a Signal Group Set
To create an interchangeable set of signal groups:
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1 Drag an instance of the Signal Builder block from the Simulink Sources
library and drop it into your model.

By default, the block represents a single signal group containing a single
signal source that outputs a square wave pulse.

2 Use the block’s signal editor (see “Signal Builder Dialog Box” on page
8-78) to create additional signal groups, add signals to the signal groups,
modify existing signals and signal groups, and select the signal group that
the block outputs.

Note Each signal group must contain the same number of signals.

3 Connect the output of the block to your diagram.

The block displays an output port for each signal that the block can output.

You can create as many Signal Builder blocks as you like in a model, each
representing a distinct set of interchangeable groups of signal sources. See
“Simulating with Signal Groups” on page 8-92 for information on using signal
groups in a model.

Signal Builder Dialog Box
The Signal Builder block’s dialog box allows you to define the waveforms
of the signals output by the block. You can specify any waveform that is
piecewise linear.
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To open the dialog box, double-click the block. The Signal Builder dialog
box appears.

The Signal Builder dialog box allows you to create and modify signal groups
represented by a Signal Builder block. The Signal Builder dialog box
includes the following controls.

Group Panes
Displays the set of interchangeable signal source groups represented by the
block. The pane for each group displays an editable representation of the
waveform of each signal that the group contains. The name of the group
appears on the pane’s tab. Only one pane is visible at a time. To display
a group that is invisible, select the tab that contains its name. The block
outputs the group of signals whose pane is currently visible.
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Signal Axes
The signals appear on separate axes that share a common time range
(see “Signal Builder Time Range” on page 8-90). This allows you to easily
compare the relative timing of changes in each signal. The Signal Builder
automatically scales the range of each axis to accommodate the signal that
it displays. Use the Signal Builder’s Axes menu to change the time (T) and
amplitude (Y) ranges of the selected axis.

Signal List
Displays the names and visibility (see “Editing Signals” on page 8-81) of the
signals that belong to the currently selected signal group. Clicking an entry in
the list selects the signal. Double-clicking a signal’s entry in the list hides or
displays the signal’s waveform on the group pane.

Selection Status Area
Displays the name of the currently selected signal and the index of the
currently selected waveform segment or point.

Waveform Coordinates
Displays the coordinates of the currently selected waveform segment or point.
You can change the coordinates by editing the displayed values (see “Editing
Waveforms” on page 8-84).

Name
Name of the currently selected signal. You can change the name of a signal by
editing this field (see “Renaming a Signal” on page 8-83).

Index
Index of the currently selected signal. The index indicates the output port at
which the signal appears. An index of 1 indicates the topmost output port, 2
indicates the second port from the top, and so on. You can change the index of
a signal by editing this field (see “Changing a Signal’s Index” on page 8-83).

Help Area
Displays context-sensitive tips on using Signal Builder dialog box features.
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Editing Signal Groups
The Signal Builder dialog box allows you to create, rename, move, and delete
signal groups from the set of groups represented by a Signal Builder block.

Creating and Deleting Signal Groups
To create a signal group, you must copy an existing signal group and then
modify it to suit your needs. To copy an existing signal group, select its tab
and then select Copy from the Signal Builder’s Group menu. To delete a
group, select its tab and then select Delete from the Group menu.

Renaming Signal Groups
To rename a signal group, select the group’s tab and then select Rename from
the Signal Builder’s Group menu. A dialog box appears. Edit the existing
name in the dialog box or enter a new name. Click OK.

Moving Signal Groups
To reposition a group in the stack of group panes, select the pane and then
select Move Right from the Signal Builder’s Group menu to move the group
lower in the stack or Move Left to move the pane higher in the stack.

Editing Signals
The Signal Builder dialog box allows you to create, cut and paste, hide,
and delete signals from signal groups.

Creating Signals
To create a signal in the currently selected signal group, select New from the
Signal Builder’s Signal menu. A menu of waveforms appears. The menu
includes a set of standard waveforms (Constant, Step, etc.) and a Custom
waveform option. Select one of the waveforms. If you select a standard
waveform, the Signal Builder adds a signal having that waveform to the
currently selected group.
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If you select Custom, a custom waveform dialog box appears.

The dialog box allows you to specify a custom piecewise linear waveform to be
added to the groups defined by the Signal Builder block. Enter the custom
waveform’s time coordinates in the Time values field and the corresponding
signal amplitudes in the Y values field. The entries in either field can be any
MATLAB® expression that evaluates to a vector. The resulting vectors must
be of equal length. Click OK. The Signal Builder adds a signal having the
specified waveform to the currently selected group.

Copying and Pasting Signals
To copy a signal from one group and paste it into another group as a new
signal:

1 Select the signal you want to copy.

2 Select Copy from the Signal Builder’s Edit menu or click the corresponding
button from the toolbar.

3 Select the group into which you want to paste the signal.

4 Select Paste from the Signal Builder’s Edit menu or click the corresponding
button on the toolbar.

To copy a signal from one axes and paste it into another axes to replace its
signal:

1 Select the signal you want to copy.
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2 Select Copy from the Signal Builder’s Edit menu or click the corresponding
button from the toolbar.

3 Select the signal on the axes that you want to replace.

4 Select Paste from the Signal Builder’s Edit menu or click the corresponding
button on the toolbar.

Deleting Signals
To delete a signal, select the signal and choose Delete or Cut from the Signal
Builder’s Edit menu. As a result, Simulink deletes the signal from the current
group. Since each signal group must contain the same number of signals,
Simulink also deletes all signals sharing the same index in the other groups.

Renaming a Signal
To rename a signal, select the signal and choose Rename from the Signal
Builder’s Signal menu. A dialog box appears with an edit field that displays
the signal’s current name. Edit or replace the current name with a new name.
Click OK. Or edit the signal’s name in the Name field in the lower-left corner
of the Signal Builder dialog box.

Changing a Signal’s Index
To change a signal’s index, select the signal and choose Change Index
from the Signal Builder’s Signal menu. A dialog box appears with an edit
field containing the signal’s existing index. Edit the field and select OK.
Or select an index from the Index list in the lower-left corner of the Signal
Builder window.
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Hiding Signals
By default, the Signal Builder dialog box displays the waveforms of a group’s
signals in the group’s tabbed pane. To hide a waveform, select the waveform
and then select Hide from the Signal Builder’s Signal menu. To redisplay
a hidden waveform, select the signal’s Group pane, then select Show from
the Signal Builder’s Signal menu to display a menu of hidden signals. Select
the signal from the menu. Alternatively, you can hide and redisplay a hidden
waveform by double-clicking its name in the Signal Builder’s signal list (see
“Signal List” on page 8-80).

Editing Waveforms
The Signal Builder dialog box allows you to change the shape, color, and line
style and thickness of the signal waveforms output by a signal group.

Reshaping a Waveform
The Signal Builder dialog box allows you to change the shape of a waveform
by selecting and dragging its line segments and points with the mouse or
arrow keys or by editing the coordinates of segments or points.
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Selecting a Waveform. To select a waveform, left-click the mouse on any
point on the waveform.

The Signal Builder displays the waveform’s points to indicate that the
waveform is selected.

To deselect a waveform, left-click any point on the waveform graph that is not
on the waveform itself or press the Esc key.

8-85



8 Working with Signals

Selecting points. To select a point of a waveform, first select the waveform.
Then position the mouse cursor over the point. The cursor changes shape to
indicate that it is over a point.

Left-click the point with the mouse. The Signal Builder draws a circle around
the point to indicate that it is selected.

To deselect the point, press the Esc key.
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Selecting Segments. To select a line segment, first select the waveform that
contains it. Then left-click the segment. The Signal Builder thickens the
segment to indicate that it is selected.

To deselect the segment, press the Esc key.

Moving Waveforms. To move a waveform, select it and use the arrow keys
on your keyboard to move the waveform in the desired direction. Each key
stroke moves the waveform to the next location on the snap grid (see “Snap
Grid” on page 8-88) or by 0.1 inches if the snap grid is not enabled.
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Dragging Segments. To drag a line segment to a new location, position the
mouse cursor over the line segment. The mouse cursor changes shape to show
the direction in which you can drag the segment.

Press the left mouse button and drag the segment in the direction indicated
to the desired location. You can also use the arrow keys on your keyboard
to move the selected line segment.

Dragging points. To drag a point along the signal amplitude (vertical) axis,
move the mouse cursor over the point. The cursor changes shape to a circle to
indicate that you can drag the point. Drag the point parallel to the y-axis to
the desired location. To drag the point along the time (horizontal) axis, press
the Shift key while dragging the point. You can also use the arrow keys on
your keyboard to move the selected point.

Snap Grid. Each waveform axis contains an invisible snap grid that
facilitates precise positioning of waveform points. The origin of the snap grid
coincides with the origin of the waveform axis. When you drop a point or
segment that you have been dragging, the Signal Builder moves the point or
the segment’s points to the nearest point or points on the grid, respectively.
The Signal Builder’s Axes menu allows you to specify the grid’s horizontal
(time) axis and vertical (amplitude) axis spacing independently. The finer the
spacing, the more freedom you have in placing points but the harder it is to
position points precisely. By default, the grid spacing is 0, which means that
you can place points anywhere on the grid; i.e., the grid is effectively off. Use
the Axes menu to select the spacing that you prefer.
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Inserting and Deleting points. To insert a point, first select the waveform.
Then hold down the Shift key and left-click the waveform at the point where
you want to insert the point. To delete a point, select the point and press
the Del key.

Editing Point Coordinates. To change the coordinates of a point, first select
the point. The Signal Builder displays the current coordinates of the point in
the Left Point edit fields at the bottom of the Signal Builder dialog box. To
change the amplitude of the selected point, edit or replace the value in the
Y field with the new value and press Enter. The Signal Builder moves the
point to its new location. Similarly edit the value in the T field to change
the time of the selected point.

Editing Segment Coordinates. To change the coordinates of a segment,
first select the segment. The Signal Builder displays the current coordinates
of the endpoints of the segment in the Left Point and Right Point edit fields
at the bottom of the Signal Builder dialog box. To change a coordinate, edit
the value in its corresponding edit field and press Enter.

Changing the Color of a Waveform
To change the color of a signal waveform, select the waveform and then select
Color from the Signal Builder’s Signal menu. The Signal Builder displays
the MATLAB color chooser. Choose a new color for the waveform. Click OK.

Changing a Waveform’s Line Style and Thickness
The Signal Builder can display a waveform as a solid, dashed, or dotted line.
It uses a solid line by default. To change the line style of a waveform, select
the waveform, then select Line Style from the Signal Builder’s Signal menu.
A menu of line styles pops up. Select a line style from the menu.

To change the line thickness of a waveform, select the waveform, then select
Line Width from the Signal menu. A dialog box appears with the line’s
current thickness. Edit the thickness value and click OK.
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Signal Builder Time Range
The Signal Builder’s time range determines the span of time over which its
output is explicitly defined. By default, the time range runs from 0 to 10
seconds. You can change both the beginning and ending times of a block’s time
range (see “Changing a Signal Builder’s Time Range” on page 8-90).

If the simulation starts before the start time of a block’s time range, the
block extrapolates its initial output from its first two defined outputs. If the
simulation runs beyond the block’s time range, the block by default outputs
values extrapolated from the last defined signal values for the remainder of
the simulation. The Signal Builder’s Simulation Options dialog box allows
you to specify other final output options (see “Signal values after final time”
on page 8-93 for more information).

Changing a Signal Builder’s Time Range
To change the time range, select Change Time Range from the Signal
Builder’s Axes menu. A dialog box appears.

Edit the Min time and Max time fields as necessary to reflect the beginning
and ending times of the new time range, respectively. Click OK.
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Exporting Signal Group Data
To export the data that define a Signal Builder block’s signal groups to the
MATLAB workspace, select Export to Workspace from the block’s File
menu. A dialog box appears.

The Signal Builder exports the data by default to a workspace variable named
channels. To export to a differently named variable, enter the variable’s
name in the Variable name field. Click OK. The Signal Builder exports the
data to the workspace as the value of the specified variable.

The exported data is an array of structures. The structure’s xData and yData
fields contain the coordinate points defining signals in the currently selected
signal group. You can access the coordinate values defining signals associated
with other signal groups from the structure’s allXData and allYData fields.

Printing, Exporting, and Copying Waveforms
The Signal Builder dialog box allows you to print, export, and copy the
waveforms visible in the active signal group.

To print the waveforms to a printer, select Print from the block’s File menu.

You can also export the waveforms to other destinations by using the Export
option from the block’s File menu. From this submenu, select one of the
following destinations:

• To File — Converts the current view to a graphics file.

Select the format of the graphics file from the Save as type drop-down list
on the resulting Export dialog box.

• To Figure — Converts the current view to a MATLAB figure window.
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To copy the waveforms to the system clipboard for pasting into other
applications, select Copy Figure To Clipboard from the block’s Edit menu.

Simulating with Signal Groups
You can use standard simulation commands to run models containing Signal
Builder blocks or you can use the Signal Builder’s Run all command (see
“Running All Signal Groups” on page 8-92).

Activating a Signal Group
During a simulation, a Signal Builder block always outputs the active signal
group. The active signal group is the group selected in the Signal Builder
dialog box for that block, if the dialog box is open, otherwise the group that
was selected when the dialog box was last closed. To activate a group, open
the group’s Signal Builder dialog box and select the group.

Running Different Signal Groups in Succession
The Signal Builder’s toolbar includes the standard Simulink buttons for
running a simulation. This facilitates running several different signal groups
in succession. For example, you can open the dialog box, select a group, run a
simulation, select another group, run a simulation, etc., all from the Signal
Builder’s dialog box.

Running All Signal Groups
To run all the signal groups defined by a Signal Builder block, open the block’s
dialog box and click the Run all button

from the Signal Builder’s toolbar. The Run all command runs a series of
simulations, one for each signal group defined by the block. If you installed
Simulink Verification and Validation on your system and are using the Model
Coverage Tool, the Run all command configures the tool to collect and save
coverage data for each simulation in the MATLAB workspace and display a
report of the combined coverage results at the end of the last simulation.
This allows you to quickly determine how well a set of signal groups tests
your model.
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Note To stop a series of simulations started by the Run all command, enter
Ctrl+C at the MATLAB command line.

Simulation Options Dialog Box
The Simulation Options dialog box allows you to specify simulation options
pertaining to the Signal Builder. To display the dialog box, select Simulation
Options from the Signal Builder’s File menu. The dialog box appears.

The dialog box allows you to specify the following options.

Signal values after final time
The setting of this control determines the output of the Signal Builder block if
a simulation runs longer than the period defined by the block. The options are

• Hold final value
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Selecting this option causes the Signal Builder block to output the last
defined value of each signal in the currently active group for the remainder
of the simulation.

• Extrapolate

Selecting this option causes the Signal Builder block to output values
extrapolated from the last defined value of each signal in the currently
active group for the remainder of the simulation.

• Set to zero
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Selecting this option causes the Signal Builder block to output zero for the
remainder of the simulation.

Sample time
Determines whether the Signal Builder block outputs a continuous (the
default) or a discrete signal. If you want the block to output a continuous
signal, enter 0 in this field. For example, the following display shows
the output of a Signal Builder block set to output a continuous Gaussian
waveform over a period of 10 seconds.
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If you want the block to output a discrete signal, enter the sample time of
the signal in this field. The following example shows the output of a Signal
Builder block set to emit a discrete Gaussian waveform having a 0.5 second
sample time.

Enable zero crossing
Specifies whether the Signal Builder block detects zero-crossing events
(enabled by default). For more information, see “Zero-Crossing Detection”
on page 2-20.
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About Composite Signals
A composite signal is a signal that is composed of other signals. It is analogous
to a bundle of wires held together by tie wraps. Composite signals have only
one purpose: to reduce visual complexity by grouping signals that run in
parallel over some or all of their course. For information about individual
signals, as distinct from the composite signals described in this chapter, see
“Signal Basics” on page 8-3.

Two types of composite signals are provided by the Simulink® software:
muxes and buses. Muxes are simpler and easier to use, but provide only a
limited subset of the capabilities of buses. The two types perform similarly
where their capabilities overlap, but they differ architecturally. Muxes are the
older type, and are supported for compatibility with existing applications. In
general, new applications should use buses. Existing applications that use
muxes can be left unchanged or converted to use buses.

Many composite signals are virtual: they exist only graphically, and have no
effect on simulation or generated code. All muxes are virtual, but a bus can
be virtual or nonvirtual. Nonvirtual buses usually do not affect the results
of simulation. They appear as structures in generated code and can affect
generated code performance. See “Virtual and Nonvirtual Buses” on page
9-30 for details.

In some cases, muxes and buses can be intermixed; implicit conversion occurs
when needed. However, as a rule you should not intermix muxes and buses.
The practice may become unsupported in the future, and should not be used
in new applications. Diagnostics are provided that report cases where muxes
are mixed with buses, and includes capabilities that you can use to upgrade
a model to eliminate such mixtures. This chapter describes these and other
composite signal capabilities.
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Using Muxes
A mux is an indexed vector that implements a composite signal. In the
Simulink® software documentation, indexed vectors are also called “vectors”
and “wide signals”, and both “mux” and “vector” appear in GUI labels and API
names. The underlying software construct, an indexed vector, is always the
same; the difference is the context in which the construct appears.

Mux signals are virtual signals, and the blocks that manipulate muxes are
virtual blocks. All signals in a mux must have the same attributes. The Signal
Routing library provides two blocks that you can use for implementing muxes:

Mux
Combine several input signals into a mux signal

Demux
Extract and output the elements of a mux signal

To create a mux signal:

1 Clone a Mux and Demux block from the Signal Routing library.

2 Set the Mux blocks Number of inputs and the Demux block’s Number of
outputs properties to the desired values.

3 Connect the Mux, Demux, and other blocks as needed to implement the
desired composite signal.

The next figure shows three signals that are input to a Mux block, transmitted
as a mux signal to a Demux block, and output as separate signals.
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The Mux and Demux blocks are the left and right vertical bars, respectively.
Consistent with the goal of reducing visual complexity, neither block displays
a name. The line connecting the blocks, representing the mux signal, is wide
because the model has been built with Format > Port/Signal Displays >
Wide Nonscalar Lines enabled in the model menu. See “Displaying Signal
Properties” on page 8-73 for details.

Because the Mux and Demux blocks are virtual blocks, and a mux signal is a
virtual signal, they have no effect on simulation or code generation. Thus the
simulation results and generated code for the above model would be exactly
the same if the Mux blocks were eliminated and the mux signal replaced
by three nonvirtual signals:

Signals input to a Mux block can be virtual composite signals, but the resulting
mux is flat, not hierarchical. The signals in the mux appear in the order in
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which they were input to the Mux block. Use a bus rather than a mux if you
want to nest composite signals. See “Using Buses” on page 9-5 for details.

Signals input to a Mux block should all have the same attributes. If they do
not, the block will output a bus rather than a mux, unless you have configured
the model to disable this practice. The MathWorks discourages using Mux
blocks to create buses. See “Intermixing Composite Signal Types” on page
9-37 for details.

If a Demux block has more outputs than the number of signals in the input
mux, an error occurs. A Demux block can have fewer outputs than the number
of signals in the input mux. See the Demux block documentation for details.

A Demux block can input a bus unless you have configured the model to
disable this practice. The MathWorks discourages using Demux blocks to
access buses. See “Intermixing Composite Signal Types” on page 9-37 for
details.

Using Buses

In this section...

“Introduction” on page 9-5

“Creating and Accessing a Bus” on page 9-6

“Nesting Buses” on page 9-7

“Bus-Capable Blocks” on page 9-8

“Circular Bus Definitions” on page 9-8

Introduction
A bus is a composite signal that is implemented as a hierarchical structure.
The components of a bus can have different attributes and can themselves be
composite signals (buses or muxes). Bus signals can be virtual or nonvirtual;
see “Virtual and Nonvirtual Buses” on page 9-30 for details. The Signal
Routing library provides three blocks that you can use for implementing buses:
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Bus Creator
Create a bus that contains specified elements

Bus Assignment
Replace specified bus elements.

Bus Selector
Select elements from a bus.

Each of these blocks is virtual or nonvirtual depending on whether the bus it
processes is virtual or nonvirtual. The Simulink® software chooses the block
type, and changes it automatically if the bus type changes.

Creating and Accessing a Bus
To create and access a bus signal with default properties:

1 Clone a Bus Creator and Bus Selector block from the Signal Routing library.

2 Connect the Bus Creator, Bus Selector, and other blocks as needed to
implement the desired composite signal.

The next figure shows two signals that are input to a Bus Creator block,
transmitted as a bus signal to a Bus Selector block, and output as separate
signals.

The Bus Creator and Bus Selector blocks are the left and right vertical
bars, respectively. Consistent with the goal of reducing visual complexity,
neither block displays a name. The line connecting the blocks, representing
the bus signal, is tripled because the model has been built, and the middle
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line is solid because the bus is virtual. The line would be dashed if the bus
were nonvirtual:

Virtual Bus

Nonvirtual Bus

See “Signal Line Styles” on page 8-7 for more about the graphical appearance
of signals. You can also display other signal characteristics graphically,
as described under “Displaying Signal Properties” on page 8-73. For
more information about creating and accessing buses, see the reference
documentation for the Bus Creator, Bus Selector, and Bus Assignment blocks.

Nesting Buses
Buses can be nested to any depth. The Simulink software automatically
handles most of the complexities involved. For example, the next figure shows
six signals nested into two buses, which are nested into one, followed by
separation into two buses and then into six separate signals:

The six signals retain their separate identities just as if no bus creation and
selection occurred, as shown by the Display and Scope blocks.

9-7



9 Using Composite Signals

Specifying nonvirtual buses, like those in the previous figure, requires only
cloning blocks, setting parameters, and connecting signals. Bus Creator and
Bus Selector blocks have two ports by default. See the Bus Creator and Bus
Selector block documentation for information about how to specify buses of
different widths.

Bus-Capable Blocks
A bus-capable block is a block through which both virtual and nonvirtual
buses can propagate. All virtual blocks are bus-capable. The following
nonvirtual blocks are also bus-capable:

• Memory

• Merge

• Switch

• Multiport Switch

• Rate Transition

• Unit Delay

• Zero-Order Hold

Some bus-capable blocks impose constraints on bus propagation through
them. See the documentation for the blocks in Blocks-Alphabetical List for
more information.

Circular Bus Definitions
The ability to include a bus as an element of another bus creates the possibility
of a loop of Bus Creator blocks, Bus Selector blocks, and bus-capable blocks
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that inadvertently includes a bus as an element of itself. The resulting
circular definition cannot be resolved and therefore causes an error.

The error message that appears specifies the location at which the Simulink
software determined that the circular structure exists. The error is not
really at any one location: the structure as a whole is in error. Nonetheless,
the location cited in the error message can be useful for beginning to trace
the definition cycle, the structure of which may not be obvious on visual
inspection.

1 Begin by selecting a signal line associated with the location cited in the
error message.

2 Choose Highlight to Source or Highlight to Destination from the
signal’s Context menu. (See “Displaying Signal Sources and Destinations”
on page 8-18 for more information.)

3 Continue choosing signals and highlighting their sources and destinations
until the cycle becomes clear.

4 Restructure the model as needed to eliminate the circular bus definition.

Because the problem is a circular definition rather than a circular
computation, the cycle cannot be broken by inserting additional blocks, in the
way that an algebraic loop can be broken by inserting a Unit Delay block.
No alternative exists but to restructure the model to eliminate the circular
bus definition.
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Using the Bus Editor

In this section...

“Introduction” on page 9-10

“Opening the Bus Editor” on page 9-11

“Displaying Bus Objects” on page 9-12

“Creating Bus Objects” on page 9-14

“Creating Bus Elements” on page 9-16

“Nesting Bus Definitions” on page 9-19

“Changing Bus Entities” on page 9-22

“Exporting Bus Objects” on page 9-26

“Importing Bus Objects” on page 9-27

“Closing the Bus Editor” on page 9-28

Introduction
The Simulink® Bus Editor is a tool similar to the Model Explorer, but is
customized for use with bus objects. You can use the Simulink Bus Editor to:

• Create new bus objects and elements

• Navigate, change, and nest bus objects

• Import existing bus objects from an M-file or MAT-file

• Export bus objects to an M-file or MAT-file

For a description of buses and their use, see “Using Buses” on page 9-5. For a
description of bus objects and their use, see .

Base Workspace Bus Objects
All bus objects exist in the MATLAB® base workspace. Bus Editor actions
take effect in the base workspace immediately, and can be used by Simulink
models as soon as each action is complete. The Bus Editor does not have a
workspace of its own: it acts only on the base workspace. Bus Editor actions
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do not directly affect bus object definitions in saved M-files or MAT-files. To
save changed bus object definitions, export them from the base workspace into
M-files or MAT-files, as described in “Exporting Bus Objects” on page 9-26.

Opening the Bus Editor
You can open the Bus Editor in any of these ways:

• Select Bus Editor from the model editor’s Tools menu.

• Click the Launch Bus Editor button on a bus object’s dialog box in the
Model Explorer.

• Enter buseditor at the command line of the MATLAB software.

After you have performed any of these actions, the Bus Editor appears. If no
bus objects exist, the Bus Editor looks like this:

The Bus Editor provides menu choices that you can use to execute all Bus
Editor commands. The editor also provides toolbar icons and keyboard
shortcuts for all commonly used commands, including the standard MATLAB
GUI shortcuts for Cut, Copy, Paste, and Delete. The Toolbar Tip for each icon
describes the command, and the menu entry for each command shows any
shortcut. The icons for commands that are specific to the Bus Editor are as
follows:
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Command Icon Description

Import Import the contents of
an M-file or MAT-file
into the base workspace.

Export Export all bus objects
and elements to an
M-file or MAT-file.

Create Create a new bus object
in the base workspace.

Insert Add a bus element below
the currently selected
bus entity.

Move Up Move the selected
element up in the list of
a bus object’s elements.

Move Down Move the selected
element down in the
list of a bus object’s
elements.

For brevity, this section refers only to menu commands. You can use toolbar
icons and keyboard shortcuts instead wherever that is convenient.

Displaying Bus Objects
The Bus Editor is similar to the Model Explorer (which can display bus objects
but cannot edit them) and uses the same three panes to display bus objects:

• Hierarchy pane (left) — Displays the bus objects defined in the base
workspace

• Contents pane (center) — Displays the elements of the bus object selected
in the Hierarchy pane

• Dialog pane (right) — Displays for editing the current selection in the
Contents or Hierarchy pane
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Hierarchy Pane
If no bus objects exist in the base workspace, the Hierarchy pane shows only
Base Workspace, which is the root of the hierarchy of bus objects. The Bus
Editor than looks as shown in the previous figure. As you create or import
bus objects, they appear in the Hierarchy Pane as nodes subordinate to Base
Workspace. The bus objects appear in alphabetical order. The next figure
shows the Bus Editor with two bus objects, control and main, defined in
the base workspace:

The Hierarchy pane displays each bus object as an expandable node. The root
of the node displays the name of the bus object, and (if the bus contains any
elements) a button for expanding and collapsing the node. Expanding a bus
node displays named subnodes that represent the bus’s top-level elements.
In the preceding figure, both bus objects are fully expanded , and control is
selected.

Contents Pane
Selecting any top-level bus object in the Hierarchy Pane displays the object’s
elements in the Contents pane. In the previous figure, the elements of bus
object control, valve1 and valve2, appear. Each element’s properties appear
to the right of the element’s name. These properties are editable, and you can
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edit the properties of multiple elements in one operation, as described in
“Editing in the Contents Pane” on page 9-22.

Dialog Pane
When a bus object is selected in the Hierarchy pane, or a bus object or element
is selected in the Contents pane, the properties of the selected item appear in
the Dialog pane. In the previous figure, valve1 is selected in the Contents
pane, so the Dialog pane shows its properties. These properties are editable,
and changes can be reverted or applied using the buttons below the Dialog
pane, as described in “Editing in the Dialog Pane” on page 9-24.

Creating Bus Objects
To use the Bus Editor to create a new bus object in the base workspace:

1 Choose File > Add Bus.

A new bus object with a default name and properties is created immediately
in the base workspace. The object appears in the Hierarchy pane, and its
default properties appear in the Dialog pane:
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2 To specify the bus object name and other properties, in the Dialog pane:

a Specify the Name of the of the new bus object (or you can retain the
default name). The name must be unique in the base workspace.

b Optionally, specify a C Header file that defines a user-defined type
corresponding to this bus object. This header file has no effect on
Simulink simulation; it is used only by Real-Time Workshop® software to
generate code.

c Optionally, specify a Description that provides information about the
bus object to human readers. This description has no effect on Simulink
simulation; it exists only for human convenience.

3 Click Apply.

The properties of the bus object on the base workspace change as specified.
If you rename BusObject to main, the Bus Editor looks like this:

You can use Add Bus at any time to create a new bus object in the base
workspace, then set the name and properties of the object as needed. You can
intermix creating bus objects and specifying their properties in any order. The
hierarchy pane reorders as needed to display all bus objects in alphabetical
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order. If you add an additional bus object named control, the Bus Editor
looks like this:

Creating Bus Elements
Every bus element belongs to a specific bus. To create a new bus element:

1 In the Hierarchy pane, select the entity below which to create the new
element. The entity can be a bus or a bus element. The new element
will belong to the selected bus object, or to the bus object that contains
the selected element. The previous figure shows the control bus object
selected.

2 Choose File > Add/Insert Bus Element.

A new bus element with a default name and properties is created
immediately in the applicable bus object. The object appears in the
Hierarchy pane immediately below the previously selected entity, and its
default properties appear in the Dialog pane:
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3 To specify the bus element name and other properties, in the Dialog pane:

a Specify the Name of the of the new bus element (or you can retain the
default name). The name must be unique among the elements of the
bus object.

b Specify the other properties of the element. These must match exactly
the properties of the corresponding signal within the bus, and can be
anything that a legal signal might have. The Data Type Assistant
appears in the Dialog pane to help specify the element’s data type. You
can specify any available data type, including a user-defined data type.

4 Click Apply.

The properties of the bus element of the bus object in the base workspace
change as specified. If you rename the new element a to valve1, the Bus
Editor looks like this:
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You can use Add/Insert Bus Element at any time to create a new bus
element in any bus object. You can intermix creating bus objects and
specifying their properties in any order. The order of the other bus elements
in the bus object does not change when a new element is added. If you add
element valve2 to control, and secondary and primary to main, the Bus
Editor looks like this:
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Nesting Bus Definitions
As described in “Nesting Buses” on page 9-7, any signal in a bus can be
another bus, which can in turn contain subordinate buses, and so on to any
depth. Describing nested buses with bus objects requires nesting the bus
definitions that the objects provide.

Every bus object inherently defines a data type whose properties are those
specified by the object. To nest one bus definition in another, you assign to an
element of one bus object a data type that is defined by another bus object.
The element then represents a nested bus whose structure is given by the
bus object that provides its data type.

A data type defined by a bus object is called a bus type. Nesting buses by
assigning bus types to elements, rather than by subordinating the bus objects
that define the types, allows the same bus definition to be used conveniently
in multiple contexts without unwanted interactions. To specify that an
element of a bus object represents a nested bus definition:

1 Create a bus element to represent the nested bus definition, in the
appropriate position under the containing bus object, and give the element
the desired name. (You can also use an existing element.)
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2 Use the Dialog pane to set the data type of the element to the name of a bus
object. The Data Type Assistant shows the names of all available bus types.
(You can also specify a nonexistent bus type and define the object later.)

In the preceding figure, if you add to bus object main a third element named
valves, set the data type of valves to be control (the name of the other
defined bus object) and expand the new element valves, the Bus Editor looks
like this:

The bus object main shown in the Bus Editor now defines the same structure
used by the bus signal main in the next figure:
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The distinction between a bus object and the bus type that it defines can
be useful for initially understanding how nested bus objects work and how
the Bus Editor handles them. In other contexts, the distinction is mostly an
implementation detail, and describing bus objects themselves as being nested
is more convenient. The rest of this chapter follows that convention.

You can nest a bus object in as many different bus objects as desired, and as
many times in the same bus object as desired. You can nest bus objects to any
depth, but you cannot define a circular structure by directly or indirectly
nesting a bus object within itself. If you try to define a circular structure, the
Bus Editor posts a Notice and sets the data type of the element that would
have created the cycle to double. Click OK to dismiss the Notice and continue
using the editor.

You can use the Hierarchy pane to explore nested bus objects by expanding
the objects, but you cannot change any property of a bus object anywhere that
it appears in nested form. To change the properties of a nested bus object,
you must change the source object, which is accessible at the top level in
the Hierarchy pane.

You can jump from a nested bus object to the source object by selecting the
nested object and choosing Go to ’element’ from its Context menu.
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Changing Bus Entities

You can use the Bus Editor to change and delete existing bus objects and
elements at any time. All three panes allow you to change the entities that
they display. Changes that create, reorder, or delete entities take effect
immediately in the base workspace. Changes to properties take effect when
you Apply them, or can be Canceled, leaving the properties unchanged. The
Bus Editor does not provide an Undo capability.

The Bus Editor provides comprehensive GUI capabilities for changing bus
entities. You can Cut, Copy, and Paste within and between panes in any way
that has a legal result. The Hierarchy and Dialog panes provide a Context
menu for the current selection. Pasting a Copied entity always creates a
copy, as distinct from a pointer to the original. The Bus Editor automatically
changes names when needed to avoid duplication. The rest of this section
describes capabilities that are specific to one of the Bus Editor panes.

Editing in the Hierarchy pane
As you use the Bus Editor, the Hierarchy pane automatically reorders the bus
objects it displays to maintain alphabetical order. This behavior cannot be
changed. However, the elements under a bus object can appear in any order.
To change that order, cut and paste elements as needed, or move elements up
and down as follows:

1 Select the element to be moved.

2 Choose Edit > Move Element Up or Edit > Move Element Down.

You cannot Paste one bus object under another to create a nested bus object
specification. To specify a nested bus, you must change the data type of a bus
element to be the type of an existing bus object, as described in “Nesting
Buses” on page 9-7.

Editing in the Contents Pane
Selecting any top-level bus object in the Hierarchy Pane displays the object’s
elements in the Contents pane. Each element’s properties appear to the right
of the element’s name, and can be edited. To change a property displayed in
the Contents pane, click the value, enter a new value, then press Return.
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Choose View > Dialog View to hide the Dialog pane to provide more room
to display properties in the Contents pane. Choose the command again to
redisplay the Dialog pane.

You can use the mouse and keyboard to select multiple elements in the
Contents pane. The selected entities need not be contiguous. You can then
perform any operation that you could on a single entity selected in the pane,
including operations performed with the Context menu. Clicking and editing
a value in any selected element changes that value in them all.

The next figure shows the Bus Editor with Dialog View enabled, two
elements selected in the Contents pane, and the DataType property selected
for editing in the second element:

If you change the value of DataType to single and press Return, the value
changes for both elements. The effect is the same no matter which element
you edit in a multiple selection:
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Editing in the Dialog Pane
When a bus object is selected in the Hierarchy pane, or a bus object or element
is selected in the Contents pane, the properties of the selected item appear in
the Dialog pane. In the next figure, valve1 is selected in the Contents pane,
so the Dialog pane shows its properties:
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The properties shown in the Dialog pane are editable, and the pane includes
the Data Type Assistant. Click Apply to save changes, or Revert to cancel
them and restore the values that existed before any unapplied changes. You
can edit only one element at a time in the Dialog pane. If multiple entities are
selected in the Contents pane, all fields in the Dialog pane are grayed out:
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If you use the Dialog pane to change any property of a bus entity, then
navigate elsewhere without clicking either Apply or Revert, a query box
appears by default. The query box asks whether to apply changes, ignore
changes, or continue as if the navigation had not been tried. You can suppress
this query for future operations by checking Never ask me again in the box,
or by selecting Options > Auto Apply/Ignore Dialog Changes.

If you suppress the query, and thereafter navigate away from a change
without clicking Apply or Revert, the Bus Editor automatically applies or
discards changes, depending on which action you most recently chose in the
box. You can re-enable the query box for future operations by deselecting
Options > Auto Apply/Ignore Dialog Changes.

Exporting Bus Objects
Like all base workspace objects, bus objects are not saved with a model that
uses them, but exist separately in an M-file or MAT-file. You can use the Bus
Editor to export some or all bus objects to either type of file.

• If you export bus objects to an M-file, the Bus Editor asks whether to store
them in object format or cell format (the default). Specify the desired
format.
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• If exporting would overwrite an existing M-file or MAT-file, a confirmation
dialog box appears. Confirm the export or cancel it and try a different
filename.

To export all bus objects from the base workspace to a file:

1 Choose File > Export to File.

The Export dialog box appears.

2 Specify the desired name and format of the export file.

3 Click Save.

All bus objects, and nothing else, are exported to the specified file in the
specified format.

To export only selected bus objects from the base workspace to a file:

1 Select a bus object in the Hierarchy pane, or one or more bus objects in the
Contents pane.

2 Right-click to display the Context menu.

3 Choose Export to File to export only the selected bus objects, or Export
with Related Bus Objects to File to also export any nested bus objects
used by the selected objects.

4 Use the Export dialog box to export the selected bus object(s).

Clicking the Export icon in the toolbar is equivalent to choosing File >
Export, which exports all bus objects whether or not any are selected.

Importing Bus Objects
You can use the Bus Editor to import the definitions in an M-file or MAT-file
to the base workspace. Importing an M-file or MAT-file imports the complete
contents of the file, not just any bus objects that it contains. If you import
a file not exported by the Bus Editor, be careful that it does not contain
unwanted definitions previously exported from the base workspace or created
programmatically.
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To import bus objects from a file to the base workspace:

1 Choose File > Import into Base Workspace.

2 Use the Open File dialog box to navigate to and import the desired file.

Before importing the file, the Bus Editor posts a warning that importing the
file will overwrite any variable in the base workspace that has the same name
as an entity in the file. Click Yes or No as appropriate.

Closing the Bus Editor
To close the Bus Editor, choose File > Close. Closing the Bus Editor neither
saves nor discards changes to bus objects, which remain unaffected in the
base workspace. However, if you also close MATLAB without saving changes
to bus objects, the changes will be lost. To save bus objects without saving
other base workspace contents, use the techniques described in “Exporting
Bus Objects” on page 9-26. You can also save bus objects using any MATLAB
technique that saves the contents of the base workspace, but the resulting file
will contain everything in the base workspace, not just bus objects.

You can configure the Bus Editor so that closing it posts a reminder to save
bus objects. To enable the reminder, select Options > Always Warn Before
Closing. When this option is selected and you try to close the Bus Editor,
a reminder appears that asks whether the editor should save bus objects
before closing. Click Yes to save bus objects and close, No to close without
saving bus objects, or Cancel to dismiss the reminder and continue in the
Bus Editor. You can disable the reminder by deselecting Options > Always
Warn Before Closing.
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Using the Bus Object API
The capabilities of the Bus Editor are also available programatically. Some
of these capabilities, like importing and exporting M-files and MAT-files, are
not specific to bus objects, and are described elsewhere in the MATLAB® and
Simulink® documentation. The Simulink software provides the following API
functions for use specifically with bus objects (class Simulink.Bus) and bus
elements (class Simulink.BusElement):

Simulink.Bus.cellToObject
Convert a cell array containing bus information to bus objects in the
base workspace

Simulink.Bus.createObject
Create bus objects for blocks, optionally saving them in an M-file in a
specified format

Simulink.Bus.save
Export specified bus objects or all bus objects from the base workspace
to an M-file in a specified format

In addition, when you use Simulink.SubSystem.convertToModelReference
to convert an atomic subsystem to a referenced model, you can save any bus
objects created during the conversion to an M-file.
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Virtual and Nonvirtual Buses

In this section...

“Introduction” on page 9-30

“Creating Nonvirtual Buses” on page 9-31

Introduction
A bus signal can be virtual, meaning that it is just a graphical convenience
that has no functional effect, or nonvirtual, meaning that the signal occupies
its own storage. During simulation, a block connected to a virtual bus reads
inputs and writes outputs by accessing the memory allocated to the component
signals. These signals are typically noncontiguous, and no intermediate
memory exists. Simulation results and generated code are exactly the same
as if the bus did not exist, which functionally it does not.

By contrast, a block connected to a nonvirtual bus reads inputs and writes
outputs by accessing copies of the component signals. The copies are
maintained in a contiguous area of memory allocated to the bus. Such a bus
is represented by a structure in generated code, which can be helpful when
tracing the correspondence between the model and the code.

Compared with nonvirtual buses, virtual buses reduce memory requirements
because they do not require a separate contiguous storage block, and execute
faster because they do not require copying data to and from that block.

Virtual buses are the default except where nonvirtual buses are explicitly
required. A nonvirtual subsystem needs bus objects on all bus inports and
outports, as described in and this section. Some nonvirtual subsystems
impose additional requirements on buses.

Some buses that are not directly connected to nonvirtual subsystems must be
nonvirtual also, as described in “Connecting Buses to Nonvirtual Subsystems”
on page 9-33 and “Connecting Buses to Root Level Inports” on page 9-33. Not
all blocks can accept buses. See “Bus-Capable Blocks” on page 9-8 for more
about which blocks can handle which types of buses. You can use a Signal
Conversion block to convert a nonvirtual bus to a virtual bus, and vice versa.
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When updating a diagram prior to simulation or code generation, the
Simulink® software automatically upgrades virtual to nonvirtual buses
where the upgrade prevents an error and does not cause any errors. The
upgrade consists of inserting hidden Signal Conversion blocks into the model
where needed. You can eliminate the need for the upgrade by specifying a
nonvirtual bus in the block where the bus originates, or by manually inserting
appropriate conversion blocks. The latter is generally unnecessary, but can be
useful to clarify the model.

Creating Nonvirtual Buses
Bus signals do not specify whether they are virtual or nonvirtual; they inherit
that specification from the block in which they originate. Every block that
creates or requires a nonvirtual bus must have an associated bus object.
Those blocks are:

• Bus Creator

• Inport

• Outport

To specify that a bus is nonvirtual:

1 Associate the block with a bus object, as described in .

2 Open the Block Parameters dialog of the Bus Creator, Inport, or Outport
block.

3 Do one of the following, depending on the type of the block:

• Bus Creator: Select Output as Virtual Bus.

• Inport: Select Signal Attributes > Output as nonvirtual bus.

• Outport: Select Signal Attributes > Output as nonvirtual bus in
parent model.

4 Click OK or Apply.
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Note All signals in a nonvirtual bus must have the same sample time, even
if the elements of the associated bus object specify inherited sample times.
Any bus operation that would result in a nonvirtual bus that violates this
requirement generates an error.

All buses and signals input to a Bus Creator block that outputs a nonvirtual
bus must therefore have the same sample time. You can use a Rate Transition
block to change the sample time of an individual signal, or of all signals in a
bus, to allow the signal or bus to be included in a nonvirtual bus.
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Connecting Buses to Nonvirtual Subsystems

In this section...

“Connecting Buses to Root Level Inports” on page 9-33

“Connecting Buses to Nonvirtual Inports” on page 9-33

“Connecting Multi-Rate Buses to Referenced Models” on page 9-35

Connecting Buses to Root Level Inports
If you want a root level Inport of a model to be able to produce a bus
signal, you must set the Inport’s Bus object parameter to the name of a
bus object that defines the type of bus that the Inport produces. See “Data
Object Classes” and the Simulink.Bus class in the Simulink® software
documentation for more information.

Connecting Buses to Nonvirtual Inports
Generally, an Inport block is a virtual block and hence accepts a bus as
input. However, an Inport block is nonvirtual if it resides in a conditionally
executed or atomic subsystem, including a referenced model, and it or any
of its components is directly connected to an output of the subsystem. In
such a case, the Inport block can accept a bus only if its components have the
same data type.

If the components are of differing data types, attempting to simulate the
model causes the Simulink software to halt the simulation and display an
error message. You can avoid this problem, without changing the semantics of
your model, by inserting a Signal Conversion block between the Inport block
and the Outport block to which it was originally connected.

Consider, for example, the following model:
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In this model, the Inport labeled nonvirtual is nonvirtual because it resides
in an atomic subsystem and one of its components (labeled a) is directly
connected to one of the subsystem’s outputs. Further, the bus connected to the
subsystem’s inputs has components of differing data types. As a result, this
model cannot be simulated.

Inserting a Signal Conversion block with the bus copy option selected breaks
the direct connection to the subsystem’s output and thereby enables the
Simulink software to simulate the model.
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Connecting Multi-Rate Buses to Referenced Models
In a model that uses a fixed-rate solver, referenced models can input only
single-rate buses. However, you can input the signals in a multi-rate bus to a
referenced model by inserting blocks into the parent and referenced model as
follows:

1 In the parent model: Insert a Rate Transition block to convert the
multi-rate bus to a single-rate bus. The Rate Transition block must specify
a rate in its Block Parameters > Output port sample time field unless
one of the following is true:

• The Configuration Parameters > Solver pane specifies a rate:

– Periodic sample time constraint is Specified

– Sample time properties contains the specified rate.
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• The Inport that accepts the bus in the referenced model specifies a rate
in its Block Properties > Signal Attributes > Sample time field.

2 In the referenced model: Use a Bus Selector block to pick out signals
of interest, and use Rate Transition blocks to convert the signals to the
desired rates.
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Intermixing Composite Signal Types

In this section...

“Differences Between Muxes and Buses” on page 9-37

“Using Diagnostics for Mixed Composite Signals” on page 9-38

“Using the Model Advisor for Mixed Composite Signals” on page 9-40

“Correcting Buses Used as Muxes” on page 9-42

“Bus to Vector Block Backward Compatibility ” on page 9-43

“Avoiding Mixed Composite Signals When Developing Models” on page 9-43

Differences Between Muxes and Buses
Muxes are implemented as indexed vectors, while buses are implemented
as structures. Buses can do anything muxes can do and more. See “Using
Muxes” on page 9-3 and “Using Buses” on page 9-5 for summaries of the two
capabilities and their similarities and differences.

For convenience, muxes and virtual buses can by default be intermixed where
automatic conversion is possible. Intermixed composite signals can occur only
with muxes and virtual buses where all constituent signals have the same
attributes and no nested buses exist. All intermixed composite signals fall
into one of two categories:

• Mux blocks used to create virtual buses, such as a Mux block that outputs
to a Bus Selector block

• Virtual bus signals treated as muxes, such as a bus signal that inputs
directly to a Gain block

Neither of these mixtures is compatible with strong type checking, so both
increase the likelihood of run-time errors. You should not mix muxes
and virtual buses in new applications, and you should upgrade existing
applications to avoid such mixtures. Configuration Parameters diagnostics,
Model Advisor checks, and other tools are provided for detecting and
correcting intermixed composite signals.
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Note Do not confuse intermixed composite signals with nested buses. A
mixed composite signal occurs only when some blocks treat a signal as a mux,
while other blocks treat that same signal as a bus. See “Nesting Buses” on
page 9-7 for information about including one bus within another.

Using Diagnostics for Mixed Composite Signals
Two controls are provided on the Diagnostics > Connectivity pane to detect
mixed composite signals:

• Mux blocks used to create bus signals

• Bus signal treated as vector

You can use these diagnostics as described in this section, or use the Model
Advisor to perform the same checks and also obtain advice about corrections,
as described in “Consulting the Model Advisor” on page 3-80. For complete
information about the Connectivity pane, see “Connectivity Diagnostics
Overview”.

Mux blocks used to create bus signals
To detect and correct muxes that are used as buses:

1 Set Configuration Parameters > Diagnostics > Connectivity > Buses
> Mux blocks used to create bus signals to warning or error.

2 Set Configuration Parameters > Diagnostics > Connectivity > Buses
> Bus signal treated as vector to none.

3 Click OK or Apply.

4 Build the model.
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5 Replace blocks as needed to correct any cases of Mux blocks used to create
buses. You can use the slreplace_mux function to replace all such Mux
blocks in a single operation.

For complete information about this option, see the reference documentation
for “Mux blocks used to create bus signals”.

Bus signal treated as vector
To detect and correct buses that are used as if they were muxes (vectors):

1 Correct any cases of Mux blocks used to create buses as described above.

2 Set Configuration Parameters > Diagnostics > Connectivity > Buses
> Mux blocks used to create bus signals to error.

3 Set Configuration Parameters > Diagnostics > Connectivity > Buses
> Bus signal treated as vector to warning or error.

4 Click OK or Apply.

5 Build the model.

6 Correct the model where needed as described under “Correcting Buses
Used as Muxes” on page 9-42.

For complete information about this option, see the reference documentation
for “Mux blocks used to create bus signals”.
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Note Bus signal treated as vector is disabled unless Mux blocks used to
create bus signals is set to error. Setting Bus signal treated as vector
to error has no effect unless you have previously corrected all cases of Mux
blocks used to create buses.

Equivalent Parameter Values
Due to the requirement that Mux blocks used to create bus signals be
error before Bus signal treated as vector is enabled, one parameter,
StrictBusMsg, can specify all permutations of the two controls. The
parameter can have one of five values. The following table shows these values
and the equivalent GUI control settings:

Value of StrictBusMsg
(API)

Mux blocks used to create
bus signals (GUI)

Bus signal treated as vector
(GUI)

None none none

Warning warning none

ErrorLevel1 error none

WarnOnBusTreatedAsVector error warning

ErrorOnBusTreatedAsVector error error

Using the Model Advisor for Mixed Composite
Signals
The Model Advisor provides a convenient way to run both composite signal
diagnostics and obtain advice about corrections. To use the Model Advisor to
detect and correct mixed composite signals:

1 Set Configuration Parameters > Diagnostics > Connectivity > Buses
> Mux blocks used to create bus signals to none.

9-40



Intermixing Composite Signal Types

2 Click OK or Apply.

3 Select and run the Model Advisor check Simulink > Check for proper
bus usage.

The Model Advisor reports any cases of Mux blocks used to create bus
signals.

4 Follow the Model Advisor’s suggestions to correct any errors reported by
the check. You can use the slreplace_mux function to replace all such
errors in a single operation.

5 Set Configuration Parameters > Diagnostics > Connectivity > Buses
> Mux blocks used to create bus signals to error.

6 Set Configuration Parameters > Diagnostics > Connectivity > Bus
signal treated as vector to none.

7 Click OK or Apply.

8 Again run the Model Advisor check Simulink > Check for proper bus
usage.

The Model Advisor reports any cases of bus signals treated as muxes
(vectors).
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9 Follow the Model Advisor’s suggestions and the information in “Correcting
Buses Used as Muxes” on page 9-42 to correct any errors discovered by
the check.

Instructions for using the Model Advisor appear in “Consulting the Model
Advisor” on page 3-80.

Correcting Buses Used as Muxes
When you discover a bus signal used as a mux, one answer is to reorganize the
model by replacing blocks so that the mixture no longer occurs. Where that is
undesirable or unfeasible, the Simulink® software provides two capabilities to
address the problem:

• The Bus to Vector block (Signal Attributes library), which you can insert
into any bus used implicitly as a mux to explicitly convert the bus to a
mux (vector).

• The Simulink.BlockDiagram.addBusToVector function, which
automatically inserts Bus to Vector blocks wherever needed.

For example, this figure shows a model that uses a bus as a mux by inputting
the bus to a Gain block.

This figure shows the same model, rebuilt after inserting a Bus to Vector
block into the bus.
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Note that the results of simulation are the same in either case. The Bus to
Vector block is virtual, and never affects simulation results, code generation,
or performance. For more information, see the reference documentation for
the Bus to Vector block and the Simulink.BlockDiagram.addBusToVector
function.

Bus to Vector Block Backward Compatibility
If you use Save As to save a model in a version of the Simulink product before
R2007a (V6.6), the following is done:

• Set the StrictBusMsg parameter to error if its value is
WarnOnBusTreatedAsVector or ErrorOnBusTreatedAsVector.

• Replace each Bus to Vector block in the model with a null subsystem that
outputs nothing.

The resulting model specifies strong type checking for Mux blocks used to
create buses. Before you can use the model, you must reconnect or otherwise
correct each signal that contained a Bus to Vector block but is now interrupted
by a null subsystem.

Avoiding Mixed Composite Signals When Developing
Models
The MathWorks discourages the use of mixed composite signals, and may
cease to support them at some future time. The MathWorks therefore
recommends upgrading existing models to eliminate any mixed composite
signals, and permanently setting Mux blocks used to create bus signals
and Bus signal treated as vector to error in all new models and all
existing models that may undergo further development.
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Note The Bus to Vector block is intended only for use in existing models to
facilitate the elimination of implicit conversion of buses into muxes. New
models and new parts of existing models should avoid mixing composite
signals, and should not use Bus to Vector blocks for any purpose.
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Working with Data Types

In this section...

“About Data Types” on page 10-2

“Data Types Supported by Simulink®” on page 10-3

“Fixed-Point Data” on page 10-4

“Block Support for Data and Numeric Signal Types” on page 10-6

“Creating Signals of a Specific Data Type” on page 10-6

“Specifying Block Output Data Types” on page 10-6

“Using the Data Type Assistant” on page 10-14

“Displaying Port Data Types” on page 10-24

“Data Type Propagation” on page 10-24

“Data Typing Rules” on page 10-25

“Typecasting Signals” on page 10-26

About Data Types
The term data type refers to the way in which a computer represents numbers
in memory. A data type determines the amount of storage allocated to a
number, the method used to encode the number’s value as a pattern of
binary digits, and the operations available for manipulating the type. Most
computers provide a choice of data types for representing numbers, each with
specific advantages in the areas of precision, dynamic range, performance,
and memory usage. To optimize performance, you can specify the data types
of variables used in the MATLAB® technical computing environment. The
Simulink® software builds on this capability by allowing you to specify the
data types of Simulink signals and block parameters.

The ability to specify the data types of a model’s signals and block parameters
is particularly useful in real-time control applications. For example, it allows
a Simulink model to specify the optimal data types to use to represent
signals and block parameters in code generated from a model by automatic
code-generation tools, such as the Real-Time Workshop® product. By choosing
the most appropriate data types for your model’s signals and parameters,
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you can dramatically increase performance and decrease the size of the code
generated from the model.

Simulink performs extensive checking before and during a simulation to
ensure that your model is typesafe, that is, that code generated from the model
will not overflow or underflow and thus produce incorrect results. Simulink
models that use the default data type (double) are inherently typesafe. Thus,
if you never plan to generate code from your model or use a nondefault data
type in your models, you can skip the remainder of this section.

On the other hand, if you plan to generate code from your models and use
nondefault data types, read the remainder of this section carefully, especially
the section on data type rules (see “Data Typing Rules” on page 10-25). In
that way, you can avoid introducing data type errors that prevent your model
from running to completion or simulating at all.

Data Types Supported by Simulink®

Simulink supports all built-in MATLAB data types except int64 and uint64.
The term built-in data type refers to data types defined by MATLAB itself as
opposed to data types defined by MATLAB users. Unless otherwise specified,
the term data type in the Simulink documentation refers to built-in data
types. The following table lists the built-in MATLAB data types supported
by Simulink.

Name Description

double Double-precision floating point

single Single-precision floating point

int8 Signed 8-bit integer

uint8 Unsigned 8-bit integer

int16 Signed 16-bit integer

uint16 Unsigned 16-bit integer

int32 Signed 32-bit integer

uint32 Unsigned 32-bit integer
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Besides the built-in types, Simulink defines a boolean (1 or 0) type, instances
of which are represented internally by uint8 values.

Many Simulink blocks also support fixed-point data types. See “Blocks —
Alphabetical List” in the online documentation for information on the data
types supported by specific blocks for parameter and input and output values.
If the documentation for a block does not specify a data type, the block inputs
or outputs only data of type double.

To view a table that summarizes the data types supported by the blocks in
the Simulink block libraries, execute the following command at the MATLAB
command line:

showblockdatatypetable

Fixed-Point Data
The Simulink software allows you to create models that use fixed-point
numbers to represent signals and parameter values. Use of fixed-point
data can reduce the memory requirements and increase the speed of code
generated from a model.

To execute a model that uses fixed-point numbers, you must have the
Simulink® Fixed Point™ product installed on your system. Specifically, you
must have the product to:

• Update a Simulink diagram (Ctrl+D) containing fixed-point data types

• Run a model containing fixed-point data types

• Generate code from a model containing fixed-point data types

• Log the minimum and maximum values produced by a simulation

• Automatically scale the output of a model using the autoscaling tool

If the Simulink Fixed Point product is not installed on your system, you can
execute a fixed-point model as a floating-point model by enabling automatic
conversion of fixed-point data to floating-point data during simulation. See
“Overriding Fixed-Point Specifications” on page 10-5 for details.
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If you do not have the Simulink Fixed Point product installed and do not
enable automatic conversion of fixed-point to floating-point data, an error
occurs if you try to execute a fixed-point model.

Note You do not need the Simulink Fixed Point product to edit a model
containing fixed-point blocks, or to use the Data Type Assistant to specify
fixed-point data types, as described in “Specifying a Fixed-Point Data Type”
on page 10-18 .

Overriding Fixed-Point Specifications
Most of the functionality in the Fixed-Point Tool is for use with the Simulink
Fixed Point product. However, even if you do not have the Simulink Fixed
Point product, you can use the tool’s data type override mode to simulate a
model that specifies fixed-point data types.

Data type override mode allows you to share fixed-point models with people in
your company who do not have the Simulink Fixed Point product. In data type
override mode, the fixed-point values are replaced with floating-point values
when executing the model. Such replacement does not affect Fixed-Point
Toolbox™ fi objects used as fixed-point parameters in your model. However,
you can prevent the checkout of a Fixed-Point Toolbox license by setting the
fipref DataTypeOverride property to TrueDoubles (see the Fixed-Point
Toolbox documentation).

To simulate a model in data type override mode:

1 From the Simulink Tools menu, select Fixed-Point > Fixed-Point Tool.

The Fixed-Point Tool appears.

2 Set the Logging mode parameter to Force off.

3 Set the Data type override parameter to either True doubles or True
singles.
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Block Support for Data and Numeric Signal Types
All Simulink blocks accept signals of type double by default. Some blocks
prefer boolean input and others support multiple data types on their inputs.
See Simulink Blocks in Simulink Reference for information on the data types
supported by specific blocks for parameter and input and output values. If
the documentation for a block does not specify a data type, the block inputs
or outputs only data of type double.

Creating Signals of a Specific Data Type
You can introduce a signal of a specific data type into a model in any of the
following ways:

• Load signal data of the desired type from the MATLAB workspace into your
model via a root-level Inport block or a From Workspace block.

• Create a Constant block in your model and set its parameter to the desired
type.

• Use a Data Type Conversion block to convert a signal to the desired data
type.

Specifying Block Output Data Types
Simulink blocks determine the data type of their outputs by default. Many
blocks allow you to override the default type and explicitly specify an output
data type, using a block parameter that is typically named Output data
type. For example, the Output data type parameter appears on the Signal
Attributes pane of the Constant block dialog box.
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See the following topics for more information:

For Information About... See...

Valid data type values that you can
specify

“Entering Valid Data Type Values”
on page 10-8

An assistant that helps you specify
valid data type values

“Using the Data Type Assistant” on
page 10-14

Specifying valid data type values for
multiple blocks simultaneously

“Using the Model Explorer for Batch
Editing” on page 10-11

Entering Valid Data Type Values
In general, you can specify the output data type as any of the following:

• A rule that inherits a data type (see “Data Type Inheritance Rules” on
page 10-9)

• The name of a built-in data type (see “Built-In Data Types” on page 10-10)

• An expression that evaluates to a data type (see “Data Type Expressions”
on page 10-10)

Valid data type values vary among blocks. You can use the pull-down menu
associated with a block data type parameter to view the data types that a
particular block supports. For example, the Data type pull-down menu on
the Data Store Memory block dialog box lists the data types that it supports,
as shown here.
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For more information about the data types that a specific block supports, see
the documentation for the block in the Simulink Reference.

Data Type Inheritance Rules. Blocks can inherit data types from a variety
of sources, including signals to which they are connected and particular block
parameters. You can specify the value of a data type parameter as a rule
that determines how the output signal inherits its data type. To view the
inheritance rules that a block supports, use the data type pull-down menu on
the block dialog box. The following table lists typical rules that you can select.

Inheritance Rule Description

Inherit: Inherit via back
propagation

Simulink automatically determines
the output data type of the block
during data type propagation (see
“Data Type Propagation” on page
10-24). In this case, the block uses
the data type of a downstream block
or signal object.

Inherit: Same as input The block uses the data type of its
sole input signal for its output signal.
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Inheritance Rule Description

Inherit: Same as first input The block uses the data type of
its first input signal for its output
signal.

Inherit: Same as second input The block uses the data type of its
second input signal for its output
signal.

Inherit: Inherit via internal
rule

The block uses an internal rule to
determine its output data type. The
internal rule chooses a data type
that optimizes the accuracy and
precision of the block output signal.

Built-In Data Types. You can specify the value of a data type parameter as
the name of a built-in data type, for example, single or boolean. To view the
built-in data types that a block supports, use the data type pull-down menu
on the block dialog box. See “Data Types Supported by Simulink®” on page
10-3 for a list of all built-in data types that are supported.

Data Type Expressions. You can specify the value of a data type parameter
as an expression that evaluates to a numeric data type object. Simply enter
the expression in the data type field on the block dialog box. In general, enter
one of the following expressions:

• fixdt Command

Specify the value of a data type parameter as a command that invokes the
fixdt function. This function allows you to create a Simulink.NumericType
object that describes a fixed-point or floating-point data type. See the
documentation for the fixdt function in the Simulink Reference for more
information.

• Data Type Object Name

Specify the value of a data type parameter as the name of a data object
that represents a data type. Simulink data objects that you instantiate
from classes, such as Simulink.NumericType and Simulink.AliasType,
simplify the task of making model-wide changes to output data types and
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allow you to use custom aliases for data types. See “Working with Data
Objects” on page 10-27 for more information about Simulink data objects.

Using the Model Explorer for Batch Editing
Using the Model Explorer (see “The Model Explorer” on page 13-2), you
can assign the same output data type to multiple blocks simultaneously.
For example, the sldemo_f14 model that comes with the Simulink product
contains numerous Gain blocks. Suppose you want to specify the Output
data type parameter of all the Gain blocks in the model as single. You can
achieve this task as follows:

1 Use the Model Explorer search bar (see “Search Bar” on page 13-17) to
identify all blocks in the sldemo_f14 model of type Gain.

The Model Explorer Contents pane lists all Gain blocks in the model.

2 In the Model Explorer Contents pane, select all the Gain blocks whose
Output data type parameter you want to specify.

Model Explorer highlights the rows corresponding to your selections.
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3 In the Model Explorer Contents pane, click the data type associated with
one of the selected Gain blocks.

Model Explorer displays a pull-down menu with valid data type options.
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4 In the pull-down menu, enter or select the desired data type, for example,
single.

Model Explorer specifies the data type of all selected items as single.
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Using the Data Type Assistant
The Data Type Assistant is an interactive graphical tool that simplifies
the task of specifying data types for blocks and data objects. The assistant
appears on block and object dialog boxes, adjacent to parameters that provide
data type control, such as the Output data type parameter. For example,
it appears on the Signal Attributes pane of the Constant block dialog box
shown here.
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You can selectively show or hide the Data Type Assistant by clicking the
applicable button:

• Click the Show data type assistant button to display the
assistant.

• Click the Hide data type assistant button to hide a visible
assistant.

Use the Data Type Assistant to specify a data type as follows:

1 In the Mode field, select the category of data type that you want to specify.
In general, the options include the following:

Mode Description

Inherit Inheritance rules for data types

Built in Built-in data types

Fixed point Fixed-point data types

Expression Expressions that evaluate to data types

Bus Object Simulink.Bus object name, valid only
for the Embedded MATLAB™ Function
block and the Stateflow® Chart block
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The assistant changes dynamically to display different options that
correspond to the selected mode. For example, setting Mode to Expression
causes the Constant block dialog box to appear as follows.

2 In the field that is to the right of the Mode field, select or enter a data type.

For example, suppose that you designate the variable myDataType
as an alias for a single data type. You create an instance of the
Simulink.AliasType class and set its BaseType property by entering the
following commands:

myDataType = Simulink.AliasType
myDataType.BaseType = 'single'

You can use this data type object to specify the output data type of a
Constant block. Enter the data type alias name, myDataType, as the value
of the expression in the assistant.
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3 Click the OK or Apply button to apply your changes.

The assistant uses the data type that you specified to populate the
associated data type parameter in the block or object dialog box. In the
following example, the Output data type parameter of the Constant block
specifies the same expression that you entered using the assistant.

For more information about the data types that you can specify using the
Data Type Assistant, see “Entering Valid Data Type Values” on page 10-8.
See “Specifying Fixed-Point Data Types with the Data Type Assistant” in the
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Simulink Fixed Point User’s Guide for details about specifying fixed-point
data types.

Specifying a Fixed-Point Data Type
When the Data Type Assistant Mode is Fixed point, the Data Type
Assistant displays fields for specifying information about your fixed-point
data type. For a detailed discussion about fixed-point data, see “Fixed-Point
Concepts” in the Simulink Fixed Point User’s Guide. For example, the next
figure shows the Block Parameters dialog box for a Gain block, with the
Signal Attributes tab selected and a fixed-point data type specified.

If the Scaling is Slope and bias rather than Binary point, the Data Type
Assistant displays a Slope field and a Bias field rather than a Fraction
length field:
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You can use the Data Type Assistant to set these fixed-point properties:

Sign. Specify whether you want the fixed-point data to be Signed or
Unsigned. Signed data can represent positive and negative values, but
unsigned data represents positive values only. The default setting is Signed.

Word length. Specify the bit size of the word that will hold the quantized
integer. Large word sizes represent large values with greater precision than
small word sizes. Word length can be any integer between 0 and 32. The
default bit size is 16.

Scaling. Specify the method for scaling your fixed-point data to avoid
overflow conditions and minimize quantization errors. The default method is
Binary point scaling. You can select one of two scaling modes:
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Scaling
Mode

Description

Binary
point

If you select this mode, the Data Type Assistant displays
the Fraction Length field, which specifies the binary point
location.

Binary points can be positive or negative integers. A positive
integer moves the binary point left of the rightmost bit by
that amount. For example, an entry of 2 sets the binary point
in front of the second bit from the right. A negative integer
moves the binary point further right of the rightmost bit by
that amount, as in this example:

The default binary point is 0.

Slope
and bias

If you select this mode, the Data Type Assistant displays fields
for entering the Slope and Bias.

Slope can be any positive real number, and the default slope
is 1.0. Bias can be any real number, and the default bias is
0.0. You can enter slope and bias as expressions that contain
parameters you define in the MATLAB workspace.

Note Use binary-point scaling whenever possible to simplify the
implementation of fixed-point data in generated code. Operations with
fixed-point data using binary-point scaling are performed with simple bit
shifts and eliminate expensive code implementations, which are required
for separate slope and bias values.

For more information about fixed-point scaling, see “Scaling” in the Simulink
Fixed Point User’s Guide.
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Calculate Best-Precision Scaling. Click this button to calculate
best-precision values for both Binary point and Slope and bias scaling,
based on the specified minimum and maximum values. The Simulink
software displays the scaling values in the Fraction Length field or the
Slope and Bias fields. For more information, see “Constant Scaling for Best
Precision” in the Simulink Fixed Point User’s Guide.

Lock output scaling against changes by the autoscaling tool. Check
this box to prevent a Simulink model from replacing the current fixed-point
type with a type that the autoscaling tool chooses. See “Automatic Scaling”
in the Simulink Fixed Point User’s Guide for instructions on autoscaling
fixed-point data.

Showing Fixed-Point Details. When you specify a fixed-point data type,
you can use the Fixed-point details subpane to see information about the
fixed-point data type that is currently displayed in the Data Type Assistant.
To see the subpane, click the expander next to Fixed-point details in the
Data Type Assistant. The Fixed-point details subpane appears at the
bottom of the Data Type Assistant:

The rows labeled Output minimum and Output maximum show the same
values that appear in the corresponding Output minimum and Output
maximum fields above the Data Type Assistant. The names of these fields
may differ from those shown. For example, a fixed-point block parameter
would show Parameter minimum and Parameter maximum, and the
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corresponding Fixed-point details rows would be labeled accordingly. See
“Checking Signal Ranges” on page 8-26 and “Checking Parameter Values”
on page 6-12 for more information.

The rows labeled Representable minimum, Representable maximum, and
Precision always appear. These rows show the minimum value, maximum
value, and precision that can be represented by the fixed-point data type
currently displayed in the Data Type Assistant. See “Fixed-Point Concepts”
in the Simulink Fixed Point User’s Guide for information about these three
quantities.

The values displayed by the Fixed-point details subpane do not
automatically update if you click Calculate Best-Precision Scaling, or
change the range limits, the values that define the fixed-point data type,
or anything elsewhere in the model. To update the values shown in the
Fixed-point details subpane, click Refresh Details. The Data Type
Assistant then updates or recalculates all values and displays the results.

Clicking Refresh Details does not change anything in the model, it only
changes the display. Click OK or Apply to put the displayed values into
effect. If the value of a field cannot be known without first compiling the
model, the Fixed-point details subpane shows the value as Unknown.

If any errors occur when you click Refresh Details, the Fixed-point details
subpane shows an error flag on the left of the applicable row, and a description
of the error on the right. For example, the next figure shows two errors:

10-22



Working with Data Types

The row labeled Output minimum shows the error Cannot evaluate because
evaluating the expression MySymbol, specified in the Output minimum
field, did not return an appropriate numeric value. When an expression does
not evaluate successfully, the Fixed-point details subpane displays the
unevaluated expression (truncating to 10 characters if necessary to save
space) in place of the unavailable value.

To correct the error in this case, you would need to define MySymbol in an
accessible workspace to provide an appropriate numeric value. After you
clicked Refresh Details, the value of MySymbol would appear in place of
its unevaluated text, and the error indicator and error description would
disappear.

To correct the error shown for Output maximum, you would need to decrease
Output maximum, increase Word length, or decrease Fraction length (or
some combination of these changes) sufficiently to allow the fixed-point data
type to represent the maximum value that it could have.

Other values relevant to a particular block can also appear in the Fixed-point
details subpane. For example, on a Discrete-Time Integrator block’s Signal
Attributes tab, the subpane could look like this:
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Note that the values displayed for Upper saturation limit and Lower
saturation limit are greyed out. This appearance indicates that the
corresponding parameters are not currently used by the block. The greyed-out
values can be ignored.

Note also that Initial condition displays the value 1..4. The actual value
is a vector or matrix whose smallest element is 1 and largest element is 4. To
conserve space, the Fixed-point details subpane shows only the smallest
and largest element of a vector or matrix. An ellipsis (..) replaces the omitted
values. The underlying definition of the vector or matrix is unaffected.

Displaying Port Data Types
To display the data types of ports in your model, select Port Data Types
from the Simulink Format menu. The port data type display is not updated
when you change the data type of a diagram element. To refresh the display,
press Ctrl+D.

Data Type Propagation
Whenever you start a simulation, enable display of port data types, or refresh
the port data type display, the Simulink software performs a processing step
called data type propagation. This step involves determining the types of
signals whose type is not otherwise specified and checking the types of signals
and input ports to ensure that they do not conflict. If type conflicts arise, an
error dialog is displayed that specifies the signal and port whose data types
conflict. The signal path that creates the type conflict is also highlighted.
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Note You can insert typecasting (data type conversion) blocks in your model
to resolve type conflicts. See “Typecasting Signals” on page 10-26 for more
information.

Data Typing Rules
Observing the following rules can help you to create models that are typesafe
and, therefore, execute without error:

• Signal data types generally do not affect parameter data types, and vice
versa.

A significant exception to this rule is the Constant block, whose output data
type is determined by the data type of its parameter.

• If the output of a block is a function of an input and a parameter, and the
input and parameter differ in type, the Simulink software converts the
parameter to the input type before computing the output.

• In general, a block outputs the data type that appears at its inputs.

Significant exceptions include Constant blocks and Data Type Conversion
blocks, whose output data types are determined by block parameters.

• Virtual blocks accept signals of any type on their inputs.

Examples of virtual blocks include Mux and Demux blocks and
unconditionally executed subsystems.

• The elements of a signal array connected to a port of a nonvirtual block
must be of the same data type.

• The signals connected to the input data ports of a nonvirtual block cannot
differ in type.

• Control ports (for example, Enable and Trigger ports) accept any data type.

• Solver blocks accept only double signals.

• Connecting a non-double signal to a block disables zero-crossing detection
for that block.
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Typecasting Signals
An error is displayed whenever it detects that a signal is connected to a block
that does not accept the signal’s data type. If you want to create such a
connection, you must explicitly typecast (convert) the signal to a type that the
block does accept. You can use the Data Type Conversion block to perform
such conversions.
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Working with Data Objects

In this section...

“About Data Object Classes” on page 10-27

“About Data Object Methods” on page 10-28

“Using the Model Explorer to Create Data Objects” on page 10-30

“About Object Properties” on page 10-32

“Changing Object Properties” on page 10-32

“Handle Versus Value Classes” on page 10-34

“Comparing Data Objects” on page 10-36

“Saving and Loading Data Objects” on page 10-36

“Using Data Objects in Simulink® Models” on page 10-37

“Creating Persistent Data Objects” on page 10-37

“Data Object Wizard” on page 10-37

About Data Object Classes
You can create entities called data objects that specify values, data types,
tunability, value ranges, and other key attributes of block outputs and
parameters. You can create various types of data objects and assign them to
workspace variables. You can use the variables in Simulink® dialog boxes to
specify parameter and signal attributes. This allows you to make model-wide
changes to parameter and signal specifications simply by changing the
values of a few variables. With Simulink objects you can parameterize the
specification of a model’s data attributes. For information on working with
specific kinds of data objects, see “Data Object Classes”.

Note This section uses the term data to refer generically to signals and
parameters.

The Simulink software uses objects called data classes to define the properties
of specific types of data objects. The classes also define functions, called
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methods, for creating and manipulating instances of particular types of
objects. A set of built-in classes are provided for specifying specific types
of attributes (see “Data Object Classes” for information on these built-in
classes). Some of The MathWorks™ products based on Simulink, such as
the Real-Time Workshop® product, also provide classes for specifying data
attributes specific to their applications. See the documentation for those
products for information on the classes they provide. You can also create
subclasses of some of these built-in classes to specify attributes specific to
your applications (see “Subclassing Simulink® Data Classes” on page 10-41).

Memory structures called packages are used to store the code and data that
implement data classes. The classes provided by the Simulink software reside
in the Simulink package. Classes provided by products based on Simulink
reside in packages provided by those products. You can create your own
packages for storing the classes that you define.

Class Naming Convention
Simulink uses dot notation to name classes:

PACKAGE.CLASS

where CLASS is the name of the class and PACKAGE is the name of the
package to which the class belongs, for example, Simulink.Parameter. This
notation allows you to create and reference identically named classes that
belong to different packages. In this notation, the name of the package is
said to qualify the name of the class.

Note Class and package names are case sensitive. You cannot, for example,
use A.B and a.b interchangeably to refer to the same class.

About Data Object Methods
Data classes define functions, called methods, for creating and manipulating
the objects that they define. A class may define any of the following kinds
of methods.
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Dynamic Methods
A dynamic method is a method whose identity depends on its name and the
class of an object specified implicitly or explicitly as its first argument. You
can use either function or dot notation to specify this object, which must be
an instance of the class that defines the method or an instance of a subclass
of the class that defines the method. For example, suppose class A defines
a method called setName that assigns a name to an instance of A. Further,
suppose the MATLAB® workspace contains an instance of A assigned to the
variable obj. Then, you can use either of the following statements to assign
the name 'foo' to obj:

obj.setName('foo');
setName(obj, 'foo');

A class may define a set of methods having the same name as a method
defined by one of its super classes. In this case, the method defined by the
subclass overrides the behavior of the method defined by the parent class. The
Simulink software determines which method to invoke at runtime from the
class of the object that you specify as its first or implicit argument. Hence,
the term dynamic method.

Note Most Simulink data object methods are dynamic methods. Unless
the documentation for a method specifies otherwise, you can assume that a
method is a dynamic method.

Static Methods
A static method is a method whose identity depends only on its name and
hence cannot change at runtime. To invoke a static method, use its fully
qualified name, which includes the name of the class that defines it followed
by the name of the method itself. For example, Simulink.ModelAdvisor class
defines a static method named getModelAdvisor. The fully qualified name
of this static method is Simulink.ModelAdvisor.getModelAdvisor. The
following example illustrates invocation of a static method.

ma = Simulink.ModelAdvisor.getModelAdvisor('vdp');
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Constructors
Every data class defines a method for creating instances of that class. The
name of the method is the same as the name of the class. For example, the
name of the Simulink.Parameter class’s constructor is Simulink.Parameter.
The constructors defined by Simulink data classes take no arguments.

The value returned by a constructor depends on whether its class is a handle
class or a value class. The constructor for a handle class returns a handle
to the instance that it creates if the class of the instance is a handle class;
otherwise, it returns the instance itself (see “Handle Versus Value Classes”
on page 10-34).

Using the Model Explorer to Create Data Objects
You can use the Model Explorer (see “The Model Explorer” on page 13-2) as
well as MATLAB commands to create data objects. To use the Model Explorer,

1 Select the workspace in which you want to create the object in the Model
Explorer’s Model Hierarchy pane.

Only Simulink.Parameter and Simulink.Signal objects for which the
storage class is set to Auto can reside in a model workspace. You must
create all other Simulink data objects in the base MATLAB workspace
to ensure the objects are unique within the global Simulink context and
accessible to all models.

Note Subclasses of Simulink.Parameter and Simulink.Signal classes,
such as mpt.Parameter and mpt.Signal objects (Real-Time Workshop®

Embedded Coder™ license required), can reside in a model workspace only
if their storage class is set to Auto.
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2 Select the type of the object that you want to create (for example, Simulink
Parameter or Simulink Signal) from the Model Explorer’s Add menu or
from its toolbar.The Simulink software creates the object, assigns it to a
variable in the selected workspace, and displays its properties in the Model
Explorer’s Contents and Dialog panes.

If the type of object you want to create does not appear on the Add menu,
select Find Custom from the menu. The MATLAB path is searched for
all data object classes derived from Simulink class on the MATLAB path,
including types that you have created, and displays the result in a dialog
box.
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3 Select the type of object (or objects) that you want to create from the
Object class list and enter the names of the workspace variables to which
you want the objects to be assigned in the Object name(s) field. Simulink
creates the specified objects and displays them in the Model Explorer’s
Contents pane.

About Object Properties
Object properties are variables associated with an object that specify
properties of the entity that the object represents, for example, the size of a
data type. The object’s class defines the names, value types, default values,
and valid value ranges of the object’s properties.

Changing Object Properties
You can use either the Model Explorer (see “Using the Model Explorer to
Change an Object’s Properties” on page 10-32) or MATLAB commands to
change a data object’s properties (see “Using MATLAB® Commands to Change
Workspace Data” on page 3-63).

Using the Model Explorer to Change an Object’s Properties
To use the Model Explorer to change an object’s properties, select the
workspace that contains the object in the Model Explorer’s Model Hierarchy
pane. Then select the object in the Model Explorer’s Contents pane.
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The Model Explorer displays the object’s property dialog box in its Dialog
pane (if the pane is visible).

You can configure the Model Explorer to display some or all of the object’s
properties in the Contents pane (see “Customizing the Contents Pane” on
page 13-9). To edit a property, click its value in the Contents or Dialog pane.
The value is replaced by a control that allows you to change the value.

Using MATLAB® Commands to Change an Object’s Properties
You can also use MATLAB commands to get and set data object properties.
Use the following dot notation in MATLAB commands and programs to get
and set a data object’s properties:

VALUE = OBJ.PROPERTY;
OBJ.PROPERTY = VALUE;

where OBJ is a variable that references either the object if it is an instance
of a value class or a handle to the object if the object is an instance of a
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handle class (see “Handle Versus Value Classes” on page 10-34), PROPERTY
is the property’s name, and VALUE is the property’s value. For example, the
following MATLAB code creates a data type alias object (i.e., an instance of
Simulink.AliasType) and sets its base type to uint8:

gain= Simulink.AliasType;
gain.DataType = 'uint8';

You can use dot notation recursively to get and set the properties of objects
that are values of other object’s properties, e.g.,

gain.RTWInfo.StorageClass = 'ExportedGlobal';

Handle Versus Value Classes
Simulink data object classes fall into two categories: value classes and handle
classes.

About Value Classes
The constructor for a value class (see “Constructors” on page 10-30) returns
an instance of the class and the instance is permanently associated with the
MATLAB variable to which it is initially assigned. Reassigning or passing
the variable to a function causes MATLAB to create and assign or pass a copy
of the original object.

For example, Simulink.NumericType is a value class. Executing the following
statements

>> x = Simulink.NumericType;
>> y = x;

creates two instances of class Simulink.NumericType in the workspace, one
assigned to the variable x and the other to y.

About Handle Classes
The constructor for a handle class returns a handle object. The handle can be
assigned to multiple variables or passed to functions without causing a copy
of the original object to be created. For example, Simulink.Parameter class
is a handle class. Executing
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>> x = Simulink.Parameter;
>> y = x;

creates only one instance of Simulink.Parameter class in the MATLAB
workspace. Variables x and y both refer to the instance via its handle.

A program can modify an instance of a handle class by modifying any variable
that references it, e.g., continuing the previous example,

>> x.Description = 'input gain';
>> y.Description

ans =
input gain

Most Simulink data object classes are value classes. Exceptions include
Simulink.Signal and Simulink.Parameter class.

You can determine whether a variable is assigned to an instance of a class
or to a handle to that class by evaluating it at the MATLAB command line.
MATLAB appends the text (handle) to the name of the object class in the
value display, e.g.,

>> gain = Simulink.Parameter

gain =

Simulink.Parameter (handle)
RTWInfo: [1x1 Simulink.ParamRTWInfo]

Description: ''
DocUnits: ''

Min: -Inf
Max: Inf

Value: []
DataType: 'auto'

Complexity: 'real'
Dimensions: [0 0]
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Copying Handle Classes
Use the copy method of a handle class to create copies of instances of that
class. For example, Simulink.ConfigSet is a handle class that represents
model configuration sets. The following code creates a copy of the current
model’s active configuration set and attaches it to the model as an alternate
configuration geared to model development.

activeConfig = getActiveConfigSet(gcs);
develConfig = activeConfig.copy;
develConfig.Name = 'develConfig';
attachConfigSet(gcs, develConfig);

Comparing Data Objects
Simulink data objects provide a method, named isContentEqual, that
determines whether object property values are equal. This method compares
the property values of one object with those belonging to another object and
returns true (1) if all of the values are the same or false (0) otherwise. For
example, the following code instantiates two signal objects (A and B) and
specifies values for particular properties.

A = Simulink.Signal;
B = Simulink.Signal;
A.DataType = 'int8';
B.DataType = 'int8';
A.InitialValue = '1.5';
B.InitialValue = '1.5';

Afterward, use the isContentEqual method to verify that the object
properties of A and B are equal.

>> result = A.isContentEqual(B)

result =

1

Saving and Loading Data Objects
You can use the save command to save data objects in a MAT-file and the
load command to restore them to the MATLAB workspace in the same or a
later session. Definitions of the classes of saved objects must exist on the
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MATLAB path for them to be restored. If the class of a saved object acquires
new properties after the object is saved, Simulink adds the new properties to
the restored version of the object. If the class loses properties after the object
is saved, only the properties that remain are restored.

Using Data Objects in Simulink® Models
You can use data objects in Simulink models as parameters and signals.
Using data objects as parameters and signals allows you to specify simulation
and code generation options on an object-by-object basis.

Creating Persistent Data Objects
To create parameter and signal objects that persist across Simulink sessions,
first write a script that creates the objects or create the objects with the
Simulink Data Class Designer (see “Subclassing Simulink® Data Classes”
on page 10-41) or at the command line and save them in a MAT-file (see
“Saving and Loading Data Objects” on page 10-36). Then use either the script
or a load command as the PreLoadFcn callback routine for the model that uses
the objects. For example, suppose you save the data objects in a file named
data_objects.mat and the model to which they apply is open and active.
Then, entering the following command

set_param(gcs, 'PreLoadFcn', 'load data_objects');

at the MATLAB command line sets load data_objects as the model’s
preload function. This in turn causes the data objects to be loaded into the
model workspace whenever you open the model.

Data Object Wizard
The Data Object Wizard allows you to determine quickly which model data
are not associated with data objects and to create and associate data objects
with the data.

To use the wizard to create data objects:

1 Select Tools > Data Object Wizard from the Model Editor’s tool bar.
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The Data Object Wizard appears.

2 Enter, if necessary, the name of the model you want to search in the
wizard’s Model name field.

By default the wizard displays the name of the model from which you
opened the wizard. You can enter the name of another model in this field.
If the model is not open, the wizard opens the model.

3 In Find options, uncheck any of the data object types that you want the
search to ignore.

The search options include:

Option Description

Root
inputs

Named signals from root-level input ports
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Option Description

Root
outputs

Named signals from root-level output ports

States States associated with any instances of the following
discrete block types:

Discrete Filter
Discrete State-Space
Discrete-Time Integrator
Discrete Transfer Fcn
Discrete Zero-Pole
Memory
Unit Delay

Data stores Data stores (see “Working with Data Stores” on page 3-74 )

Block
outputs

Named signals emitted by non-root-level blocks.

Parameters • Parameters of any instances of the following block
types:

Constant
Gain
Lookup Table
Lookup Table (2-D)
Relay

• Stateflow® data with a Scope of Parameter.

See “Sharing Simulink Parameters with Stateflow
Charts” in the online Stateflow documentation for more
information.

Alias types Data whose data type is a registered custom data type.
This option applies only if you are generating code from
the model. See Creating Data Objects with Data Object
Wizard in theReal-Time Workshop Embedded Coder
documentation for more information.

4 Click the wizard’s Find button.

10-39



10 Working with Data

The wizard displays the search results in the data objects table.

5 Check the data for which you want the wizard to create data objects.

6 If you want the wizard to use data object classes from a package other than
the Simulink standard class package to create the data objects, select the
package from the Choose package for selected data objects list and
then select Apply Package to confirm your choice.

7 Click Create.

The wizard creates data objects of the appropriate class for the data
selected in the search results table.

Note Use the Model Explorer to view and edit the created data objects.
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Subclassing Simulink® Data Classes

In this section...

“About the Data Class Designer” on page 10-41

“Creating a Data Object Class” on page 10-41

“Specifying a Parent for a Class” on page 10-45

“Defining Class Properties” on page 10-46

“Defining Enumerated Property Types” on page 10-48

“Creating Initialization Code” on page 10-51

“Creating a Class Package” on page 10-52

About the Data Class Designer
The Simulink® Data Class Designer allows you to create subclasses of some
Simulink classes. To define a class with the Data Class Designer, you enter
the package, name, parent class, properties, and other characteristics of the
class in a dialog box. The Data Class Designer then generates P-code that
defines the class.

You can use the Data Class Designer to change the definitions of classes
that it created, for example, to add or remove properties. See “Working with
Data Structures” for information on storage classes. You can use the Data
Class Designer to create custom storage classes. See “Custom Storage
Classes” in the Real-Time Workshop® Embedded Coder™ documentation
for details. The Data Class Designer is not intended as a tool for code
generating enumerated types.

Creating a Data Object Class
To create a class with the Data Class Designer:
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1 Select Data class designer from the Simulink Tools menu.

The Data Class Designer dialog box appears.

2 Select the name of the package in which you want to create the class from
the Package name list.

Do not create a class in any of the Simulink built-in packages, i.e., packages
in matlabroot/toolbox/simulink, or any directory under matlabroot.
See “Creating a Class Package” on page 10-52 for information on creating
your own class packages.

3 Click the New button on the Classes pane of the Data Class Designer
dialog box.
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4 Enter the name of the new class in the Class name field on the Classes
pane.

Note The name of the new class must be unique in the package to which
the new class belongs. Class names are case sensitive. For example, Signal
and signal is considered to be names of different classes.

5 Press Enter or click OK on the Classes pane to create the specified class
in memory.

6 Select a parent class for the new class (see “Specifying a Parent for a Class”
on page 10-45).

If you select Simulink.Signal or Simulink.Parameter as the parent class,
Simulink Data Class Designer displays a check box labeled Create your
own custom storage classes for this class. You can ignore this option if
you do not intend to use Real-Time Workshop Embedded Coder to generate
code from models that reference this data object class. Otherwise, select
this check box to cause Simulink Data Class Designer to create custom
storage classes for this data object class (see “Creating Packages with CSC
Definitions” for more information).

7 Define the properties of the new class (see “Defining Class Properties”
on page 10-46).

8 If necessary, create initialization code for the new class (see “Creating
Initialization Code” on page 10-51).
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9 Click Confirm Changes.

Simulink displays the Confirm Changes pane.

10 Click Write All or select the package containing the new class definition
and click Write Selected to save the new class definition.

You can also use the Classes pane to perform the following operations.

Copy a class
To copy a class, select the class in the Classes pane and click Copy. The
Simulink software creates a copy of the class under a slightly different name.
Edit the name, if desired, click Confirm Changes, and click Write All or,
after selecting the appropriate package, Write Selected to save the new class.

Rename a class
To rename a class, select the class in the Classes pane and click Rename.
The Class name field becomes editable. Edit the field to reflect the new
name. Save the package containing the renamed class, using the Confirm
changes pane.
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Note You cannot modify an instantiated Simulink data class. If you try
to modify a class that has already been instantiated during the current
MATLAB® session, an error message informs you that you need to restart
MATLAB if you want to modify this package.

Remove a class from a package
To remove a class definition from the currently selected package, select the
class in the Classes pane and click Remove. The class is removed from the
in-memory definition of the class. Save the package that formerly contained
the class.

Specifying a Parent for a Class
To specify a parent for a class:

1 Select the name of the class from the Class name field on the Classes
pane.

2 Select the package name of the parent class from the left-hand Derived
from list box.
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3 Select the parent class from the right-hand Derived from list.

The properties of the selected class derived from the parent class are
displayed in the Properties of this class field.

The inherited properties are grayed to indicate that they cannot be
redefined by the child class.

4 Save the package containing the class.

Defining Class Properties
To add a property to a class:
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1 Select the name of the class from the Class name field on the Classes
pane.

Note You cannot modify an instantiated Simulink data class. If you try
to modify a class that has already been instantiated during the current
MATLAB session, an error message informs you that you need to restart
MATLAB if you want to modify this package.

2 Click the New button next to the Properties of this class field on the
Classes pane.

A property is created with a default name and value and displays the
property in the Properties of this class field.

3 Enter a name for the new property in the Property Name column.

Note The property name must be unique to the class. Unlike class names,
property names are not case sensitive. For example, Value and value are
treated as referring to the same property.

4 Select the data type of the property from the Property Type list.

The list includes built-in property types and any enumerated property
types that you have defined (see “Defining Enumerated Property Types”
on page 10-48).
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5 If you want the property to have a default value, enter the default value in
the Factory Value column.

The default value is the value the property has when an instance of the
associated class is created. The initialization code for the class can override
this value (see “Creating Initialization Code” on page 10-51 for more
information).

The following rules apply to entering factory values for properties:

• Do not use quotation marks when entering the value of a string property.
The value that you enter is treated as a literal string.

• The value of a MATLAB array property can be any expression that
evaluates to an array, cell array, structure, or object. Enter the expression
exactly as you would enter the value on the command line, for example,
[0 1; 1 0]. The expression that you enter is evaluated to check its
validity. A warning is displayed if evaluating the expression results in an
error. Regardless of whether an evaluation error occurs, Simulink stores
the expression as the factory value of the property. This is because an
expression that is invalid at define time might be valid at run-time.

• You can enter any expression that evaluates to a numeric value as the
value of a double or int32 property. The expression is evaluated and
the result stored as the property’s factory value.

6 Save the package containing the class with new or changed properties.

Defining Enumerated Property Types
An enumerated property type is a property type whose value must be one of
a specified set of values, for example, red, blue, or green. An enumerated
property type is valid only in the package that defines it.

To create an enumerated property type:
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1 Select the Enumerated Property Types pane of the Data Class
Designer.

2 Click the New button next to the Property type name field.

An enumerated type is created with a default name.

3 Change the default name in the Property type name field to the desired
name for the property.

The currently selected package defines an enumerated property type and
the type can be referenced only in the package that defines it. However,
the name of the enumerated property type must be globally unique. There
cannot be any other built-in or user-defined enumerated property with the
same name. An error is displayed if you enter the name of an existing
built-in or user-defined enumerated property for the new property.

4 Click the OK button.
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The new property is created in memory and the Enumerated strings field
on the Enumerated Property Types pane is enabled .

5 Enter the permissible values for the new property type Enumerated
strings field, one per line.

For example, the following Enumerated strings field shows the
permissible values for an enumerated property type named Color.

6 Click Apply to save the changes in memory.

7 Click Confirm changes. Then click Write all to save this change.

You can also use the Enumerated Property Type pane to copy, rename, and
remove enumerated property types.

• Click the Copy button to copy the currently selected property type. A new
property that has a new name, but has the same value set as the original
property is created.

• Click the Rename button to rename the currently selected property type.
The Property name field becomes editable. Edit the field to reflect the
new name.

• Click the Remove button to remove the currently selected property.
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Always save the package containing the modified enumerated property type.

Note You must restart the MATLAB software if you modify, add, or remove
enumerated types from a class you have already instantiated.

Creating Initialization Code
You can specify code to be executed when the Simulink software creates an
instance of a data object class. To specify initialization code for a class, select
the class from the Class name field of the Data Class Designer and enter
the initialization code in the Class initialization field.

The Data Class Designer inserts the code that you enter in the Class
initialization field in the class instantiation function of the corresponding
class. This function is invoked when an instance of this class is created. The
class instantiation function has the form

function h = ClassName(varargin)

where h is the handle to the object that is created and varargin is a cell array
that contains the function’s input arguments.

By entering the appropriate code in the Data Class Designer, you can cause
the instantiation function to perform such initialization operations as

• Error checking

• Loading information from data files

• Overriding factory values

• Initializing properties to user-specified values

For example, suppose you want to let a user initialize the ParamName property
of instances of a class named MyPackage.Parameter. The user does this by
passing the initial value of the ParamName property to the class constructor:

Kp = MyPackage.Parameter('Kp');
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The following code in the instantiation function would perform the required
initialization:

switch nargin
case 0
% No input arguments - no action

case 1
% One input argument
h.ParamName = varargin{1};

otherwise
warning('Invalid number of input arguments');

end

Creating a Class Package
To create a new package to contain your classes:

1 Click the New button next to the Package name field of the Data Class
Designer.

A default package name is displayed in the Package name field.

2 Edit the Package name field to contain the package name that you want.

3 Click OK to create the new package in memory.
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4 In the package Parent directory field, enter the path of the directory
where you want Simulink to create the new package.

Note Do not create class package directories under matlabroot. Packages
in these directories are treated as built-in and will not be visible in the
Data Class Designer.

The Simulink software creates the specified directory, if it does not already
exist, when you save the package to your file system in the succeeding steps.

5 Click the Confirm changes button on the Data Class Designer.

The Packages to write panel is displayed.

6 To enable use of this package in the current and future sessions, ensure
that the Add parent directory to MATLAB path option is set to Yes -
permanently. The default is Yes - for this session only.

This adds the path of the new package’s parent directory to the MATLAB
path.
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7 Click Write all or select the new package and click Write selected to
save the new package.

You can also use the Data Class Designer to copy, rename, and remove
packages.

Copying a package
To copy a package, select the package and click the Copy button next to the
Package name field. The Simulink software creates a copy of the package
under a slightly different name. Edit the new name, if desired, and click OK to
create the package in memory. Then save the package to make it permanent.

Renaming a package
To rename a package, select the package and click the Rename button next
to the Package name field. The field becomes editable. Edit the field to
reflect the new name. Save the renamed package.

Removing a package
To remove a package, select the package and click the Remove button next
to the Package name field to remove the package from memory. Click the
Confirm changes button to display the Packages to remove panel. Select
the package and click Remove selected to remove the package from your file
system or click Remove all to remove all packages that you have removed
from memory from your file system as well.

10-54



Associating User Data with Blocks

Associating User Data with Blocks
You can use the set_param command to associate your own data with a block.
For example, the following command associates the value of the variable
mydata with the currently selected block.

set_param(gcb, 'UserData', mydata)

The value of mydata can be any MATLAB® data type, including arrays,
structures, objects, and Simulink® data objects.

Use get_param to retrieve the user data associated with a block.

get_param(gcb, 'UserData')

The following command saves the user data associated with a block in the
model file of the model containing the block.

set_param(gcb, 'UserDataPersistent', 'on');

Note If persistent UserData for a block contains any Simulink data objects,
the directories containing the definitions for the classes of those objects must
be on the MATLAB path when you open the model containing the block.
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About Lookup Table Blocks
A lookup table block uses an array of data to map input values to output values,
approximating a mathematical function. Given input values, the Simulink®

software performs a “lookup” operation to retrieve the corresponding output
values from the table. If the lookup table does not define the input values, the
block estimates the output values based on nearby table values.

The following example illustrates a one-dimensional lookup table that
approximates the function y = x3. The lookup table defines its output (y) data
discretely over the input (x) range [-3, 3]. The following table and graph
illustrate the input/output relationship:

An input of -2 enables the table to look up and retrieve the corresponding
output value (-8). Likewise, the lookup table outputs 27 in response to an
input of 3.

When the lookup table block encounters an input that does not match any of
the table’s x values, it can interpolate or extrapolate the answer. For instance,
the lookup table does not define an input value of -1.5; however, the block can
linearly interpolate the nearest data points (-2, -8) and (-1, -1) to estimate and
return a value of -4.5.
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Similarly, although the lookup table does not include data for x values beyond
the range of [-3, 3], the block can extrapolate values using a pair of data
points at either end of the table. Given an input value of 4, the lookup
table block linearly extrapolates the nearest data points (2, 8) and (3, 27) to
estimate an output value of 46.

Since table lookups and simple estimations can be faster than mathematical
function evaluations, using lookup table blocks may result in speed
gains when simulating a model. Consider using lookup tables in lieu of
mathematical function evaluations when

• An analytical expression is expensive to compute

• No analytical expression exists, but the relationship has been determined
empirically

The Simulink software provides a broad assortment of lookup table blocks,
each geared for a particular type of application. The sections that follow
outline the different offerings, suggest how to choose the lookup table best
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suited to your application, and explain how to interact with the various
lookup table blocks.
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Anatomy of a Lookup Table
The following figure illustrates the anatomy of a two-dimensional lookup
table. Vectors or breakpoint data sets and an array, referred to as table data,
constitute the lookup table.

Each breakpoint data set is an index of input values for a particular
dimension of the lookup table. The array of table data serves as a sampled
representation of a function evaluated at the breakpoint values. Lookup table
blocks use breakpoint data sets to relate a table’s input values to the output
values that it returns.
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Lookup Tables Block Library
Several lookup table blocks are provided in the Lookup Tables block library
shown here:
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The following table summarizes the purpose of each block in the library:

Block Name Description

Lookup Table Approximate a one-dimensional function.

Lookup Table (2-D) Approximate a two-dimensional function.

Lookup Table (n-D) Approximate an N-dimensional function.

Prelookup Compute index and fraction for Interpolation Using Prelookup block.

Interpolation Using
Prelookup

Use the output of a Prelookup block to accelerate approximation of an
N-dimensional function.

Direct Lookup Table
(n-D)

Index into an N-dimensional table to retrieve the corresponding outputs.

Lookup Table
Dynamic

Approximate a one-dimensional function using a dynamically specified
table.

Sine Use a fixed-point lookup table to approximate the sine wave function.

Cosine Use a fixed-point lookup table to approximate the cosine wave function.
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Choosing a Lookup Table

In this section...

“Data Set Dimensionality” on page 11-8

“Data Set Numeric and Data Types” on page 11-8

“Data Accuracy and Smoothness” on page 11-8

“Dynamics of Table Inputs” on page 11-9

“Efficiency of Performance” on page 11-9

“Summary of Lookup Table Block Features” on page 11-10

Data Set Dimensionality
In some cases, the dimensions of your data set dictate which of the lookup
table blocks is right for your application. If you are approximating a
one-dimensional function, consider using either the Lookup Table or Lookup
Table Dynamic block. If you are approximating a two-dimensional function,
consider the Lookup Table (2-D) block. Blocks such as the Lookup Table (n-D)
and Direct Lookup Table (n-D) allow you to approximate an N-dimensional
function of even higher order.

Data Set Numeric and Data Types
The numeric and data types of your data set influence the decision of which
lookup table block is most appropriate. Although all lookup table blocks
support real numbers, the Direct Lookup Table (n-D) and Lookup Table (n-D)
blocks are the only lookup table blocks that support complex table data. Most
lookup table blocks support integer and fixed-point data in addition to double
and single data types.

Data Accuracy and Smoothness
The desired accuracy and smoothness of the data returned by a lookup table
determine which of the blocks should be used. Most blocks provide options
to perform interpolation and extrapolation, improving the accuracy of values
that fall between or outside of the table data, respectively. For instance,
the Lookup Table, Lookup Table (2-D), and Lookup Table Dynamic blocks
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perform linear interpolation and extrapolation, while the Lookup Table (n-D)
block performs either linear or cubic spline interpolation and extrapolation.
In contrast, the Direct Lookup Table (n-D) block performs table lookups
without any interpolation and extrapolation. You can achieve a mix of
interpolation and extrapolation methods by using the Prelookup block with
the Interpolation Using Prelookup block.

Dynamics of Table Inputs
The dynamics of the lookup table inputs impact which of the lookup table
blocks is ideal for your application. The blocks use a variety of index search
methods to relate the lookup table inputs to the table’s breakpoint data
sets. Most of the lookup table blocks offer a binary search algorithm, which
performs well if the inputs change significantly from one time step to the
next. The Lookup Table (n-D) and Prelookup blocks offer a linear search
algorithm. Using this algorithm with the option that resumes searching
from the previous result performs well if the inputs change slowly. Certain
lookup table blocks also provide a search algorithm that is tailored for
breakpoint data sets composed of evenly spaced breakpoints. Note that you
can achieve a mix of index search methods by using the Prelookup block with
the Interpolation Using Prelookup block.

Efficiency of Performance
When the efficiency with which lookup tables operate is important, consider
using the Prelookup block with the Interpolation Using Prelookup block.
These blocks separate the table lookup process into two components — an
index search that relates inputs to the table data, followed by an interpolation
and extrapolation stage that computes outputs. These blocks enable you to
perform a single index search and then reuse the results to look up data in
multiple tables. Also, the Interpolation Using Prelookup block can perform
sub-table selection, in which it interpolates a portion of the table data instead
of the entire table. For example, if your 3-D table data constitutes a stack of
2-D tables to be interpolated, the block allows you to specify an input used
to select and interpolate the 2-D tables. These features make table lookup
operations more efficient, reducing computational effort and thus simulation
time.
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Summary of Lookup Table Block Features
The following table summarizes many features of lookup table blocks in
Simulink®. Use the table to identify features that correspond to particular
lookup table blocks, then select the block that best meets your requirements.

Feature
Lookup
Table

Lookup
Table (2-D)

Lookup
Table
Dynamic

Lookup
Table (n-D)

Direct
Lookup
Table (n-D)

Prelookup Interp.
Using
Prelookup

Interpolation Methods

Flat (none) • • • • • • •

Linear • • • • • •

Cubic spline •

Extrapolation Methods

Clipping • • • • • • •

Linear • • • • • •

Cubic spline •

Numeric & Data Type Support

Complex • •

Double, Single • • • • • • •

Integer • • • • • • •

Fixed-point • • • • • •

Index Search Methods

Binary • • • • •

Linear • •

Evenly spaced
points

• • •

Start at
previous index

• •

Miscellaneous

Sub-table
selection

• •

Dynamic table
data

• •

Input range
checking

• • • •11-10
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Entering Breakpoints and Table Data

In this section...

“Entering Data in a Lookup Table Block’s Parameter Dialog Box” on page
11-11

“Entering Data in the Lookup Table Editor” on page 11-13

“Entering Data Using the Lookup Table Dynamic Block’s Inports” on page
11-15

Entering Data in a Lookup Table Block’s Parameter
Dialog Box
Use the following procedure to populate a Lookup Table block using that
block’s parameter dialog box. In this example, the lookup table approximates
the function y = x3 over the range [-3, 3].

1 Copy a Lookup Table block from the Lookup Tables block library to a
Simulink® model window.

2 In the Simulink model window, double-click the Lookup Table block to
access its parameter dialog box.
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The Lookup Table block’s parameter dialog box appears.

The dialog box displays the default data associated with the block.

3 Enter the breakpoint data set and table data in the specified fields of the
dialog box:

• In the Vector of input values field, enter [-3:3].

• In the Table data field, enter [-27 -8 -1 0 1 8 27].
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The Lookup Table block’s dialog box should look similar to the following:

4 Click the Apply button to apply the changes or the OK button to apply the
changes and close the dialog box.

Entering Data in the Lookup Table Editor
Use the following procedure to populate a Lookup Table (2-D) block using the
Lookup Table Editor. In this example, the lookup table approximates the
function z = x2 + y2 over the input ranges x = [0, 2] and y = [0, 2].

1 Copy a Lookup Table (2-D) block from the Lookup Tables block library to
a Simulink model window.

2 Open the Lookup Table Editor by selecting Lookup Table Editor from
the Simulink Tools menu or by clicking the Edit button on the parameter
dialog box of the Lookup Table (2-D) block.

The Lookup Table Editor appears.
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It displays the default data associated with the Lookup Table (2-D) block.

3 Under Viewing "2–D lookup Table" block data, enter the breakpoint
data sets and table data in the appropriate cells. To change the default
data, double-click a cell, enter the new value, and then press Enter or click
outside the field to confirm the change:

• In the cells associated with the Row Breakpoints, enter each of the
values [0 1 2].

• In the cells associated with the Column Breakpoints, enter each of
the values [0 1 2].

• In the table data cells, enter the values in the array [0 1 4; 1 2 5;
4 5 8].
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The Lookup Table Editor should look similar to the following:

4 From the Lookup Table Editor’s File menu, select Update Block Data to
update the Lookup Table (2-D) block’s data. Close the Lookup Table Editor.

Entering Data Using the Lookup Table Dynamic
Block’s Inports
Use the following procedure to populate a Lookup Table Dynamic block using
that block’s inports. In this example, the lookup table approximates the
function y = 3x2 over the range [0, 10].

1 Copy a Lookup Table Dynamic block from the Lookup Tables block library
to a Simulink model window.
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2 Copy the blocks needed to implement the equation y = 3x2 to the Simulink
model window:

• A Constant block to define the input range, from the Sources library

• A Math Function block to square the input range, from the Math
Operations library

• A Gain block to multiply the signal by 3, also from the Math Operations
library

3 Assign the following parameter values to the Constant, Math Function, and
Gain blocks using their parameter dialog boxes:

• Specify 1:10 as the Constant block’s Constant value parameter.

• Specify square as the Math Function block’s Function parameter.

• Specify 3 as the Gain block’s Gain parameter.

4 Input the breakpoint data set to the Lookup Table Dynamic block by
connecting the outport of the Constant block to the inport of the Lookup
Table Dynamic block labeled xdat. This signal constitutes the input
breakpoint data set represented by x.

5 Input the table data to the Lookup Table Dynamic block by branching
the output signal from the Constant block and connecting it to the Math
Function block. Then connect the Math Function block to the Gain block.
Finally, connect the Gain block to the inport of the Lookup Table Dynamic
block labeled ydat. This signal constitutes the table data represented by y.

The model should look similar to the following:
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Characteristics of Lookup Table Data

In this section...

“Sizes of Breakpoint Data Sets and Table Data” on page 11-17

“Monotonicity of Breakpoint Data Sets” on page 11-18

“Representing Discontinuities” on page 11-19

Sizes of Breakpoint Data Sets and Table Data
The following constraints are imposed on the sizes of breakpoint data sets and
table data associated with lookup table blocks:

• Your system’s memory limitations constrain the overall size of a lookup
table.

• Simulink® requires correctly dimensioned lookup tables such that the
overall size of the table data reflects the size of each breakpoint data set.

To illustrate the second constraint, consider the following vectors of input and
output values that create the relationship depicted in the plot:

Vector of input values: [-3 -2 -1 0 1 2 3]
Vector of output values: [-3 -1 0 -1 0 1 3]

Here, the input and output data are the same size (1-by-7), making the data
consistently dimensioned for a 1-D lookup table.

11-17



11 Working with Lookup Tables

The following input and output values define the 2-D lookup table that is
graphically shown:

Row index input values: [1 2 3]

Column index input values: [1 2 3 4]

Table data: [11 12 13 14; 21 22 23 24; 31 32 33 34]

In this example, the sizes of the vectors representing the row and column
indices are 1-by-3 and 1-by-4, respectively. Consequently, the output table
must be of size 3-by-4 for consistent dimensioning.

Monotonicity of Breakpoint Data Sets
The first stage of a table lookup operation involves relating inputs to the
breakpoint data sets. The search algorithm requires that input breakpoint
sets be monotonically increasing, that is, each successive element is equal to
or greater than its preceding element. For example, the vector

A = [0 0.5 1 1.9 2 2 2 2.1 3]

repeats the value 2 while all other elements are increasingly larger than their
predecessors; hence, A is monotonically increasing.

But for lookup tables populated with data types other than double or single,
the search algorithm requires an additional constraint due to quantization
effects. In such cases, the input breakpoint data sets must be strictly
monotonically increasing, i.e., each successive element must be greater than
its preceding element. Consider the vector

B = [0 0.5 1 1.9 2 2.1 2.17 3]
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in which each successive element is greater than its preceding element,
making B strictly monotonically increasing.

Note that although a breakpoint data set might be strictly monotonic in
doubles format, it might not be so after conversion to a fixed-point data type.

Representing Discontinuities
You can represent discontinuities in lookup tables that have monotonically
increasing breakpoint data sets. To create a discontinuity, simply repeat an
input value in the breakpoint data set with different output values in the
table data. For example, these vectors of input (x) and output (y) values
associated with a 1-D lookup table create the step transitions depicted in
the plot that follows:

Vector of input values: [-2 -1 -1 0 0 1 1 2]
Vector of output values: [-1 -1 -2 -2 2 2 1 1]

This example has discontinuities at x = -1, 0, and +1.

When there are two output values for a given input value, the block chooses
the output according to these rules:
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• If the input signal is less than zero, the block returns the output value
associated with the last occurrence of the input value in the breakpoint data
set. In this example, if the input is -1, y is -2, marked with a solid circle.

• If the input signal is greater than zero, the block returns the output value
associated with the first occurrence of the input value in the breakpoint
data set. In this example, if the input is 1, y is 2, marked with a solid circle.

• If the input signal is zero and there are two output values specified at
the origin, the block returns the average of those output values. In this
example, if the input is 0, y is 0, the average of the two output values -2 and
2 specified at x = 0.

When there are three points specified at the origin, the block generates the
output associated with the middle point. The following example demonstrates
this special rule:

Vector of input values: [-2 -1 -1 0 0 0 1 1 2]
Vector of output values: [-1 -1 -2 -2 1 2 2 1 1]

In this example, three points define the discontinuity at the origin. When the
input is 0, y is 1, the value of the middle point.

You can apply this same method to create discontinuities in breakpoint data
sets associated with multidimensional lookup tables.
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Estimating Missing Points

In this section...

“About Estimating Missing Points” on page 11-21

“Interpolation Methods” on page 11-21

“Extrapolation Methods” on page 11-22

“Rounding Methods” on page 11-23

“Example Output” on page 11-24

About Estimating Missing Points
The second stage of a table lookup operation involves generating outputs that
correspond to the supplied inputs. If the inputs match the values of indices
specified in breakpoint data sets, the block outputs the corresponding values.
However, if the inputs fail to match index values in the breakpoint data sets,
Simulink® estimates the output. In the block’s parameter dialog box, you can
specify how to compute the output in this situation. The available lookup
methods are described in the following sections:

Interpolation Methods
When an input falls between breakpoint values, the block interpolates the
output value using neighboring breakpoints. Most lookup table blocks let you
select one of the following interpolation methods:

• None (Flat) — Disables interpolation and uses the rounding operation
titled Use Input Below. For more information, see “Rounding Methods” on
page 11-23.

• Linear interpolation — Fits a line between the adjacent breakpoints,
and returns the point on that line corresponding to the input.

• Cubic spline interpolation — Fits a cubic spline to the adjacent
breakpoints, and returns the point on that spline corresponding to the
input.
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Note Blocks such as the Lookup Table Dynamic block do not
allow you to choose a particular interpolation method. The
Interpolation-Extrapolation option in the Lookup Method field of its
block parameter dialog box performs linear interpolation.

Each of these methods involves a tradeoff between computation time and the
smoothness of the result. Although rounding is quickest, it is the least smooth.
Linear interpolation is slower than rounding but generates smoother results,
except at breakpoints where the slope changes. Cubic spline interpolation is
the slowest but produces the smoothest results.

Extrapolation Methods
When an input falls outside the breakpoint data set’s range, the block
extrapolates the output value from a pair of values at the end of the
breakpoint data set. Most lookup table blocks let you select one of the
following extrapolation methods:

• None (Clip to Range) or (Use End Values) — Disables extrapolation
and returns the table data corresponding to the end of the breakpoint
data set range.

• Linear extrapolation — Fits a line between the first or last pair of
breakpoints, depending if the input is less than the first or greater than the
last breakpoint, respectively. It returns the point on that line corresponding
to the input.

• Cubic spline extrapolation — Fits a cubic spline to the first or last
pair of breakpoints, depending if the input is less than the first or greater
than the last breakpoint, respectively. It returns the point on that spline
corresponding to the input.

Note Blocks such as the Lookup Table Dynamic block do not
allow you to choose a particular extrapolation method. The
Interpolation-Extrapolation option in the Lookup Method field of its
block parameter dialog box performs linear extrapolation.
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In addition to these methods, some lookup table blocks, such as the Lookup
Table (n-D) block, allow you to select an action to perform when encountering
situations that require extrapolation. For instance, you can specify that
Simulink generate either a warning or an error when the lookup table’s
inputs are outside the ranges of its breakpoint data sets. To specify such an
action, select it from the Action for out of range input list on the block’s
parameter dialog box.

Rounding Methods
If an input falls between breakpoint values or outside the range of a
breakpoint data set and you have not specified interpolation or extrapolation,
the value is rounded to that of an adjacent breakpoint and returns the
corresponding output value. Most lookup table blocks let you select one of the
following rounding methods:

• Use Input Nearest — Returns the output value corresponding to the
nearest input value.

• Use Input Below — Returns the output value corresponding to the
breakpoint value that is immediately less than the input value. If no
breakpoint value exists below the input value, it returns the breakpoint
value nearest the input value.

• Use Input Above — Returns the output value corresponding to the
breakpoint value that is immediately greater than the input value. If no
breakpoint value exists above the input value, it returns the breakpoint
value nearest the input value.

11-23



11 Working with Lookup Tables

Example Output
Suppose the Lookup Table block in the following model is configured to use a
vector of input values given by [-5:5], and a vector of output values given
by sinh([-5:5]).

The following outputs are generated when using the specified lookup methods
and inputs:

Lookup Method Input Output Comment

Interpolation-
Extrapolation

1.4 2.156 N/A

5.2 83.59 N/A

Interpolation-
Use End Values

1.4 2.156 N/A

5.2 74.2 The value for sinh(5.0)
was used.

Use Input Above 1.4 3.627 The value for sinh(2.0)
was used.

5.2 74.2 The value for sinh(5.0)
was used.

Use Input Below 1.4 1.175 The value for sinh(1.0)
was used.

-5.2 -74.2 The value for sinh(-5.0)
was used.

Use Input Nearest 1.4 1.175 The value for sinh(1.0)
was used.
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Lookup Table Editor

In this section...

“About the Lookup Table Editor” on page 11-25

“Opening the LUT Editor” on page 11-25

“Browsing LUT Blocks” on page 11-26

“Editing Table Values” on page 11-28

“Displaying N-Dimensional Tables” on page 11-29

“Plotting LUT Tables” on page 11-31

“Editing Custom LUT Blocks” on page 11-32

About the Lookup Table Editor
The Lookup Table Editor allows you to inspect and change the table elements
of any lookup table (LUT) block in a model, including custom LUT blocks that
you have created using the Simulink® Mask Editor (see “Editing Custom LUT
Blocks” on page 11-32). You can also use a block’s parameter dialog box to edit
its table. However, that requires you to open the subsystem containing the
block first and then its parameter dialog box. The LUT Editor allows you to
skip these steps.

Note You cannot use the LUT Editor to change the dimensions of a lookup
table. You must use the block’s parameter dialog box for this purpose.

Opening the LUT Editor
To open the editor, select Lookup Table Editor from the Simulink Tools
menu. The editor appears.
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The editor contains two panes and a toolbar. The pane on the left is a LUT
block browser. It allows you to browse and select LUT blocks in any open
model (see “Browsing LUT Blocks” on page 11-26). The pane on the right
allows you to edit the selected block’s lookup table (“Editing Table Values”
on page 11-28). The toolbar gives you one-click access to the editor’s most
frequently used commands. Each toolbar button has a tooltip that explains
its function.

Browsing LUT Blocks
The Models list in the upper-left corner of the LUT Editor lists the names of
all models open in the current MATLAB® software session. To browse any
open model’s LUT table blocks, select the model’s name from the list. A
tree-structured view of the selected model’s LUT blocks appears in the Table
blocks field beneath the Models list.
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The tree view initially lists all the LUT blocks that reside at the model’s root
level. It also displays any subsystems that contain LUT blocks. Clicking
the expand button (+) to the left of the subsystem’s name expands the tree
to show the LUT blocks in that subsystem. The expanded view also shows
any subsystems in the expanded subsystem. You can continue expanding
subsystem nodes in this manner to display LUT blocks at any level in the
model hierarchy.

Clicking any LUT block in the LUT block tree view displays the block’s lookup
table in the right pane, allowing you to edit the table (see “Editing Table
Values” on page 11-28).

Note If you want to browse the LUT blocks in a model that is not currently
open, you can command the LUT Editor to open the model. To do this, select
Open Model from the LUT Editor’s File menu.
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Editing Table Values
The Viewing “2–D lookup Table” block data table view of the LUT Editor
allows you to edit the lookup table of the LUT block currently selected in
the adjacent tree view.

The table view displays the entire table if it is one- or two-dimensional or a
two-dimensional slice of the table if the table has more than two dimensions
(see “Displaying N-Dimensional Tables” on page 11-29). To change any of the
displayed values, double-click the value. The LUT Editor replaces the value
with an edit field containing the value. Edit the value, then press Enter or
click outside the field to confirm the change.

The Data Type beneath the table allows you to specify the data type by row
or column, or for the entire table. By default, the data type is double. To
change the data type, select the pop-up index list for the table element for
which you want to change the data type.

The LUT Editor records your changes in a copy of the table that it maintains.
To update the copy maintained by the LUT block itself, select Update Block
Data from the LUT Editor’s File menu. To restore the LUT Editor’s copy to
the values stored in the block, select Reload Block Data from the File menu.
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Displaying N-Dimensional Tables
If the lookup table of the LUT block currently selected in the LUT Editor’s
tree view has more than two dimensions, the editor’s table view displays a
two-dimensional slice of the table.
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The Dimension Selector specifies which slice currently appears and allows
you to select another slice. The selector consists of a 2-by-N array of controls
where N is the number of dimensions in the lookup table. Each column
corresponds to a dimension of the lookup table. The third column corresponds
to the first dimension of the table, the second column to the second dimension
of the table, and so on. The top row of the selector array displays the size of
each dimension. The remaining rows specify which dimensions of the table
correspond to the row and column axes of the slice and the indices that select
the slice from the remaining dimensions.

To select another slice of the table, click the Select row axis and Select
column axis radio buttons in the columns that correspond to the dimensions
that you want to view. Then select the indexes of the slice from the pop-up
index lists in the remaining columns.

To transpose the table display, click the Transpose display check box.

For example, the following selector displays slice (;,;,1) of a 3-D table.
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Plotting LUT Tables
Select Linear or Mesh from the Plot menu of the LUT Editor to display
a linear or mesh plot of the table or table slice currently displayed in the
editor’s table view.
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Editing Custom LUT Blocks
You can use the LUT Editor to edit custom lookup table blocks that you or
others have created. To do this, you must first configure the LUT Editor to
recognize the custom LUT blocks in your model. Once you have configured
the LUT Editor to recognize the custom blocks, you can edit them as if they
were standard blocks.

To configure the LUT editor to recognize custom LUT blocks, select
Configure from the editor’s File menu. The Look-Up Table Blocks Type
Configuration dialog box appears.

By default, the dialog box displays a table of the types of LUT blocks that the
LUT Editor currently recognizes. These include the standard MATLAB LUT
blocks. Each row of the table displays key attributes of a LUT block type.
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Adding a Custom LUT Type
To add a custom block to the list of recognized types,

1 Select the Add button on the dialog box.

A new row appears at the bottom of the block type table.

2 Enter information for the custom block in the new row under the following
headings.

Field Name Description

Block Type Block type of the custom LUT block.
The block type is the value of the block’s
BlockType parameter.

Mask Type Mask type in this field. The mask type is the
value of the block’s MaskType parameter.

Breakpoint Name Names of the custom LUT block’s
parameters that store its breakpoints.

Table Name Name of the block parameter that stores the
custom block’s lookup table.

Number of dimensions Leave empty.

Explicit Dimensions Leave empty.

3 Click OK.

Removing Custom LUT Types
To remove a custom LUT type from the list of types recognized by the LUT
Editor, select the custom type’s entry in the table in the Look-Up Table
Blocks Type Configuration dialog box. Then select Remove.

To remove all custom LUT types, select the check box labeled Use Simulink
default look-up table blocks list at the top of the dialog box.
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Example of a Logarithm Lookup Table
Suppose you wish to approximate the common logarithm (base 10) over the
input range [1, 10] without performing an expensive computation. This can
be accomplished using a lookup table block as described in the following
procedure.

1 Copy the following blocks to the Simulink® model window:

• A Constant block to input the signal, from the Sources library

• A Lookup Table block to approximate the common logarithm, from the
Lookup Tables library

• A Display block to display the output, from the Sinks library

2 Assign the breakpoint data set and table data to the Lookup Table block by
double-clicking it and entering the following values:

• In the Vector of input values field, enter [1:10].

• In the Table data field, enter
[0 .301 .477 .602 .698 .778 .845 .903 .954 1].

Alternatively, you can enter the MATLAB® expression log10(1:10) in
this field, which evaluates to the equivalent vector of output values.

Note that the Lookup method is set to Interpolation-Extrapolation
by default. The dialog box should now appear as follows:
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Click the OK button to apply the changes and close the dialog box.

3 Connect the blocks such that you input the Constant to the Lookup Table
and display its output:

4 Double-click the Constant block to open its parameter dialog box, and
change the Constant value parameter to, e.g., 5. Click the OK button to
apply the changes and close the dialog box.

5 Choose Start from the Simulation menu to run the simulation.

When the value of the Constant block equals a breakpoint, the Lookup
Table block returns the corresponding output value. For instance, when
the input value is 5, the output value is 0.698.
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When the value of the Constant block falls between breakpoints, the Lookup
Table block linearly interpolates the output value using neighboring
breakpoints. For instance, when the input value is 7.5, the output value
is 0.874.

When the value of the Constant block falls outside the breakpoint data set’s
range, the Lookup Table block linearly extrapolates the output value from
a pair of values at the end of the breakpoint data set. For instance, when
the input value is 10.5, the output value is 1.023.
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Lookup Table Glossary
The following table summarizes the terminology used to describe lookup
tables in the Simulink® user interface and documentation.

Term Meaning

breakpoint A single element of a breakpoint
data set. A breakpoint represents
a particular input value to which a
corresponding output value in the
table data is mapped.

breakpoint data set A vector of input values that indexes
a particular dimension of a lookup
table. A lookup table uses breakpoint
data sets to relate its input values to
the output values that it returns.

extrapolation A process for estimating values that
lie beyond the range of known data
points.

interpolation A process for estimating values that
lie between known data points.

lookup table An array of data that maps input
values to output values, thereby
approximating a mathematical
function. Given the necessary input
values, a simple “lookup” operation
is used to retrieve the corresponding
output values from the table. If
the lookup table does not explicitly
define the input values, Simulink
can estimate an output value using
interpolation, extrapolation, or
rounding.
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Term Meaning

monotonically increasing The elements of a set are ordered
such that each successive element is
greater than or equal to its preceding
element.

rounding A process for approximating a value
by altering its digits according to a
known rule.

strictly monotonically increasing The elements of a set are ordered
such that each successive element is
greater than its preceding element.

table data An array that serves as a sampled
representation of a function
evaluated at a lookup table’s
breakpoint values. A lookup table
uses breakpoint data sets to index
the table data, ultimately returning
an output value.
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General Considerations when Building Simulink® Models

In this section...

“Avoiding Invalid Loops” on page 12-2

“Shadowed Files” on page 12-4

“Model Building Tips” on page 12-6

Avoiding Invalid Loops
You can connect the output of a block directly or indirectly (i.e., via other
blocks) to its input, thereby, creating a loop. Loops can be very useful. For
example, you can use loops to solve differential equations diagrammatically
(see “Modeling a Continuous System” on page 12-8) or model feedback control
systems. However, it is also possible to create loops that cannot be simulated.
Common types of invalid loops include:

• Loops that create invalid function-call connections or an attempt to
modify the input/output arguments of a function call (see “Function-Call
Subsystems” on page 4-21 for a description of function-call subsystems)

• Self-triggering subsystems and loops containing non-latched triggered
subsystems (see “Triggered Subsystems” on page 4-12 in the Using
Simulink® documentation for a description of triggered subsystems and
Inport in the Simulink reference documentation for a description of
latched input)

• Loops containing action subsystems

The Subsystem Examples block library in the Ports & Subsystems library
contains models that illustrates examples of valid and invalid loops involving
triggered and function-call subsystems. Examples of invalid loops include
the following models:

• simulink/Ports&Subsystems/sl_subsys_semantics/Triggered
subsystem/sl_subsys_trigerr1 (sl_subsys_trigerr1)

• simulink/Ports&Subsystems/sl_subsys_semantics/Triggered
subsystem/sl_subsys_trigerr2 (sl_subsys_trigerr2)
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• simulink/Ports&Subsystems/sl_subsys_semantics/Function-call
systems/sl_subsys_fcncallerr3 (sl_subsys_fcncallerr3)

You might find it useful to study these examples to avoid creating invalid
loops in your own models.

Detecting Invalid Loops
To detect whether your model contains invalid loops, select Update Diagram
from the model’s Edit menu. If the model contains invalid loops, the invalid
loops are highlighted. This is illustrated in the following model ,

and displays an error message in the Simulation Diagnostics Viewer.
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Shadowed Files
If there are two Model files with the same name (e.g. mylibrary.mdl) on the
MATLAB® path, the one higher on the path is loaded, and the one lower
on the path is said to be "shadowed".

The rules which the Simulink software uses to find Model files are similar to
those used by the MATLAB software. See "How the Search Path Determines
Which Function to Use" in the MATLAB documentation. However, there is an
important difference between the way in which Simulink block diagram and
MATLAB functions are handled: a loaded block diagram takes precedence
over any unloaded ones, regardless of its position on the MATLAB path.
This is done for performance reasons, as part of the Simulink software’s
incremental loading methodology.

The precedence of a loaded block diagram over any others can have important
implications, particularly since a block diagram can be loaded without the
corresponding Simulink window being visible.
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Making Sure the Correct Block Diagram Is Loaded
When using libraries and referenced models, a block diagram may be loaded
without showing its window. If the MATLAB path or the current MATLAB
directory changes while block diagrams are in memory, these block diagrams
may interfere with the use of other files of the same name. For example,
after a change of directory, a loaded but invisible library may be used instead
of the one the user expects.

To see an example:

1 Enter sldemo_hydcyl4 to open the Simulink demo model sldemo_hydcyl4.

2 Use the find_system command to see which block diagrams are in memory:

find_system('type','block_diagram')

ans =

'hydlib'
'sldemo_hydcyl4'

Note that a Simulink library, hydlib, has been loaded, but is currently
invisible.

3 Now close sldemo_hydcyl4. Run the find_system command again, and
you will see that the library is still loaded.

If you change to another directory which contains a different library called
hydlib, and try to run a model in that directory, the library in that directory
would not be loaded because the block diagram of the same name in memory
takes precedence. This can lead to problems including:

• Simulation errors

• "Bad Link" icons on blocks which are library links

• Wrong results

To prevent these conditions, it is necessary to close the library explicitly as
follows:
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close_system('hydlib')

Then, when the Simulink software next needs to use a block in a library called
hydlib it will use the file called hydlib.mdl which is highest on the MATLAB
path at the time. Alternatively, to make the library visible, enter:

open_system('hydlib')

Detecting and Fixing Problems
When updating a block diagram, the Simulink software checks the position
of its file on the MATLAB path and will issue a warning if it detects that
another file of the same name exists and is higher on the MATLAB path.
The warning reads:

The file containing block diagram 'mylibrary' is shadowed
by a file of the same name higher on the MATLAB path.

This may indicate that the wrong file called mylibrary.mdl is being used. To
see which file called mylibrary.mdl is loaded into memory, enter:

which mylibrary

C:\work\Model1\mylibrary.mdl

To see all the files called mylibrary which are on the MATLAB path (note
that this can include M-files), enter:

which -all mylibrary

C:\work\Model1\mylibrary.mdl
C:\work\Model2\mylibrary.mdl % Shadowed

To close the block diagram called mylibrary and let the Simulink software
load the file which is highest on the MATLAB path, enter:

close_system('mylibrary')

Model Building Tips
Here are some model-building hints you might find useful:
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• Memory issues

In general, more memory will increase performance.

• Using hierarchy

More complex models often benefit from adding the hierarchy of subsystems
to the model. Grouping blocks simplifies the top level of the model and can
make it easier to read and understand the model. For more information,
see “Creating Subsystems” on page 3-35. The Model Browser provides
useful information about complex models (see “The Model Browser” on
page 13-28).

• Cleaning up models

Well organized and documented models are easier to read and understand.
Signal labels and model annotations can help describe what is happening
in a model. For more information, see and “Annotating Diagrams” on page
3-24.

• Modeling strategies

If several of your models tend to use the same blocks, you might find it
easier to save these blocks in a model. Then, when you build new models,
just open this model and copy the commonly used blocks from it. You can
create a block library by placing a collection of blocks into a system and
saving the system. You can then access the system by typing its name in
the MATLAB Command Window.

Generally, when building a model, design it first on paper, then build
it using the computer. Then, when you start putting the blocks together
into a model, add the blocks to the model window before adding the lines
that connect them. This way, you can reduce how often you need to open
block libraries.
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Modeling a Continuous System
To model the differential equation

where u(t) is a square wave with an amplitude of 1 and a frequency of 1
rad/sec. The Integrator block integrates its input x´ to produce x. Other blocks
needed in this model include a Gain block and a Sum block. To generate a
square wave, use a Signal Generator block and select the Square Wave form
but change the default units to radians/sec. Again, view the output using a
Scope block. Gather the blocks and define the gain.

In this model, to reverse the direction of the Gain block, select the block, then
use the Flip Block command from the Format menu. To create the branch
line from the output of the Integrator block to the Gain block, hold down
the Ctrl key while drawing the line. For more information, see “Drawing a
Branch Line” on page 3-17.

Now you can connect all the blocks.

An important concept in this model is the loop that includes the Sum block,
the Integrator block, and the Gain block. In this equation, x is the output of
the Integrator block. It is also the input to the blocks that compute x´, on
which it is based. This relationship is implemented using a loop.
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Modeling a Continuous System

The Scope displays x at each time step. For a simulation lasting 10 seconds,
the output looks like this:

The equation you modeled in this example can also be expressed as a transfer
function. The model uses the Transfer Fcn block, which accepts u as input
and outputs x. So, the block implements x/u. If you substitute sx for x´ in
the above equation, you get

Solving for x gives

or,

The Transfer Fcn block uses parameters to specify the numerator and
denominator coefficients. In this case, the numerator is 1 and the denominator
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is s+2. Specify both terms as vectors of coefficients of successively decreasing
powers of s.

In this case the numerator is [1] (or just 1) and the denominator is [1 2].

The results of this simulation are identical to those of the previous model.
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Best-Form Mathematical Models

In this section...

“Series RLC Example” on page 12-11

“Solving Series RLC Using Resistor Voltage” on page 12-12

“Solving Series RLC Using Inductor Voltage” on page 12-13

Series RLC Example
You can often formulate the mathematical system you are modeling in several
ways. Choosing the best-form mathematical model allows the simulation to
execute faster and more accurately. For example, consider a simple series
RLC circuit.

� % �

&��

According to Kirchoff ’s voltage law, the voltage drop across this circuit is
equal to the sum of the voltage drop across each element of the circuit.

V V V VAC R L C= + +

Using Ohm’s law to solve for the voltage across each element of the circuit,
the equation for this circuit can be written as

V Ri L
di
dt C

i t dtAC
t

= + +
−∞∫1

( )

You can model this system in Simulink® by solving for either the resistor
voltage or inductor voltage. Which you choose to solve for affects the structure
of the model and its performance.
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Solving Series RLC Using Resistor Voltage
Solving the RLC circuit for the resistor voltage yields

V Ri

Ri V L
di

dt C
i t dt

R

AC

t

=

= − −
−∞∫

1
( )

Circuit Model
The following diagram shows this equation modeled in Simulink where R is
70, C is 0.00003, and L is 0.04. The resistor voltage is the sum of the voltage
source, the capacitor voltage, and the inductor voltage. You need the current
in the circuit to calculate the capacitor and inductor voltages. To calculate
the current, multiply the resistor voltage by a gain of 1/R. Calculate the
capacitor voltage by integrating the current and multiplying by a gain of 1/C.
Calculate the inductor voltage by taking the derivative of the current and
multiplying by a gain of L.

This formulation contains a Derivative block associated with the inductor.
Whenever possible, you should avoid mathematical formulations that
require Derivative blocks as they introduce discontinuities into your system.

12-12



Best-Form Mathematical Models

Numerical integration is used to solve the model dynamics though time.
These integration solvers take small steps through time to satisfy an accuracy
constraint on the solution. If the discontinuity introduced by the Derivative
block is too large, it is not possible for the solver to step across it.

In addition, in this model the Derivative, Sum, and two Gain blocks create
an algebraic loop. Algebraic loops slow down the model’s execution and can
produce less accurate simulation results. See “Algebraic Loops” on page 2-31
for more information.

Solving Series RLC Using Inductor Voltage
To avoid using a Derivative block, formulate the equation to solve for the
inductor voltage.

V L
di

dt

L
di

dt
V Ri

C
i t dt

L

AC

t

=

= − −
−∞∫

1
( )

Circuit Model
The following diagram shows this equation modeled in Simulink. The
inductor voltage is the sum of the voltage source, the resistor voltage, and the
capacitor voltage. You need the current in the circuit to calculate the resistor
and capacitor voltages. To calculate the current, integrate the inductor
voltage and divide by L. Calculate the capacitor voltage by integrating the
current and dividing by C. Calculate the resistor voltage by multiplying the
current by a gain of R.
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This model contains only integrator blocks and no algebraic loops. As a result,
the model simulates faster and more accurately.
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Example: Converting Celsius to Fahrenheit

Example: Converting Celsius to Fahrenheit
To model the equation that converts Celsius temperature to Fahrenheit

TF = 9/5(TC) + 32

First, consider the blocks needed to build the model:

• A Ramp block to input the temperature signal, from the Sources library

• A Constant block to define a constant of 32, also from the Sources library

• A Gain block to multiply the input signal by 9/5, from the Math Operations
library

• A Sum block to add the two quantities, also from the Math Operations
library

• A Scope block to display the output, from the Sinks library

Next, gather the blocks into your model window.

Assign parameter values to the Gain and Constant blocks by opening
(double-clicking) each block and entering the appropriate value. Then, click
the OK button to apply the value and close the dialog box.
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Now, connect the blocks.

The Ramp block inputs Celsius temperature. Open that block and change the
Initial output parameter to 0. The Gain block multiplies that temperature
by the constant 9/5. The Sum block adds the value 32 to the result and
outputs the Fahrenheit temperature.

Open the Scope block to view the output. Now, choose Start from the
Simulation menu to run the simulation. The simulation runs for 10 seconds.
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Exploring, Searching, and
Browsing Models

The Model Explorer (p. 13-2) How to use the Model Explorer
to find, display, and modify model
contents.

The Finder (p. 13-22) How to use the Simulink® Finder
to locate blocks, states, and other
objects in a model, using search
criteria that you specify.

The Model Browser (p. 13-28) How to navigate quickly to any point
in a model’s block hierarchy.

Model Dependencies (p. 13-31) How to identify and package
required files, and view libraries and
models referenced by your model.
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The Model Explorer

In this section...

“Introduction to the Model Explorer” on page 13-2

“Model Hierarchy Pane” on page 13-4

“Contents Pane” on page 13-6

“Dialog Pane” on page 13-12

“Main Toolbar” on page 13-14

“Search Bar” on page 13-17

“Setting the Model Explorer’s Font Size” on page 13-21

Introduction to the Model Explorer
The Model Explorer allows you to quickly locate, view, and change elements
of a Simulink® model or Stateflow® chart. To display the Model Explorer,
select Model Explorer from the Simulink View menu or select an object in
the block diagram and select Explore from its context menu. The Model
Explorer appears.
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The Model Explorer includes the following components:

• Model Hierarchy pane (see “Model Hierarchy Pane” on page 13-4)

• Contents pane (see “Contents Pane” on page 13-6)

• Dialog pane (see “Dialog Pane” on page 13-12)

• Main toolbar (see “Main Toolbar” on page 13-14)

• Search bar (see “Search Bar” on page 13-17)

You can use the Model Explorer’s View menu to hide the Dialog pane and
the toolbars, thereby making more room for the other panes.
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Model Hierarchy Pane
The Model Hierarchy pane displays a tree-structured view of the Simulink
model hierarchy.

Simulink® Root
The first node in the view represents the Simulink root. Expanding the root
node displays nodes representing the MATLAB® workspace (the Simulink
base workspace) and each model and library loaded in the current session.
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Base Workspace
This node represents the MATLAB workspace. The MATLAB workspace is
the base workspace for Simulink models. Variables defined in this workspace
are visible to all open Simulink models, i.e., to all models whose nodes appear
beneath the Base Workspace node in the Model Hierarchy pane.

Configuration Preferences
If you check the Show Configuration Preferences option on the Model
Explorer’s View menu, the expanded Simulink Root node also displays a
Configuration Preferences node. Selecting this node displays the preferred
model configuration (see “Configuration Sets” on page 14-37) for new models
in the adjacent panes. You can change the preferred configuration by editing
the displayed settings and using the Model Configuration Preferences
dialog box to save the settings (see “Model Configuration Preferences Dialog”
on page 14-45).

Model Nodes
Expanding a model node displays nodes representing the model’s configuration
sets (see “Configuration Sets” on page 14-37), top-level subsystems, model
references, and Stateflow charts. Expanding a node representing a subsystem
displays its subsystems, if any. Expanding a node representing a Stateflow
chart displays the chart’s top-level states. Expanding a node representing
a state shows its substates.

Displaying Node Contents
To display the contents of an object displayed in the Model Hierarchy
pane (e.g., a model or configuration set) in the adjacent Contents pane,
select the object. To open a graphical object (e.g., a model, subsystem, or
chart) in an editor window, right-click the object. A context menu appears.
Select Open from the context menu. To open an object’s properties dialog,
select Properties from the object’s context menu or from the Edit menu.
See “Configuration Sets” on page 14-37 for information on using the Model
Hierarchy pane to delete, move, and copy configuration sets from one model
to another.
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Expanding Model References
To expand a node representing a model reference (see Chapter 5, “Referencing
a Model”), you must first open the referenced model. To do this, right-click on
the node to display its context menu, then select Open Model from the menu.
The model to which the reference refers to is then opened, a node for it is
displayed in the Model Hierarchy pane, and all references to the model are
made expandable. You cannot edit the contents of a reference node, however.
To edit the referenced model, you must expand its node.

Contents Pane
The Contents pane displays either of two tabular views selectable by tabs.
The Contents tab displays the contents of the object selected in the Model
Hierarchy pane. The Search Results tab displays the results of a search
operation (see “Search Bar” on page 13-17) .

In both views, the table rows correspond to objects (e.g., blocks or states);
the table columns, to object properties (e.g., name and type). The table cells
display the values of the properties of the objects contained by the object
selected in the Model Hierarchy pane or found by a search operation.
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The objects and properties displayed in the Contents pane depend on the
type of object (e.g., subsystem, chart, or configuration set) selected in the
Model Hierarchy pane. For example, if the object selected in the Model
Hierarchy pane is a model or subsystem, the Contents pane by default
displays the name and type of the top-level blocks contained by that model or
subsystem. If the selected object is a Stateflow chart or state, the Contents
pane by default shows the name, scope, and other properties of the events and
data that make up the chart or state.
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Customize Contents Pane
The Customize Contents pane allows you to select the properties that the
Contents pane displays for the object selected in the Model Hierarchy
pane. When visible, the pane appears in the lower-left corner of the Model
Explorer window.

A splitter divides the Customize Contents pane from the Model Hierarchy
pane above it. Drag the splitter up or down to adjust the relative size of the
two panes.

The Customize Contents pane contains a tree-structured property list. The
list’s top-level nodes group object properties into the following categories:
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• Current Properties

Properties that the Contents pane currently displays.

• Selection Properties

Properties of the object currently selected in the Contents pane.

• All Properties

Properties of the contents of all models displayed in the Model Explorer
thus far in this session.

• Fixed Point Properties

Fixed-point properties of blocks.

By default, the Contents pane displays a standard subset of properties for
the currently selected model. The Customize Contents pane allows you to
perform the following customizations:

• To display additional properties of the selected model, expand the All
Properties node, if necessary, and check the desired properties.

• To delete some but not all properties from the Contents pane, expand the
Current Properties node, if necessary, and uncheck the properties that
you do not want to appear in the Contents pane.

• To delete all properties from the Contents pane (except the selected
object’s name), uncheck Current Properties.

• To display only the properties of the currently selected object, uncheck
Current Properties to clear the properties display, then check Selection
Properties.

• To add or remove fixed-point block properties from the Contents pane,
check or uncheck Fixed Point Properties.

Customizing the Contents Pane
The Model Explorer’s View menu allows you to control the type of objects and
properties displayed in the Contents pane.

• To display only object names in the Contents pane, uncheck the Show
Properties item on the View menu.
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• To customize the set of properties displayed in the Contents pane, select
Customize Contents from the View menu or click the Customize
Contents button on the Model Explorer’s main toolbar (see “Main Toolbar”
on page 13-14). The Customize Contents pane appears. Use the pane to
select the properties you want the Contents pane to display.

• To specify the types of subsystem or chart contents displayed in the
Contents pane, select List View Options from the View menu. A menu
of object types appears. Check the types that you want to be displayed (e.g.,
Blocks and Named Signals/Connections or All Simulink Objects
for models and subsystems).

Reordering the Contents Pane
The Contents pane by default displays its contents in ascending order by
name. To order the contents in ascending order by any other displayed
property, click the head of the column that displays the property. To change
the order from ascending to descending, or vice versa, click the head of the
property column that determines the current order.
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Marking Nonexistent Properties
Some of the properties that the Contents pane is configured to display may
not apply to all the objects currently listed in the Contents pane. You can
configure the Model Explorer to indicate the inapplicable properties.

To do this, select Mark Nonexistent Properties from the Model Explorer’s
View menu. The Model Explorer now displays dashes for the values of
properties that do not apply to the objects displayed in the Contents pane.
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Changing Property Values
You can change modifiable properties displayed in the Contents pane (e.g.,
a block’s name) by editing the displayed value. To edit a displayed value,
first select the row that contains it. Then click the value. An edit control
replaces the displayed value (e.g., an edit field for text values or a pull-down
list for a range of values). Use the edit control to change the value of the
selected property.

To assign the same property value to multiple objects displayed in the
Contents pane, select the objects and then change one of the selected objects
to have the new property value. The Model Explorer assigns the new property
value to the other selected objects as well.

Dialog Pane
Use the Dialog pane to view and change properties of the blocks or signals in
your model.

1 To show the Dialog pane, select Dialog View from the View menu,
located on the Model Explorer’s main toolbar.

2 In the Contents pane, select an object (such as a block or signal). The
properties are displayed in the Dialog pane.
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3 Change a property (for example, the gain of a gain block) in the Dialog
pane.

4 Click Apply to accept the change, or click Revert to return to the original
value.

By default, clicking outside a dialog with unapplied changes causes the Model
Explorer – Apply Changes dialog box to appear:
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Click OK to accept the changes, Ignore to revert to the original settings, or
Cancel to dismiss the dialog box without making any changes. To suppress
this dialog box in the future, check Never ask me again on the dialog box, or
check Auto Apply/Ignore Dialog Changes on the Model Explorer Tools
menu.

If you suppress the dialog box, and thereafter click outside a dialog that has
unapplied changes, the Model Explorer automatically applies or discards
changes, depending on which action you most recently chose in the dialog box.
You can re-enable the dialog box for future operations by unchecking Tools >
Auto Apply/Ignore Dialog Changes.

Main Toolbar
The Model Explorer’s main toolbar appears near the top of the Model Explorer
window under the Model Explorer’s menu.

The toolbar contains buttons that select commonly used Model Explorer
commands:
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Button Usage

Create a new model.

Open an existing model.

Cut the objects (e.g., variables) selected in the Contents pane
from the object (e.g., a workspace) selected in the Model
Hierarchy pane. Save a copy of the object on the system
clipboard.

Copy the objects selected in the Contents pane to the system
clipboard.

Paste objects from the clipboard into the object selected in the
Model Explorer’s Model Hierarchy pane.

Delete the objects selected in the Contents pane from the object
selected in the Model Hierarchy pane.

Add a MATLAB variable to the workspace selected in the Model
Hierarchy pane.

Add a Simulink.Parameter object to the workspace selected in
the Model Hierarchy pane.

Add a Simulink.Signal object to the workspace selected in the
Model Hierarchy pane.

Add a configuration set to the model selected in the Model
Hierarchy pane.

Add a Stateflow datum to the machine or chart selected in the
Model Hierarchy pane.

Add a Stateflow event to the machine or chart selected in the
Model Hierarchy pane or to the state selected in the Model
Explorer.
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Button Usage

Add a code generation target to the model selected in the Model
Hierarchy pane.

Turn the Model Explorer’s Dialog pane on or off.

Customize the Model Explorer’s Contents pane.

Bring the MATLAB desktop to the front.

Display the Simulink Library Browser.

To show or hide the main toolbar, select Main Toolbar from the Model
Explorer’s View menu.
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Search Bar
The Model Explorer’s search bar allows you to select, configure, and initiate
searches of the object selected in the Model Hierarchy pane. It appears at
the top of the Model Explorer window.

To show or hide the search bar, check or uncheck Search Bar in the Model
Explorer’s View > Toolbars menu.

The search bar includes the following controls:
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Search Type
Specifies the type of search to be performed. Options include:

• by Block Type

Search for blocks of a specified block type. Selecting this search type
causes the search bar to display a block type list control that allows you
to select the target block type from the types contained by the currently
selected model.

• by Property Name

Searches for objects that have a specified property. Selecting this search
type causes the search bar to display a control that allows you to specify
the target property’s name by selecting from a list of properties that objects
in the search domain can have.

• by Property Value

Searches for objects whose property matches a specified value. Selecting
this search type causes the search bar to display controls that allow you
to specify the name of the property, the value to be matched, and the type
of match (equals, less than, greater than, etc.).

• for Fixed Point

Searches a model for all blocks that support fixed-point computations.

• by Name

Searches a model for all objects that have the specified string in the name
of the object.

• by Stateflow Type

Searches for Stateflow objects of a specified type.

• for Library Links

Searches for library links in the current model.

• by Class

Searches for Simulink objects of a specified class.

• for Model References

Searches a model for references to other models.
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• by Dialog Prompt

Searches a model for all objects whose dialogs contain a specified prompt.

• by String

Searches a model for all objects in which a specified string occurs.

Search Options
Specifies options that apply to the current search. The options include:

• Search Current System and Below

Search the current system and the subsystems that it includes directly
or indirectly.

• Look Inside Masked Subsystems

Search includes masked subsystems.

• Look Inside Linked Subsystems

Search includes linked subsystems.

• Match Whole String

Do not allow partial string matches, e.g., do not allow sub to match
substring.

• Match Case

Consider case when matching strings, e.g., Gain does not match gain.

• Regular Expression

The Model Explorer considers a string to be matched as a regular
expression.

• Evaluate Property Values During Search

This option applies only for searches by property value. If enabled, the
option causes the Model Explorer to evaluate the value of each property
as a MATLAB expression and compare the result to the search value.
If disabled (the default), the Model Explorer compares the unevaluated
property value to the search value.
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• Refine Search

Causes the next search operation to search for objects that meet both the
original and new search criteria (see “Refining a Search” on page 13-21).

Search Button
Initiates the search specified by the current settings of the search bar on the
object selected in the Model Explorer’s Model Hierarchy pane. The Model
Explorer displays the results of the search in the tabbed Search Results
pane.

You can edit the results displayed in the Search Results pane. For example,
to change all objects found by a search to have the same property value, select
the objects in the Search Results pane and change one of them to have the
new property value.
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Refining a Search
To refine the previous search, check the Refine Search option on the search
bar’s Search Options menu. A Refine button replaces the Search button
on the search bar. Use the search bar to define new search criteria and then
click the Refine button. The Model Explorer searches for objects that match
the previous search criteria and the new criteria.

Setting the Model Explorer’s Font Size
You use Model Explorer to change the font size used in the Simulink dialog
boxes and in Model Explorer.

To change the font size used in Model Explorer and in the Simulink Dialog
boxes, first open Model Explorer (see “The Model Explorer” on page 13-2).

• Press the Ctrl+ keys to increase the font size

Alternatively, from the Model Explorer’s View menu, select Increase Font
Size

• Press the Ctrl- keys to decrease the font size

Alternatively, from the Model Explorer’s View menu, select Decrease Font
Size

Note These changes simultaneously alter the font size used by Model
Explorer and in the Simulink dialog boxes. The changes remain in effect
across Simulink sessions.
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The Finder

In this section...

“About the Finder” on page 13-22

“Filter Options” on page 13-24

“Search Criteria” on page 13-25

About the Finder
The Finder locates blocks, signals, states, or other objects in a model. To
display the Finder, select Find from the Simulink® Model Editor’s Edit menu.
The Find dialog box appears.

Use the Filter options (see “Filter Options” on page 13-24) and Search
criteria (see “Search Criteria” on page 13-25) panels to specify the
characteristics of the object you want to find. Next, if you have more than
one system or subsystem open, select the system or subsystem where you
want the search to begin from the Start in system list. Finally, click the
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Find button. Simulink searches the selected system for objects that meet the
criteria you have specified.

Any objects that satisfy the criteria appear in the results panel at the bottom
of the dialog box.

You can display an object by double-clicking its entry in the search results
list. Simulink opens the system or subsystem that contains the object (if
necessary) and highlights and selects the object. To sort the results list, click
any of the buttons at the top of each column. For example, to sort the results
by object type, click the Type button. Clicking a button once sorts the list in
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ascending order, clicking it twice sorts it in descending order. To display an
object’s parameters or properties, select the object in the list. Then press the
right mouse button and select Parameter or Properties from the resulting
context menu.

Filter Options
The Filter options panel allows you to specify the kinds of objects to look for
and where to search for them.

Object type list
The object type list lists the types of objects that Simulink can find. By
clearing a type, you can exclude it from the Finder’s search.

Look inside masked subsystem
Selecting this option causes Simulink to look for objects inside masked
subsystems.
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Look inside linked systems
Selecting this option causes Simulink to look for objects inside subsystems
linked to libraries.

Search Criteria
The Search criteria panel allows you to specify the criteria that objects must
meet to satisfy your search request.

Basic
The Basic panel allows you to search for an object whose name and,
optionally, dialog parameters match a specified text string. Enter the search
text in the panel’s Find what field. To display previous search text, select the
drop-down list button next to the Find what field. To reenter text, click it
in the drop-down list. Select Search block dialog parameters if you want
dialog parameters to be included in the search.

Advanced
The Advanced panel allows you to specify a set of as many as seven
properties that an object must have to satisfy your search request.

13-25



13 Exploring, Searching, and Browsing Models

To specify a property, enter its name in one of the cells in the Property
column of the Advanced pane or select the property from the cell’s property
list. To display the list, select the down arrow button next to the cell. Next
enter the value of the property in the Value column next to the property
name. When you enter a property name, the Finder checks the check box next
to the property name in the Select column. This indicates that the property
is to be included in the search. If you want to exclude the property, clear
the check box.

Match case
Select this option if you want Simulink to consider case when matching search
text against the value of an object property.

Other match options
Next to the Match case option is a list that specifies other match options
that you can select.

• Match whole word

Specifies a match if the property value and the search text are identical
except possibly for case.

• Contains word

Specifies a match if a property value includes the search text.

• Regular expression

Specifies that the search text should be treated as a regular expression
when matched against property values. The following characters have
special meanings when they appear in a regular expression.

Character Meaning

^ Matches start of string.

$ Matches end of string.

. Matches any character.
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Character Meaning

\ Escape character. Causes the next character to have its
ordinary meaning. For example, the regular expression
\.. matches .a and .2 and any other two-character
string that begins with a period.

* Matches zero or more instances of the preceding
character. For example, ba* matches b, ba, baa, etc.

+ Matches one or more instances of the preceding
character. For example, ba+ matches ba, baa, etc.

[] Indicates a set of characters that can match the current
character. A hyphen can be used to indicate a range
of characters. For example, [a-zA-Z0-9_]+ matches
foo_bar1 but not foo$bar. A ^ indicates a match
when the current character is not one of the following
characters. For example, [^0-9] matches any character
that is not a digit.

\w Matches a word character (same as [a-z_A-Z0-9]).

\W Matches a nonword character (same as [^a-z_A-Z0-9]).

\d Matches a digit (same as [0-9]).

\D Matches a nondigit (same as [^0-9]).

\s Matches white space (same as [ \t\r\n\f]).

\S Matches nonwhite space (same as [^ \t\r\n\f]).

\<WORD\> Matches WORD where WORD is any string of word
characters surrounded by white space.
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The Model Browser

In this section...

“About the Model Browser” on page 13-28

“Navigating with the Mouse” on page 13-30

“Navigating with the Keyboard” on page 13-30

“Showing Library Links” on page 13-30

“Showing Masked Subsystems” on page 13-30

About the Model Browser
The Model Browser enables you to

• Navigate a model hierarchically

• Open systems in a model

• Determine the blocks contained in a model

Note The browser is available only on Microsoft® Windows® platforms.

To display the Model Browser, select Model Browser Options > Model
Browser from the Simulink® View menu.
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The model window splits into two panes. The left pane displays the browser, a
tree-structured view of the block diagram displayed in the right pane.

Note The Browser initially visible preference causes Simulink to open
models by default in the Model Browser. To set this preference, select
Preferences from the Simulink File menu.

The top entry in the tree view corresponds to your model. A button next to the
model name allows you to expand or contract the tree view. The expanded
view shows the model’s subsystems. A button next to a subsystem indicates
that the subsystem itself contains subsystems. You can use the button to list
the subsystem’s children. To view the block diagram of the model or any
subsystem displayed in the tree view, select the subsystem. You can use either
the mouse or the keyboard to navigate quickly to any subsystem in the tree
view.
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Navigating with the Mouse
Click any subsystem visible in the tree view to select it. Click the + button
next to any subsystem to list the subsystems that it contains. Click the button
again to contract the entry.

Navigating with the Keyboard
Use the up/down arrows to move the current selection up or down the tree
view. Use the left/right arrow or +/- keys on your numeric keypad to expand
an entry that contains subsystems.

Showing Library Links
The Model Browser can include or omit library links from the tree view of a
model. Use the Preferences dialog box to specify whether to display library
links by default. To toggle display of library links, select Show Library
Links from the Model Browser Options submenu of the View menu.

Showing Masked Subsystems
The Model Browser can include or omit masked subsystems from the tree view.
If the tree view includes masked subsystems, selecting a masked subsystem
in the tree view displays its block diagram in the diagram view. Use the
Preferences dialog box to specify whether to display masked subsystems by
default. To toggle display of masked subsystems, select Look Under Masks
from the Model Browser Options submenu of the View menu.

13-30



Model Dependencies

Model Dependencies

In this section...

“What Are Model Dependencies?” on page 13-31

“Dependency Analysis” on page 13-32

“Best Practices for Dependency Analysis” on page 13-37

“Generating Manifests” on page 13-38

“Editing Manifests” on page 13-42

“Comparing Manifests” on page 13-45

“Exporting Files in a Manifest” on page 13-48

“Using the Model Dependency Viewer” on page 13-49

What Are Model Dependencies?
Each Simulink® model requires a set of files to run successfully. These
files can include referenced models, data files, S-functions, and other files
without which the model cannot run. These required files are called model
dependencies.

The Simulink Manifest Tools allow you to analyze a model to determine its
model dependencies. After you identify these dependencies, you can:

• View the files required by your model in a “manifest” file.

• Package the model with its required files into a zip file to send to another
Simulink user.

• Compare older and newer manifests for the same model.

• Save a specific version of the model and its required files in a revision
control system.

You can also view the libraries and models referenced by your model in a
graphical format using the Model Dependency Viewer. See “Using the Model
Dependency Viewer” on page 13-49.
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Dependency Analysis

The Simulink Manifest Tools identify required files and list them in an XML
file called a manifest. When Simulink generates a manifest file, it performs
a static analysis on your model, which means that the model does not need
to be capable of performing an “update diagram” operation (see “Updating a
Block Diagram” on page 1-13).

You can specify the type of dependencies you want to detect when you
generate the manifest. For more information on what the tool analyzes, refer
to the following sections:

• “Analysis Options” on page 13-32

• “Analysis Limitations” on page 13-34

• “M-Code Analysis” on page 13-35

• “Special Cases” on page 13-35

Analysis Options
The Simulink Manifest Tools allow you to specify the scope of analysis when
generating the manifest. The dependencies identified by the analysis depend
upon the scope you specify.

The following table describes the Analysis Scope options.

Check Box Option Description

Find model references Searches for Model blocks in the model,
and identifies any referenced models as
dependencies.

Find library links Searches for links to library blocks in the
model, and identifies any library links as
dependencies.

Find S-functions Searches for S-Function blocks in the model,
and identifies S-function files (M-code and
C) as dependencies.
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Check Box Option Description

Analyze model and block
callbacks (including
“MATLAB Fcn” blocks)

Searches for file dependencies introduced
by the M-code in MATLAB Fcn blocks, block
callbacks, and model callbacks. For more
detail on how callbacks are analyzed, see
“M-Code Analysis” on page 13-35.

Find files required for
code generation

Searches for file dependencies introduced
by Real-Time Workshop® custom code, and
Real-Time Workshop® Embedded Coder™
templates.

Find data files (e.g. in
“From File” blocks)

Searches for explicitly referenced data files,
such as those in From File blocks, and
identifies those files as dependencies. See
“Special Cases” on page 13-35.

Analyze Stateflow charts Searches for file dependencies introduced
through the use of syntax such as
ml.mymean(myvariable) in models that
use Stateflow®.

Analyze code in Embedded
MATLAB blocks

Searches for Embedded MATLAB Function
blocks in the model, and identifies any file
dependencies (outside toolboxes) introduced
in the M-code. Toolbox dependencies
introduced by an Embedded MATLAB™
Function block are not detected.

13-33



13 Exploring, Searching, and Browsing Models

Check Box Option Description

Find requirements
documents

Searches for requirements documents
linked using the Requirements
Management Interface. For more
information, see “Managing Model
Requirements” in the Simulink®

Verification and Validation™ User’s Guide.

Note This option is disabled if your
installation does not include a Simulink
Verification and Validation license, and
Simulink ignores any requirements links in
your model.

Analyze files in “user
toolboxes”

Searches for file dependencies introduced
by files in user-defined toolboxes. See
“Special Cases” on page 13-35.

Analyze M-files Searches for file dependencies introduced
by M-files called from the model. For
example, if this option is selected and you
have a callback to mycallback.m, then
the referenced file mycallback.m is also
analyzed for further dependencies. See
“M-Code Analysis” on page 13-35.

Analysis Limitations
The analysis might not find all files required by your model (for examples, see
“M-Code Analysis” on page 13-35).

The analysis might not report certain blocksets or toolboxes required by
a model. You should be aware of this limitation when sending a model to
another user. Blocksets that do not introduce dependence on any files (such
as Simulink® Fixed Point™) cannot be detected.
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To include dependencies that the analysis cannot detect, you can add
additional file dependencies to a manifest file using the View/Edit Manifest
Contents option (see “Editing Manifests” on page 13-42).

M-Code Analysis
When the Simulink Manifest Tools encounter M-code, for example in a model
or block callback, or in an M-file S-function, they attempt to identify the files
it references. If those files contain M-code, and the analysis scope option
Analyze M-files is selected, the referenced files are also analyzed. This
function is similar to depfun but with some enhancements:

• Files that are in MathWorks™ toolboxes are not analyzed.

• Strings passed into calls to eval, evalc, and evalin are analyzed.

• File names passed to load, fopen, xlsread, importdata, dlmread,
csvread, wk1read, textread and imread are identified.

File names passed to load, etc., are identified only if they are literal strings.
For example:

load('mydatafile')
load mydatafile

The following example, and anything more complicated, is not identified as a
file dependency:

str = 'mydatafile';
load(str);

Similarly, arguments to eval, etc., are analyzed only if they are literal strings.

The Simulink Manifest Tools look inside MAT-files to find the names of
variables to be loaded. This enables them to distinguish reliably between
variable names and function names in block callbacks.

Special Cases
The following list contains additional information about specific cases:
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• If your model uses classes created using the Data Class Designer and
references a class called MyPackage.MyClass, all files inside the directory
@MyPackage and its subdirectories are added to the manifest.

• A user-defined toolbox must have a properly configured Contents.m file.
The Simulink Manifest Tools search user-defined toolboxes as follows:

- If you have a Contents.m file in directory X, any file inside a sub-directory
of X is considered part of your toolbox.

- If you have a Contents.m file in directory X/X, any file inside all
sub-directories of the “outer” directory X will be considered part of your
toolbox.

For more information on the format of a Contents.m file, see ver.

• If your S-functions require TLC files, these are detected.

• If you create a UI using GUIDE and add this to a model callback, then the
dependency analysis detects the M-file and .fig file dependencies.

• Various blocksets and toolboxes can introduce a dependence on a file
through their additional source blocks. If the analysis scope option Find
data files (e.g. in “From File” blocks) is selected, the analysis detects
file dependencies introduced by the following blocks:

Product Blocks

Signal Processing Blockset™ From Wave File block (Microsoft®

Windows® operating system only)

From Multimedia File block
(Windows only)

Video and Image Processing
Blockset™

Image From File block

Read Binary File block

Virtual Reality Toolbox™ VR Sink block

The option Find data files also detects dependencies introduced by setting
a "Model Workspace" for a model to either MAT-File or M-Code.

• To programmatically check for file dependencies, use the method
dependencies.fileDependencyAnalysis as follows.
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[files, missing, depfile] =
dependencies.fileDependencyAnalysis('modelname')

This returns the following:

- files — a cell-array of strings containing the full-paths of all existing
files referenced by the model modelname.

- missing — a cell-array of strings containing the names all files that are
referenced by the model modelname, but cannot be found.

- depfile — the full-path of the file containing information about any
user-defined files associated with the model modelname.

If you try this analysis on a demo model, it returns an empty list of required
files because the standard MathWorks installation includes all the files
required for the demo models.

Best Practices for Dependency Analysis
The starting point for dependency analysis is the model itself. Make sure
that the model refers to any data files it needs, even if you would normally
load these manually. For example, add code to the model’s PreLoadFcn to
load them automatically, e.g.,

load mydatafile
load('my_other_data_file.mat')

This way, the Simulink Manifest Tools can add them to the manifest. For
more detail on callback analysis, see the notes on M-code analysis (see
“M-Code Analysis” on page 13-35).

More generally, ensure that the model creates or loads any variables it uses,
either in model callbacks or in scripts called from model callbacks. This
reduces the possibility of the Simulink Manifest Tools confusing variable
names with function names when analyzing block callbacks.

If you plan to export the manifest after creating it, ensure that the model does
not refer to any files by their absolute paths, for example:

load C:\mymodel\mydata\mydatafile.mat
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Absolute paths can become invalid when you export the model to another
machine. If referring to files in other directories, do it by relative path, for
example:

load mydata\mydatafile.mat

Select Preserve directory hierarchy when exporting, so that the exported
files are in the same locations relative to each other. Also, choose a root
directory so that all the files listed in the manifest are inside it. Otherwise,
any files outside the root are copied into a new directory called external
underneath the root, and relative paths to those files become invalid.

If you are exporting a model that uses an M-file inside a MATLAB® class (in
a directory called @myclass, for example), you must select the Preserve
directory hierarchy check box when exporting, to maintain the directory
structure of the class.

Always test exported zip files by extracting the contents to a new location
on your computer and testing the model. Be aware that in some cases
required files may be on your path but not in the zip file, if your path contains
references to directories other than MathWorks toolboxes.

Generating Manifests
Generating a manifest performs the dependency analysis and saves the list of
model dependencies to a manifest file. You must generate the manifest before
using any of the other Simulink Manifest Tools.

Note The model dependencies identified in a manifest depend upon the
Analysis scope you specify. For example, performing an analysis without
selecting Find Library Links may not find all the Simulink Blocksets that
your model requires, since these are often included in a model as library links.

You should always look at the Dependency analysis settings: section at
the top of the Model Manifest Report to see the scope of analysis used to
generate it. For more information, see “Viewing the Model Manifest Report”
on page 13-40.
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To generate a manifest:

1 Select Tools > Model Dependencies > Generate Manifest.

The Generate Model Manifest dialog box appears.
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2 Select the Analysis scope check boxes to specify the type of dependencies
you want to detect (see “Analysis Options” on page 13-32).

3 Specify the Manifest file name and location in which to save the file.

4 To generate a report when you generate the manifest, select View HTML
report on completion, then specify the Report style (Plain HTML or HTML
with Hyperlinks) and Report file name.

5 Click OK.

Simulink generates a manifest file containing a list of the model
dependencies.

Note The manifest is an XML file with the extension .smf located (by
default) in the same directory as the model itself.

Viewing the Model Manifest Report
If you selected View HTML report on completion, the Model Manifest
Report appears after Simulink generates the manifest. The report shows
details of the analysis scope under the heading Dependency analysis
settings, lists the required files and toolboxes, and provides details of
references to other files so you can identify where dependencies arise.
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Editing Manifests
After you generate a manifest, you can view the list of files identified as
dependencies, and manually add or delete files from the list.

13-42



Model Dependencies

To edit the list of required files in a manifest:

1 Select Tools > Model Dependencies > View/Edit Manifest Contents.

The View and Edit Manifest dialog box appears, showing the latest
manifest for the current model.

Note You can open a different manifest by clicking the Browse for

manifest file button . If you have not generated a manifest, select
Generate Manifest to open the Generate Model Manifest dialog box (see
“Generating Manifests” on page 13-38).

2 Examine the Files to be exported list on the left side of the dialog box.
This list shows the files identified as dependencies.

3 To add a file to the manifest:
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a Click Add Files.

The Add Files to Manifest dialog box opens.

b Select the file you want to add, then click Open.

The selected file is added to the Files to be exported list.

4 To remove a file from the manifest:

a Select the file you want to remove from the Files to be exported list.

b Click the Exclude selected files button .

The selected file is moved to the Excluded files list.

Note If you add a file to the manifest and then exclude it, that file is
removed from the dialog (it is not added to the Excluded files list).
Only files detected by the Simulink Manifest Tools are included in the
Excluded files list.

5 Click Save to save your changes to the manifest file.

Simulink saves the manifest (.smf) file, and creates a user dependencies
(.smd) file that stores the names of any files you added manually, as well
as those you manually excluded. Simulink uses the .smd file to remember
your changes the next time you generate a manifest. The user dependencies
(.smd) file has the same name and directory as the model. By default, the
user dependencies (.smd) file is also included in the manifest.

Note If the user dependencies (.smd) file is read-only, a warning is
displayed when you save the manifest.

6 To view the Model Manifest Report for the updated manifest, click Show
Report.
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An updated Model Manifest Report appears, listing the required files and
toolboxes, and details of references to other files. See “Viewing the Model
Manifest Report” on page 13-40 for an example.

7 When you are finished editing the manifest, click OK.

Comparing Manifests
You can compare two manifests to see how the list of model dependencies
differs between two models, or between two versions of the same model.

To compare manifest files:

1 Select Tools > Model Dependencies > Compare Manifests.

The Compare Manifests dialog box appears.

2 Select the newer manifest file.

Note You can click Generate Manifest to create a new manifest. See
“Generating Manifests” on page 13-38 for more information. After you
generate the manifest, you return to the Compare Manifests dialog box.

3 Select the older manifest file.
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4 Specify a report file name and location.

Note The default report file is manifest_comparison_report.html in the
current working directory.

5 Click OK.

The two manifests are compared and displays the Model Manifest
Differences Report. The report provides details about each manifest file,
and lists the differences between the files.
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Exporting Files in a Manifest
You can export copies of the files listed in the manifest to a zip file. Exporting
the files allows you to package the model with its required files into a single
zip file, so you can easily send it to another user or save it in a revision control
system.

To export your model with its required files:

1 Select Tools > Model Dependencies > Export Files in Manifest.

The Export Files in Manifest dialog box appears, showing the latest
manifest for the current model.

Note You can export a different manifest by clicking the Browse for

manifest file button . If you have not generated a manifest, select
Generate Manifest to open the Generate Model Manifest dialog box (see
“Generating Manifests” on page 13-38).
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2 If you want to view or edit the manifest before exporting it, select Edit
Manifest to view or change the list of required files. See “Editing
Manifests” on page 13-42. When you close the View and Edit Manifest
dialog box, you return to the Export Files in Manifest dialog box.

3 Select Preserve directory hierarchy if you want to keep directory
structure for your exported model and files. Then, select the root directory
to use for this structure.

Note You must select Preserve directory hierarchy if you are
exporting a model that uses an M-file inside a MATLAB class (to maintain
the directory structure of the class), or if the model refers to files in other
directories (to ensure the exported files maintain the same relative paths).

4 Enter the zip file name to which you want to export the model.

5 Click OK.

The model and its file dependencies are exported to the specified zip file.

Using the Model Dependency Viewer
The Model Dependency Viewer displays a dependency view of a model. The
dependency view is a graph of all the models and libraries referenced directly
or indirectly by the model. You can use the dependency view to quickly find
and open referenced libraries and models.

See the following topics for information on using the viewer:

• “About Model Dependency Views” on page 13-50

• “Opening the Model Dependency Viewer” on page 13-55

• “Manipulating a Dependency View” on page 13-56

• “Browsing Dependencies” on page 13-61

• “Saving a Dependency View” on page 13-61

• “Printing a Dependency View” on page 13-62
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About Model Dependency Views
The Model Dependency Viewer allows you to choose between the following
types of dependency views of a model reference hierarchy.

• “File Dependency View” on page 13-50

• “Referenced Model Instances View” on page 13-51

File Dependency View. A file dependency view shows the model and
library files referenced by a top model. A referenced model or library file
appears only once in the view even if it is referenced more than once in the
model hierarchy displayed in the view. A file dependency view consists of a
set of blocks connected by arrows. Blue blocks represent model files; brown
boxes, libraries. Arrows represent dependencies. For example, the arrows in
the following view indicate that the aero_guidance model references two
libraries: aerospace and simulink_need_slupdate.

An arrow that points to the library from which it emerges indicates that
the library references itself, i.e., blocks in the library reference other blocks
in that same library. For example, the preceding view indicates that the
aerospace library references itself.

A file dependency view optionally includes a legend that identifies the model
in the view and the date and time the view was created.
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Referenced Model Instances View. A referenced model instances view
shows every reference to a model in a model reference hierarchy (see Chapter
5, “Referencing a Model”) rooted at the top model targeted by the view. If a
model hierarchy references the same model more than once, the referenced
model appears multiple times in the instance view, once for each reference.
For example, the following view indicates that the model reference hierarchy
rooted at sldemo_mdlref_depgraph contains two references to the model
sldemo_mdlref_F2C.
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In an instance view, boxes represent a top model and model references.
Boxes representing accelerated-mode instances (see “Referenced Model
Simulation Modes” on page 5-13) have filled triangles in their corners; boxes
representing normal-mode instances, have unfilled triangles in their corners.
For example, the following diagram indicates that one of the references to
sldemo_mdlref_F2C operates in normal mode; the other, in accelerated mode.
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An instance view displays warning or error icons on instance boxes to indicate
invalid normal-mode references (see “Mixing Simulation Modes” on page 5-14).

Icon Indicates

A reference configured to run in normal mode actually runs in
accelerated mode because it is directly or indirectly referenced by
another model reference that runs in accelerated mode.

One of multiple normal-mode references to the same model in a model
reference hierarchy. Such a reference is invalid because it violates
the rule that only one normal-mode reference to a model can occur in
a given model reference hierarchy.

The following instance view, for example, indicates that the accelerated-mode
configuration of the reference to sldemo_mdlref_heater overrides the
normal-mode configurations of its reference to sldemo_mdlref_F2C.
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Changing the simulation mode of the reference to sldemo_mdlref_heater to
normal creates two normal-mode references in the model reference hierarchy
to the same model, i.e., sldemo_mdlref_F2C, which is invalid as indicated in
the following instances view.
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Opening the Model Dependency Viewer
The Model Dependency Viewer displays a graph of all the models and libraries
referenced directly or indirectly by the model. You can use the dependency
viewer to quickly find and open referenced libraries and models.

To display a dependency view for a model:

1 Open the model.

2 Select Tools > Model Dependencies > Model Dependency Viewer,
then select the type of view you want to see:

• .mdl File Dependencies Including Libraries

• .mdl File Dependencies Excluding Libraries

• Referenced Model Instances

The Model Dependency Viewer appears, displaying a dependency view
of the model.
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Manipulating a Dependency View
The Model Dependency Viewer allows you to manipulate dependency views in
various ways. See the following topics for more information:

• “Changing Dependency View Type” on page 13-57

• “Excluding Block Libraries from a File Dependency View” on page 13-57

• “Including Simulink® Blocksets in a File Dependency View” on page 13-57

• “Changing View Orientation” on page 13-57
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• “Expanding or Collapsing Views” on page 13-58

• “Zooming a Dependency View” on page 13-58

• “Moving a Dependency View” on page 13-59

• “Rearranging a Dependency View” on page 13-59

• “Displaying and Hiding a Dependency View’s Legend” on page 13-59

• “Displaying Full Paths of Referenced Model Instances” on page 13-60

• “Refreshing a Dependency View” on page 13-61

Changing Dependency View Type. You can change the type of dependency
view displayed in the viewer.

To change the type of dependency view:

• Select View > Dependency Type > .mdl File Dependencies (see “File
Dependency View” on page 13-50 )

or

• Select View > Dependency Type > Referenced Model Instances (see
“Referenced Model Instances View” on page 13-51 ).

Excluding Block Libraries from a File Dependency View. By default a
file dependency view includes libraries on which a model depends.

To exclude block libraries:

• Deselect View > Include Libraries.

Including Simulink Blocksets in a File Dependency View. By default,
a file dependency view omits block libraries supplied by The MathWorks™
when View > Include Libraries is selected.

To include libraries supplied by The MathWorks:

• Select View > Show MathWorks Dependencies.

Changing View Orientation. By default the orientation of the dependency
graph displayed in the viewer is vertical.
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To change the orientation to horizontal:

• Select View > Orientation > Horizontal.

Expanding or Collapsing Views. You can expand or collapse each model
or library in the dependency view to display or hide the dependencies for
that model or library.

To expand or collapse views:

• Click the expand(+)/collapse(-) button on the box representing the model or
library to expand or collapse that view.

(�����)��������
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Zooming a Dependency View. You can enlarge or reduce the size of the
dependency graph displayed in the viewer.

To zoom a dependency view in or out, do either of the following:
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• Press and hold down the spacebar key and then press the + or - key on
the keyboard.

• Move the scroll wheel on your mouse forward or backward.

To fit the view to the viewer window:

• Press and release the spacebar key.

Moving a Dependency View. You can move a dependency view to another
location in the viewer window.

To move the dependency view:

1 Move the cursor over the view.

2 Press your keyboard’s space bar and your mouse’s left button
simultaneously.

3 Move the cursor to drag the view to another location.

Rearranging a Dependency View. You can rearrange a dependency view
by moving the blocks representing models and libraries. This can make a
complex view easier to read.

To move a block to another location:

1 Select the block you want to move by clicking it.

2 Drag and drop the block in the new location.

Displaying and Hiding a Dependency View’s Legend. The dependency
view can display a legend that identifies the model in the view and the date
and time the view was created.

To display or hide a dependency view’s legend:

• Select View > Show Legend from the viewer’s menu bar.
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Displaying Full Paths of Referenced Model Instances. In an instance
view (see “Referenced Model Instances View” on page 13-51) , you can display
the full path of a model reference in a tooltip or in the box representing the
reference.

To display the full path in a tooltip:

• Move the cursor over the box representing the reference in the view.

A tooltip appears, displaying the path displays the full path of the Model
block corresponding to the instance.

To display full paths in the boxes representing the instances:

• Select View > Show Full Path.

Each box in the instance view now displays the path of the Model block
corresponding to the instance. The name of the referenced model appears
in parentheses as illustrated in the following figure.
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Refreshing a Dependency View. After changing a model displayed in
a dependency view or any of its dependencies, you must update the view
to reflect any dependency changes.

To update the view:

• Select View > Refresh from the dependency viewer’s menu bar.

Browsing Dependencies
You can use a dependency view to browse a model’s dependencies:

• To open a model or library displayed in the view, double-click its block.

• To display the Model block corresponding to an instance in an instance
view, right-click the instance and select Highlight Block from the menu
that appears.

• To open all models displayed in the view, select File > Open All Models
from the viewer’s menu bar.

• To save all models displayed in the view, select File > Save All Models.

• To close all models displayed in the view, select File > Close All Models.

Saving a Dependency View
You can save a dependency view for later viewing.

To save the current view:

• Select File > Save As from the viewer’s menu bar, then enter a name for
the view.

To reopen the view:
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• Select File > Open from any viewer’s menu bar, then select the view you
want to open.

Printing a Dependency View
To print a dependency view:

• Select File > Print from the dependency viewer’s menu bar.
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Running Simulations

Simulation Basics (p. 14-3) How to start, suspend, stop, interact
with, and diagnose errors in a
simulation.

Controlling Execution of a
Simulation (p. 14-4)

How to interactively start, suspend,
and stop a simulation.

Interacting with a Running
Simulation (p. 14-9)

How to interact with a running
simulation.

Specifying a Simulation Start and
Stop Time (p. 14-10)

How to specify the start and stop
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Simulation Basics

Simulation Basics
You can simulate a model at any time simply by clicking the Start button
on the Model Editor displaying the model (see “Starting a Simulation”
on page 14-4). However, before starting the simulation, you may want to
specify various simulation options, such as the simulation’s start and stop
time and the type of solver used to solve the model at each simulation
time step. Specifying simulation options is called configuring the model.
With the Simulink® software you can create multiple model configurations,
called configuration sets, modify existing configuration sets, and switch
configuration sets with a click of a mouse button (see “Configuration Sets” on
page 14-37 for information on creating and selecting configuration sets).

Once you have defined or selected a model configuration set that meets your
needs, you can start the simulation. The simulation runs from the specified
start time to the specified stop time. While the simulation is running, you can
interact with the simulation in various ways, stop or pause the simulation (see
“Pausing or Stopping a Simulation” on page 14-6), and launch simulations
of other models. If an error occurs during a simulation, the simulation is
halted and a diagnostic viewer pops up that helps you to determine the cause
of the error.
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Controlling Execution of a Simulation

In this section...

“Starting a Simulation” on page 14-4

“Pausing or Stopping a Simulation” on page 14-6

“Using Blocks to Stop or Pause a Simulation” on page 14-6

Starting a Simulation
This sections explains how to run a simulation interactively. See “Running a
Simulation Programmatically” on page 14-74 for information on running a
simulation from a program, S-function, or the MATLAB® command line.

To start execution of a model, select Start from the Model Editor’s
Simulation menu or click the Start button on the model’s toolbar.

���	��������
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Controlling Execution of a Simulation

Note A common mistake that new users make is to start a simulation while
the Simulink® block library is the active window. Make sure your model
window is the active window before starting a simulation.

The model execution begins at the start time specified on the Configuration
Parameters dialog box. Execution continues until the simulation reaches
the final time step specified on the Configuration Parameters dialog box,
an error occurs, or you pause or terminate the simulation (see “Configuration
Parameters Dialog Box”).

While the simulation is running, a progress bar at the bottom of the model
window shows how far the simulation has progressed. A Stop command
replaces the Start command on the Simulation menu. A Pause command
appears on the menu and replaces the Start button on the model toolbar.

�����������
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Your computer beeps to signal the completion of the simulation.
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Pausing or Stopping a Simulation
Select the Pause command or button to pause the simulation. The execution
of the current time step is completed and the simulation is suspended. When
you select Pause, the menu item and button change to Continue. (The
button has the same appearance as the Start button). You can resume a
suspended simulation at the next time step by choosing Continue.

To terminate execution of the model, select the Stop command or button.
Simulink completes The execution of the current time step is completed before
the mode is terminated. Subsequently selecting the Start command or button
restarts the simulation at the first time step specified on the Configuration
Parameters dialog box.

If the model includes any blocks that write output to a file or to the workspace,
or if you select output options on the Configuration Parameters dialog box,
the Simulink software writes the data when the simulation is terminated
or suspended.

Using Blocks to Stop or Pause a Simulation

Using Stop Blocks
You can use the Stop Simulation block to terminate a simulation when the
block’s input is nonzero. To use the Stop Simulation block:

1 Drag a copy of the Stop Simulation block from the Sinks library and drop it
into your model.

2 Connect the Stop Simulation block to a signal whose value becomes nonzero
at the time when the simulation should be terminated.

For example, this model stops the simulation when the input signal reaches
10.
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If the block input is a vector, any nonzero element causes the simulation
to terminate.

Creating Pause Blocks
You can use an Assertion block to pause the simulation when the block’s input
signal is zero. To create a pause block:

1 Drag a copy of the Assertion block from the Model Verification library and
drop it into your model.

2 Connect the Assertion block to a signal whose value becomes zero at the
time when the simulation should be paused.

3 Open the Assertion block’s Block Parameters dialog box.

• Enter the following commands into the Simulation callback when
assertion fails field:

set_param(bdroot,'SimulationCommand','pause'),
disp(sprintf('\nSimulation paused.'))

• Uncheck the Stop simulation when assertion fails option.

4 Click OK to apply the changes and close this dialog box.

The following model uses an Assertion block configured as described above,
in conjunction with the Relational Operator block, to pause the simulation
when the simulation time is equal to 5.

When the simulation pauses, the Assertion block displays the following
message at the MATLAB command line.
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Simulation paused
Warning: Assertion detected in 'assertion_as_pause/

Assertion Used to Pause Simulation' at time 5.000000

You can resume the suspended simulation by choosing Continue from the
Simulation menu on the model editor, or by selecting the Continue button
in the toolbar.

Note The Assertion block uses the set_param command to pause the
simulation. See “Running a Simulation Programmatically” on page 14-74 for
more information on using the set_param command to control the execution
of a Simulink model.
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Interacting with a Running Simulation
You can perform certain operations interactively while a simulation is
running. You can

• Modify some configuration parameters, including the stop time and the
maximum step size

• Click a line to see the signal carried on that line on a floating (unconnected)
Scope or Display block

• Modify the parameters of a block, as long as you do not cause a change in

- Number of states, inputs, or outputs

- Sample time

- Number of zero crossings

- Vector length of any block parameters

- Length of the internal block work vectors

- Dimension of any signals

• Display block data tips on a computer running the Microsoft® Windows®

operating system (see “Block Data Tips” on page 6-2).

You cannot make changes to the structure of the model, such as adding or
deleting lines or blocks, during a simulation. If you need to make these kinds
of changes, you need to stop the simulation, make the change, then start the
simulation again to see the results of the change.
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Specifying a Simulation Start and Stop Time
Simulations start by default at 0.0 seconds and end at 10.0 seconds. The
Solver configuration pane allows you to specify other start and stop times
for the currently selected simulation configuration. See “Solver Pane” for
more information. On computers running the Microsoft® Windows® operating
system, you can also specify the simulation stop time in the Model Editor’s
toolbar.

Note Simulation time and actual clock time are not the same. For example,
running a simulation for 10 seconds usually does not take 10 seconds. The
amount of time it takes to run a simulation depends on many factors, including
the model’s complexity, the solver’s step sizes, and the computer’s speed.
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Choosing a Solver

In this section...

“What is a Solver?” on page 14-11

“Choosing a Solver Type” on page 14-11

“Choosing a Fixed-Step Solver” on page 14-13

“Choosing a Variable-Step Solver” on page 14-17

What is a Solver?
A solver is a component of the Simulink® software that determines the
next time step that a simulation needs to take to meet target accuracy
requirements that you specify. The Simulink product provides an extensive
set of solvers, each adept at choosing the next time step for specific types of
applications. The following sections explain how to choose the solver best
suited to your application. For information on tailoring the selected solver to
your model, see “Improving Simulation Accuracy” on page 14-72.

Choosing a Solver Type
Solvers are divided into two types: fixed-step and variable-step. Both types of
solvers compute the next simulation time as the sum of the current simulation
time and a quantity known as the step size. With a fixed-step solver, the
step size remains constant throughout the simulation. By contrast, with
a variable-step solver, the step size can vary from step to step, depending
on the model’s dynamics. In particular, a variable-step solver reduces the
step size when a model’s states are changing rapidly to maintain accuracy
and increases the step size when the system’s states are changing slowly in
order to avoid taking unnecessary steps. The Type control on the Simulink
Solver configuration pane allows you to select either of these two types of
solvers (see “Solver Pane”).

The choice between the two types depends on how you plan to deploy your
model and the model’s dynamics. If you plan to generate code from your
model and run the code on a real-time computer system, you should choose a
fixed-step solver to simulate the model. This is because real-time computer
systems operate at fixed-size signal sample rates. A variable-step solver may

14-11



14 Running Simulations

cause the simulation to miss error conditions that can occur on a real-time
computer system.

If you do not plan to deploy your model as generated code, the choice between
a variable-step and a fixed-step solver depends on the dynamics of your model.
If your model’s states change rapidly or contain discontinuities, a variable-step
solver can shorten the time required to simulate your model significantly.
This is because, for such a model, a variable-step solver can require fewer
time steps than a fixed-step solver to achieve a comparable level of accuracy.

The following model illustrates how a variable-step solver can shorten
simulation time for a multirate discrete model.

This model generates outputs at two different rates, every 0.5 second and
every 0.75 second. To capture both outputs, the fixed-step solver must take a
time step every 0.25 second (the fundamental sample time for the model).

[0.0 0.25 0.5 0.75 1.0 1.25 ...]

By contrast, the variable-step solver need take a step only when the model
actually generates an output.

[0.0 0.5 0.75 1.0 1.5 2.0 2.25 ...]

This significantly reduces the number of time steps required to simulate the
model.

The variable-step discrete solver uses zero-crossing detection (see
“Zero-Crossing Detection” on page 2-20) to handle continuous signals. This
solver is used by default if you specify a continuous solver and your model has
no continuous states.
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Choosing a Fixed-Step Solver
When the Type control of the Solver configuration pane is set to fixed-step,
the configuration pane’s Solver control allows you to choose one of the set of
fixed-step solvers provided. The set of fixed-step solvers comprises two types
of solvers: discrete and continuous.

About the Fixed-Step Discrete Solver
The fixed-step discrete solver computes the time of the next time step by
adding a fixed step size to the time of the current time. The accuracy and
length of time of the resulting simulation depends on the size of the steps
taken by the simulation: the smaller the step size, the more accurate the
results but the longer the simulation takes. You can allow the Simulink
software to choose the size of the step size (the default) or you can choose the
step size yourself. If you allow the Simulink software to choose the step size,
it is set to the fundamental sample time of the model if the model has discrete
states or to the result of dividing the difference between the simulation start
and stop time by 50 if the model has no discrete states. This choice ensures
that the simulation will hit every simulation time required to update the
model’s discrete states at the model’s specified sample times.

The fixed-step discrete solver has a fundamental limitation. It cannot be
used to simulate models that have continuous states. That’s because the
fixed-step discrete solver relies on a model’s blocks to compute the values of
the states that they define. Blocks that define discrete states compute the
values of those states at each time step taken by the solver. Blocks that define
continuous states, on the other hand, rely on the solver to compute the states.
Continuous solvers perform this task. You should thus select a continuous
solver if your model contains continuous states.

Note If you attempt to use the fixed-step discrete solver to update or simulate
a model that has continuous states, an error message is displayed. Thus,
updating or simulating a model is a quick way to determine whether it has
continuous states.
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About Fixed-Step Continuous Solvers
A set of fixed-step continuous solvers are provided that, like the fixed-step
discrete solver, compute the simulation’s next time by adding a fixed-size
time step to the current time. In addition, the continuous solvers employ
numerical integration to compute the values of a model’s continuous states at
the current step from the values at the previous step and the values of the
state derivatives. This allows the fixed-step continuous solvers to handle
models that contain both continuous and discrete states.

Note In theory, a fixed-step continuous solver can handle models that
contain no continuous states. However, that would impose an unnecessary
computational burden on the simulation. Consequently, the fixed-step discrete
solver is always used for a model that contains no states or only discrete
states, even if you specify a fixed-step continuous solver for the model.

Two distinct types of fixed-step continuous solvers are provided: explicit and
implicit solvers. Explicit solvers (see “Explicit Fixed-Step Continuous Solvers”
on page 14-14) compute the value of a state at the next time step as an explicit
function of the current value of the state and the state derivative, e.g.,

X(n+1) = X(n) + h * DX(n)

where X is the state, DX is the state derivative, and h is the step size. An
implicit solver (see “Implicit Fixed-Step Continuous Solvers” on page 14-16)
computes the state at the next time step as an implicit function of the state
and the state derivative at the next time step, e.g.,

X(n+1) - X(n) - h*DX(n+1) = 0

This type of solver requires more computation per step than an explicit solver
but is also more accurate for a given step size. This solver thus can be faster
than explicit fixed-step solvers for certain types of stiff systems.

Explicit Fixed-Step Continuous Solvers. A set of explicit fixed-step
continuous solvers are provided. The solvers differ in the specific integration
technique used to compute the model’s state derivatives. The following table
lists the available solvers and the integration techniques they use.
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Solver Integration Technique

ode1 Euler’s Method

ode2 Heun’s Method

ode3 Bogacki-Shampine Formula

ode4 Fourth-Order Runge-Kutta (RK4) Formula

ode5 Dormand-Prince Formula

The integration techniques used by the fixed-step continuous solvers trade
accuracy for computational effort. The table lists the solvers in order of the
computational complexity of the integration methods they use from least
complex (ode1) to most complex (ode5).

As with the fixed-step discrete solver, the accuracy and length of time of a
simulation driven by a fixed-step continuous solver depends on the size of the
steps taken by the solver: the smaller the step size, the more accurate the
results but the longer the simulation takes. For any given step size, the more
computationally complex the solver, the more accurate the simulation.

If you specify a fixed-step solver type for a model, the solver’s model is set to
ode3, i.e., it chooses a solver capable of handling both continuous and discrete
states with moderate computational effort. As with the discrete solver, by
default the step size is set to the fundamental sample time of the model if the
model has discrete states or to the result of dividing the difference between
the simulation start and stop time by 50 if the model has no discrete states.
This assures that the solver will take a step at every simulation time required
to update the model’s discrete states at the model’s specified sample rates.
However, it does not guarantee that the default solver will accurately compute
a model’s continuous states or that the model cannot be simulated in less time
with a less complex solver. Depending on the dynamics of your model, you
may need to choose another solver and/or sample time to achieve acceptable
accuracy or to shorten the simulation time.
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Implicit Fixed-Step Continuous Solvers. One solver is provideed in this
category: ode14x. This solver uses a combination of Newton’s method and
extrapolation from the current value to compute the value of a model state at
the next time step. You can specify the number of Newton’s method iterations
and the extrapolation order that the solver uses to compute the next value of a
model state (see “Fixed step size (fundamental sample time)”“Fixed-step solver
size (fundamental sample time)” in the online documentation). The more
iterations and the higher the extrapolation order that you select, the greater
the accuracy but also the greater the computational burden per step size.

Choosing a Fixed-Step Continuous Solver
Any of the fixed-step continuous solvers in the Simulink product can simulate
a model to any desired level of accuracy, given enough time and a small enough
step size. Unfortunately, in general, it is not possible, or at least not practical,
to decide a priori which solver and step size combination will yield acceptable
results for a model’s continuous states in the shortest time. Determining the
best solver for a particular model thus generally requires experimentation.

Here is the most efficient way to choose the best fixed-step solver for your
model experimentally. First, use one of the variable-step solvers to simulate
your model to the level of accuracy that you desire. This will give you an
idea of what the simulation results should be. Next, use ode1 to simulate
your model at the default step size for your model. Compare the results of
simulating your model with ode1 with the results of simulating with the
variable-step solver. If the results are the same within the specified level of
accuracy, you have found the best fixed-step solver for your model, namely
ode1. That’s because ode1 is the simplest of the provided fixed-step solvers
and hence yields the shorted simulation time for the current step size.

If ode1 does not give accurate results, repeat the preceding steps with the
other fixed-step solvers until you find the one that gives accurate results with
the least computational effort. The most efficient way to do this is to use a
binary search technique. First, try ode3. If it gives accurate results, try ode2.
If ode2 gives accurate results, it is the best solver for your model; otherwise,
ode3 is the best. If ode3 does not give accurate results, try ode5. If ode5
gives accurate results, try ode4. If ode4 gives accurate results, select it as the
solver for your model; otherwise, select ode5.
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If ode5 does not give accurate results, reduce the simulation step size and
repeat the preceding process. Continue in this way until you find a solver that
solves your model accurately with the least computational effort.

Choosing a Variable-Step Solver
When the Type control of the Solver configuration pane is set to
variable-step, the configuration pane’s Solver control allows you to choose
one of the set of variable-step solvers that is provided. As with fixed-step
solvers, the set of variable-step solvers comprises a discrete solver and
a subset of continuous solvers. Both types compute the time of the next
time step by adding a step size to the time of the current time that varies
depending on the rate of change of the model’s states. The continuous solvers,
in addition, use numerical integration to compute the values of the model’s
continuous states at the next time step. Both types of solvers rely on blocks
that define the model’s discrete states to compute the values of the discrete
states that each defines.

The choice between the two types of solvers depends on whether the blocks in
your model defines states and, if so, the kind of states that they define. If your
model defines no states or defines only discrete states, you should select the
discrete solver. In fact, if a model has no states or only discrete states, the
discrete solver will be used to simulate the model even if the model specifies a
continuous solver.

About Variable-Step Continuous Solvers
The variable-step solvers in the Simulink product vary the step size during
the simulation, reducing the step size to increase accuracy when a model’s
states are changing rapidly and increasing the step size to avoid taking
unnecessary steps when the model’s states are changing slowly. Computing
the step size adds to the computational overhead at each step but can reduce
the total number of steps, and hence simulation time, required to maintain
a specified level of accuracy for models with rapidly changing or piecewise
continuous states.

The following variable-step continuous solvers are provided:

• ode45 is based on an explicit Runge-Kutta (4,5) formula, the
Dormand-Prince pair. It is a one-step solver; that is, in computing y(tn), it
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needs only the solution at the immediately preceding time point, y(tn-1). In
general, ode45 is the best solver to apply as a first try for most problems.
For this reason, ode45 is the default solver used for models with continuous
states.

• ode23 is also based on an explicit Runge-Kutta (2,3) pair of Bogacki and
Shampine. It can be more efficient than ode45 at crude tolerances and in
the presence of mild stiffness. ode23 is a one-step solver.

• ode113 is a variable-order Adams-Bashforth-Moulton PECE solver. It can
be more efficient than ode45 at stringent tolerances. ode113 is a multistep
solver; that is, it normally needs the solutions at several preceding time
points to compute the current solution.

• ode15s is a variable-order solver based on the numerical differentiation
formulas (NDFs). These are related to but are more efficient than the
backward differentiation formulas, BDFs (also known as Gear’s method).
Like ode113, ode15s is a multistep method solver. If you suspect that a
problem is stiff, or if ode45 failed or was very inefficient, try ode15s.

• ode23s is based on a modified Rosenbrock formula of order 2. Because it is
a one-step solver, it can be more efficient than ode15s at crude tolerances.
It can solve some kinds of stiff problems for which ode15s is not effective.

• ode23t is an implementation of the trapezoidal rule using a “free”
interpolant. Use this solver if the problem is only moderately stiff and you
need a solution without numerical damping.

• ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta
formula with a first stage that is a trapezoidal rule step and a second stage
that is a backward differentiation formula of order two. By construction,
the same iteration matrix is used in evaluating both stages. Like ode23s,
this solver can be more efficient than ode15s at crude tolerances.
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Note For a stiff problem, solutions can change on a time scale that is very
short compared to the interval of integration, but the solution of interest
changes on a much longer time scale. Methods not designed for stiff
problems are ineffective on intervals where the solution changes slowly
because they use time steps small enough to resolve the fastest possible
change. Jacobian matrices are generated numerically for ode15s and
ode23s. For more information, see Shampine, L. F., Numerical Solution of
Ordinary Differential Equations, Chapman & Hall, 1994.

Specifying Variable-Step Solver Error Tolerances
The solvers use standard local error control techniques to monitor the error at
each time step. During each time step, the solvers compute the state values
at the end of the step and also determine the local error, the estimated error
of these state values. They then compare the local error to the acceptable
error, which is a function of the relative tolerance (rtol) and absolute tolerance
(atol). If the error is greater than the acceptable error for any state, the solver
reduces the step size and tries again:

• Relative tolerance measures the error relative to the size of each state. The
relative tolerance represents a percentage of the state’s value. The default,
1e-3, means that the computed state is accurate to within 0.1%.

• Absolute tolerance is a threshold error value. This tolerance represents the
acceptable error as the value of the measured state approaches zero.

The error for the ith state, ei, is required to satisfy
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The following figure shows a plot of a state and the regions in which the
acceptable error is determined by the relative tolerance and the absolute
tolerance.

If you specify auto (the default), the absolute tolerance for each state is
initially set to 1e-6. As the simulation progresses, the absolute tolerance for
each state is reset to the maximum value that the state has assumed thus far
times the relative tolerance for that state. Thus, if a state goes from 0 to 1
and reltol is 1e-3, then by the end of the simulation the abstol is set to 1e-3
also. If a state goes from 0 to 1000, then the abstol is set to 1.

If the computed setting is not suitable, you can determine an appropriate
setting yourself. You might have to run a simulation more than once to
determine an appropriate value for the absolute tolerance.

The Integrator, Transfer Fcn, State-Space, and Zero-Pole blocks allow you
to specify absolute tolerance values for solving the model states that they
compute or that determine their output. The absolute tolerance values that
you specify for these blocks override the global settings in the Configuration
Parameters dialog box. You might want to override the global setting in this
way, if the global setting does not provide sufficient error control for all of your
model’s states, for example, because they vary widely in magnitude.
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Importing and Exporting Simulation Data

In this section...

“Importing and Exporting Capabilities” on page 14-21

“Importing Data from a Workspace” on page 14-21

“Exporting Data to the MATLAB® Workspace” on page 14-28

“Importing and Exporting States” on page 14-31

“Limiting Output” on page 14-34

“Specifying Output Options” on page 14-34

Importing and Exporting Capabilities
During simulation you can import input signal and initial state data from
a workspace, and export output signal and state data to a workspace.
This capability allows you to use standard or custom MATLAB® functions
to generate a simulated system’s input signals and to graph, analyze, or
otherwise postprocess the system’s outputs.

Importing Data from a Workspace
The Simulink® software can input data from a workspace and apply it to the
model’s top-level input ports during a simulation run. To specify this option:

1 Select the Input box in the Load from workspace area of the “Data
Import/Export Pane” pane.

2 Enter an external input specification in the adjacent edit box and click
Apply.

The Simulink software resolves symbols used in the external input
specification as described in “Resolving Symbols” on page 3-69. See the
documentation of the sim command for some data import capabilities that are
available only for programmatic simulation.
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Note The use of the Input box is independent of the setting of the Format
list on the Data Import/Export pane.

The input data can take any of the following forms:

• Time series — see “Importing Time-Series Data” on page 14-22

• Array — see “Importing Data Arrays” on page 14-24

• Time expression — see “Using a MATLAB® Time Expression to Import
Data” on page 14-24

• Structure — see “Importing Data Structures” on page 14-25

The Simulink software linearly interpolates or extrapolates input values as
necessary if the Interpolate data option is selected for the corresponding
Inport.

Importing Time-Series Data
Any root-level Inport block can import data specified by a time-series
object (see Simulink.Timeseries in the online reference) residing in a
workspace. In addition, any root-level input port defined by a bus object
(see Simulink.Bus in the online documentation) can import data from a
time-series array object (see Simulink.TSArray in the online reference) that
has the same structure as the bus object. Time-series objects are a derivation
of standard MATLAB time-series objects and, therefore, can be manipulated
using the MATLAB Time Series Tools. See “Using Time Series Tools” in the
MATLAB Data Analysis documentation for further details.

Importing time-series objects allows you to import data logged by a previous
simulation run (see “Logging Signals”). For example, suppose that you have a
model that references several other models. You could use data logged from
the inputs of the referenced models when simulating the top model as inputs
for the referenced models simulated by themselves. This allows you to test
the referenced models independently of the top model and each other.

To import data from time-series objects and time-series array objects, enter
a comma-separated list of variables or expressions into the Input edit
field on the Data Import/Export pane of the Configuration Parameters
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dialog box (see “Configuration Parameters Dialog Box”). Each variable or
expression in the Input list should evaluate to the appropriate time-series
object or time-series array object that corresponds to one of the model’s
root-level input ports, with the first item corresponding to the first root-level
input port, the second to the second root-level input port, and so on.
The model sldemo_mdlref_counter_bus, referenced by the top model
sldemo_mdlref_bus, contains an example of importing time-series objects.

To use this demo, open sldemo_mdlref_bus and run the simulation. The top
model is configured to store logged signals into a variable named topOut.
Currently, two signals are being logged: COUNTERBUS and OUTPUTBUS. After
running the simulation, you can view the logged signals by typing topOut at
the MATLAB prompt.

topOut =

Simulink.ModelDataLogs (sldemo_mdlref_bus):
Name Elements Simulink Class

COUNTERBUS 2 TsArray
OUTPUTBUS 2 TsArray

The variable topOut is a Simulink.ModelDataLogs object that contains, in
this case, two Simulink.TsArray objects corresponding to the two logged bus
signals. The Simulink.TsArray object COUNTERBUS can be used as the input to
the submodel sldemo_mdlref_counter_bus to run this model independently
of the top model. This is accomplished by entering topOut.COUNTERBUS into
the Input edit field on the Data Import/Export pane of the Configuration
Parameters dialog box, as shown below.

By using the time-series array object as the input to
sldemo_mdlref_counter_bus, independently running this model produces
the same output as when run within the top model sldemo_mdlref_bus.
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Importing Data Arrays
This import format consists of a real (noncomplex) matrix of data type double.
The first column of the matrix must be a vector of times in ascending order.
The remaining columns specify input values. In particular, each column
represents the input for a different Inport block signal (in sequential order)
and each row is the input value for the corresponding time point.

The total number of columns of the input matrix must equal n + 1, where n is
the total number of signals entering the model’s input ports.

The default input expression for a model is [t,u] and the default input
format is Array. So if you define t and u in the MATLAB workspace, you
need only select the Input option to input data from the model workspace.
For example, suppose that a model has two input ports, In1 that accepts two
signals, and In2 that accepts one signal. Also, suppose that the MATLAB
workspace defines t and u as follows:

t = (0:0.1:1)';
u = [sin(t), cos(t), 4*cos(t)];

In1 accepts the signals sin(t) and cos(t), and In2 accepts the signal
4*cos(t).

Note The array input format allows you to load only real (noncomplex) scalar
or vector data of type double. Use the structure format to input complex data,
matrix (2-D) data, and/or data types other than double.

Using a MATLAB® Time Expression to Import Data
You can use a MATLAB time expression to import data from a workspace.
To use a time expression, enter the expression as a string (i.e., enclosed in
single quotes) in the Input field of the Data Import/Export pane. The time
expression can be any MATLAB expression that evaluates to a row vector
equal in length to the number of signals entering the model’s input ports.
For example, suppose that a model has one vector Inport that accepts two
signals. Furthermore, suppose that timefcn is a user-defined function that
returns a row vector two elements long. The following are valid input time
expressions for such a model:
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'[3*sin(t), cos(2*t)]'

'4*timefcn(w*t)+7'

The expression is evaluated at each step of the simulation, applying the
resulting values to the model’s input ports. Note that the Simulink software
defines the variable t when it runs the simulation. Also, you can omit the
time variable in expressions for functions of one variable. For example, the
expression sin is interpreted as sin(t).

Importing Data Structures
The Simulink software can read data from the workspace in the form of a
structure whose name is specified in the Input text field. You can import
structures that include only signal data or both signal and time data. The
type of data structure is evaluated based on the structure itself.

Importing Signal-and-Time Data Structures. To import structures that
include both signal and time data, the input structure must have two top-level
fields: time and signals. The time field contains a column vector of the
simulation times. The signals field contains an array of substructures, each
of which corresponds to a model input port.

Each signals substructure must contain two fields named values and
dimensions, respectively. The values field must contain an array of inputs
for the corresponding input port where each input corresponds to a time point
specified by the time field. The dimensions field specifies the dimensions of
the input. If each input is a scalar or vector (1-D array) value, the dimensions
field must be a scalar value that specifies the length of the vector (1 for a
scalar). If each input is a matrix (2-D array), the dimensions field must be a
two-element vector whose first element specifies the number of rows in the
matrix and whose second element specifies the number of columns.

Note You must set the Port dimensions parameter of the Inport to be the
same value as the dimensions field of the corresponding input structure. If
the values differ, an error message is displayed when you try to simulate
the model.
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If the inputs for a port are scalar or vector values, the values field must be
an M-by-N array where M is the number of time points specified by the time
field and N is the length of each vector value. For example, the following code
creates an input structure for loading 11 time samples of a two-element signal
vector of type int8 into a model with a single input port:

a.time = (0:0.1:1)';
c1 = int8([0:1:10]');
c2 = int8([0:10:100]');
a.signals(1).values = [c1 c2];
a.signals(1).dimensions = 2;

To load this data into the model’s input port, you would select the Input option
on the Data Import/Export pane and enter a in the input expression field.

If the inputs for a port are matrices (2-D arrays), the values field must be
an M-by-N-by-T array where M and N are the dimensions of each matrix
input and T is the number of time points. For example, suppose that you want
to input 51 time samples of a 4-by-5 matrix signal into one of your model’s
input ports. Then, the corresponding dimensions field of the workspace
structure must equal [4 5] and the values array must have the dimensions
4-by-5-by-51.

As another example, consider the following model, which has two inputs.

Suppose that you want to input a sine wave into the first port and a cosine
wave into the second port. To do this, define a vector, a, as follows, in the
MATLAB workspace:

a.time = (0:0.1:1)';
a.signals(1).values = sin(a.time);
a.signals(1).dimensions = 1;
a.signals(2).values = cos(a.time);
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a.signals(2).dimensions = 1;

Select the Input box for this model, and enter a in the adjacent text field.

Importing Signal-Only Structures. The Structure format is the same as
the Structure with time format except that the time field is empty. For
example, in the preceding example, you could set the time field as follows:

a.time = []

In this case, the input for the first time step is read from the first element of
an input port’s value array, the value for the second time step from the second
element of the value array, etc. If you enter the structure without time, the
Inport block must have a discrete sample time.

Per-Port Structures. This format consists of a separate structure-with-time
or structure-without-time for each port. Each port’s input data structure
has only one signals field. To specify this option, enter the names of the
structures in the Input text field as a comma-separated list, in1, in2,...,
inN, where in1 is the data for your model’s first port, in2 for the second input
port, and so on.

Specifying Time Vectors for Discrete Systems
In some cases, the Simulink software calculates block sample hits at sample
times different from those specified by a time vector generated in MATLAB.
Typically, these are small floating point inaccuracies that can cause the
Simulink product to apparently miss a specified time step in lieu of a different
sample point. In order to avoid these numerical inaccuracies, generate the
time vector either in MATLAB or in Simulink based on the fundamental
sample time of the model.

For example, if the model has a fundamental sample time Ts (see
“Determining Step Size for Discrete Systems”) of 0.001 then the time vector
Tvector should be calculated with the command

Tvector = Ts*[n1, n2, n3...];

where n1, n2, n3, etc. are integers that, when multiplied by the fundamental
sample time, yield the desired time vector.
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Exporting Data to the MATLAB® Workspace
You can export a model’s states and root-level outputs to the MATLAB
workspace during simulation of the model. To do this, select the type of
data that you want to export on the Save to workspace area of the “Data
Import/Export Pane” pane of the Configuration Parameters dialog box.
The field adjacent to each type specifies the name of a MATLAB workspace
variable to be used by the Simulink software to store the exported data.

Each field initially specifies a default variable. You can edit the fields to
specify names of your own choosing. Select Signal logging to enable
signal logging for the model. See “Logging Signals” on page 8-49 for more
information. See the documentation of the sim command for some data export
capabilities that are available only for programmatic simulation.

Note The output is saved to the MATLAB workspace at the base sample
rate of the model. Use a To Workspace block if you want to save output at a
different sample rate.

The Save options area enables you to specify the format and restrict the
amount of output saved.

See the documentation of the sim command for some capabilities that are
available only for programmatic simulation. Format options for model states
and outputs are listed below.

Format Options

Array. If you select this option, a model’s states and outputs are saved in a
state and output array, respectively.

The state matrix has the name specified in the Save to workspace area (for
example, xout). Each row of the state matrix corresponds to a time sample
of the model’s states. Each column corresponds to an element of a state. For
example, suppose that your model has two continuous states, each of which
is a two-element vector. Then the first two elements of each row of the state
matrix contains a time sample of the first state vector. The last two elements
of each row contain a time sample of the second state vector.
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The model output matrix has the name specified in the Save to workspace
area (for example, yout). Each column corresponds to a model output port,
each row to the outputs at a specific time.

Note You can use array format to save your model’s outputs and states
only if the outputs are either all scalars or all vectors (or all matrices for
states), are either all real or all complex, and are all of the same data type.
Use the Structure or Structure with time output formats (see “Structure
with time” on page 14-29) if your model’s outputs and states do not meet
these conditions.

Structure with time. If you select this format, the model’s states and
outputs are saved in structures having the names specified in the Save to
workspace area (for example, xout and yout).

The structure used to save outputs has two top-level fields:

• time

Contains a vector of the simulation times.

• signals

Contains an array of substructures, each of which corresponds to a model
output port.

Each substructure has four fields:

• values

Contains the outputs for the corresponding output port. If the outputs
are scalars or vectors, the values field is a matrix each of whose rows
represents an output at the time specified by the corresponding element of
the time vector. If the outputs are matrix (2-D) values, the values field is
a 3-D array of dimensions M-by-N-by-T where M-by-N is the dimensions
of the output signal and T is the number of output samples. If T = 1,
MATLAB drops the last dimension. Therefore, the values field is an
M-by-N matrix.

• dimensions
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Specifies the dimensions of the output signal.

• label

Specifies the label of the signal connected to the output port or the type of
state (continuous or discrete).

• blockName

Specifies the name of the corresponding output port or block with states.

• inReferencedModel

Contains a value of 1 if the signals field records the final state of a block
that resides in the submodel. Otherwise, the value is false (0).

The following is an example of the structure-with-time format for a
nonreferenced model.

>> xout.signals(1)

ans =

values: [296206x1 double]
dimensions: 1

label: 'CSTATE'
blockName: 'vdp/x1'

inReferencedModel: 0

The structure used to save states has a similar organization. The states
structure has two top-level fields:

• time

The time field contains a vector of the simulation times.

• signals

The field contains an array of substructures, each of which corresponds
to one of the model’s states.

Each signals structure has four fields: values, dimensions, label, and
blockName. The values field contains time samples of a state of the block
specified by the blockName field. The label field for built-in blocks indicates
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the type of state: either CSTATE (continuous state) or DSTATE (discrete state).
For S-Function blocks, the label contains whatever name is assigned to the
state by the S-Function block.

The time samples of a state are stored in the values field as a matrix of
values. Each row corresponds to a time sample. Each element of a row
corresponds to an element of the state. If the state is a matrix, the matrix is
stored in the values array in column-major order. For example, suppose that
the model includes a 2-by-2 matrix state and that 51 samples of the state are
logged during a simulation run. The values field for this state would contain
a 51-by-4 matrix where each row corresponds to a time sample of the state
and where the first two elements of each row correspond to the first column
of the sample and the last two elements correspond to the second column of
the sample.

Note The Simulink software can read back simulation data saved to the
MATLAB workspace in the Structure with time output format. See
“Importing Signal-and-Time Data Structures” on page 14-25 for more
information.

Structure. This format is the same as the preceding except that the Simulink
software does not store simulation times in the time field of the saved
structure.

Per-Port Structures. This format consists of a separate structure-with-time
or structure-without-time for each output port. Each output data structure
has only one signals field. To specify this option, enter the names of
the structures in the Output text field as a comma-separated list, out1,
out2,..., outN, where out1 is the data for your model’s first port, out2
for the second input port, and so on.

Importing and Exporting States
You can import the initial values of a system’s states, i.e., its initial conditions,
at the beginning of a simulation and save the final values of the states at the
end of the simulation. This feature allows you to save a steady-state solution
and restart the simulation at that known state.
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Saving Final States
To save the final values of a model’s states, check Final states in the Save to
workspace area of the Data Import/Export pane and enter a name in the
adjacent edit field. The states are saved in a workspace variable having the
specified name. The saved data has the format that you specify in the Save
options area of the Data Import/Export pane.

When saving states from a referenced model in the structure-with-time
format, a boolean subfield is added named inReferencedModel to the signals
field of the saved data structure. This field’s value is true (1) if the signals
field records the final state of a block that resides in the submodel, and a 0
otherwise. For example,

>> xout.signals(1)

ans =

values: [101x1 double]
dimensions: 1

label: 'DSTATE'
blockName: [1x66 char]

inReferencedModel: 1

If the signals field records a submodel state, its blockName subfield contains a
compound path comprising a top model path and a submodel path. The top
model path is the path from the model root to the Model block that references
the submodel. The submodel path is the path from the submodel root to the
block whose state the signals field records. The compound path uses a |
character to separate the top and submodel paths, e.g.,

>> xout.signals(1).blockName

ans =

sldemo_mdlref_basic/CounterA|sldemo_mdlref_counter/Previous Output
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Loading Initial States
To load states, check Initial state in the Load from workspace area of the
Data Import/Export pane and specify the name of a variable that contains
the initial state values, for example, a variable containing states saved from a
previous simulation. The initial values specified by the workspace variable
override the initial values specified by the model itself, i.e., the values
specified by the initial condition parameters of those blocks in the model
that have states.

Use the structure or structure-with-time option to specify initial states if you
want to accomplish any of the following.

• Associate initial state values directly with the full path name to the states.
This eliminates errors that could occur if the Simulink software reorders
the states, but the initial state array is not correspondingly reordered.

• Assign a different data type to each state’s initial value.

• Initialize only a subset of the states.

For example, the following commands create an initial state structure that
can be used to initialize the x2 state of the vdp model. The x1 state is not
initialized in the structure and, therefore, the value entered into the state’s
associated Integrator block is used during the simulation.

% Open the vdp demo model
vdp

% Use getInitialState to obtain an initial state structure
states = Simulink.BlockDiagram.getInitialState('vdp');

% Set the initial value of the signals structure element
% associated with x2 to 2.
states.signals(2).values = 2;

% Remove the signals structure element associated with x1
states.signals(1) = [];

To use this states variable, open the Configuration Parameters dialog box
for the vdp model. Check Initial state in the Load from workspace area
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of the Data Import/Export pane and type states into the associated edit
field. When you run the model, note that both states have the initial value of
2. The initial value of the x2 state is assigned in the states structure, while
the initial value of the x1 state is assigned in its Integrator block.

Note You must use the structure or structure-with-time format to initialize
the states of a top model and the models that it references.

Limiting Output
Saving data to a workspace can slow down the simulation and consume
memory. To avoid this, you can limit the number of samples saved to the
most recent samples or you can skip samples by applying a decimation
factor. To set a limit on the number of data samples saved, select the check
box labeled Limit data points to last and specify the number of samples
to save. To apply a decimation factor, enter a value in the field to the right
of the Decimation label. For example, a value of 2 saves every other point
generated.

Specifying Output Options
The Output options list on the Data Import/Export configuration pane
(“Data Import/Export Pane”) enables you to control how much output the
simulation generates. You can choose from three options:

• Refine output

• Produce additional output

• Produce specified output only

Refining Output
The Refine output choice provides additional output points when the
simulation output is too coarse. This parameter provides an integer number
of output points between time steps; for example, a refine factor of 2 provides
output midway between the time steps as well as at the steps. The default
refine factor is 1.
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To get smoother output, it is much faster to change the refine factor instead
of reducing the step size. When the refine factor is changed, the solvers
generate additional points by evaluating a continuous extension formula at
those points. This option changes the simulation step size so that time steps
coincide with the times that you have specified for additional output.

The refine factor applies to variable-step solvers and is most useful when you
are using ode45. The ode45 solver is capable of taking large steps; when
graphing simulation output, you might find that output from this solver is not
sufficiently smooth. If this is the case, run the simulation again with a larger
refine factor. A value of 4 should provide much smoother results.

Note This option helps the solver locate zero crossings (see “Zero-Crossing
Detection” on page 2-20). In particular, it helps reduce the chance of missing a
zero crossing. It does not help locate the missed zero crossings.

Producing Additional Output
The Produce additional output choice enables you to specify directly those
additional times at which the solver generates output. When you select this
option, an Output times field is displayed on the Data Import/Export pane.
Enter a MATLAB expression in this field that evaluates to an additional
time or a vector of additional times. This option causes the solver to produce
hit times at the output times you have specified, in addition to the times it
needs to accurately simulate the model.

Note This option helps the solver locate zero crossings (see “Zero-Crossing
Detection” on page 2-20). In particular, it helps reduce the chance of missing a
zero crossing. It does not help locate the missed zero crossings.

Producing Specified Output Only
The Produce specified output only choice provides simulation output
only at the simulation start time, simulation stop time, and the specified
output times. For example, if the simulation start time is set to 0 and the
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simulation stop time is set to 60, entering [10: 10: 50] in the Output
times field results in simulation output at these times:

0, 10, 20, 30, 40, 50, 60

This option changes the simulation step size so that time steps coincide with
the times that you have specified for producing output. The solver may hit
other time steps to accurately simulate the model, however the output will not
include these points. This choice is useful when you are comparing different
simulations to ensure that the simulations produce output at the same times.

Note This option helps the solver locate zero crossings (see “Zero-Crossing
Detection” on page 2-20). In particular, it helps reduce the chance of missing a
zero crossing. It does not help locate the missed zero crossings.

Comparing Output Options
A sample simulation generates output at these times:

0, 2.5, 5, 8.5, 10

Choosing Refine output and specifying a refine factor of 2 generates output
at these times:

0, 1.25, 2.5, 3.75, 5, 6.75, 8.5, 9.25, 10

Choosing the Produce additional output option and specifying [0:10]
generates output at these times

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

and perhaps at additional times, depending on the step size chosen by the
variable-step solver.

Choosing the Produce specified output only option and specifying [0:10]
generates output at these times:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
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Configuration Sets

In this section...

“About Configuration Sets” on page 14-37

“Configuration Set Components” on page 14-38

“The Active Set” on page 14-38

“Displaying Configuration Sets” on page 14-38

“Activating a Configuration Set” on page 14-39

“Opening Configuration Sets” on page 14-39

“Copying, Deleting, and Moving Configuration Sets” on page 14-40

“Copying Configuration Set Components” on page 14-41

“Creating Configuration Sets” on page 14-41

“Setting Values in Configuration Sets” on page 14-42

“Configuration Set API” on page 14-42

“Model Configuration Dialog” on page 14-45

“Model Configuration Preferences Dialog” on page 14-45

About Configuration Sets
A configuration set is a named set of values for a model’s parameters, such
as solver type and simulation start or stop time. Every new model is created
with a default configuration set, called Configuration, that initially specifies
default values for the model’s parameters. You can subsequently create and
modify additional configuration sets and associate them with the model.
The sets associated with a model can specify different values for any or all
configuration parameters.

This section describes techniques for defining and using configuration sets
that are stored in individual models. Such configuration sets are available
only to the model that contains them. The next section, “Referencing
Configuration Sets” on page 14-47, describes techniques for storing
configuration sets in the base workspace, independently of any model. Such
configuration sets can be shared by any number of models.
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Configuration Set Components
A configuration set comprises groups of related parameters called components.
Every configuration set includes the following components:

• Solver

• Data Import/Export

• Optimization

• Diagnostics

• Hardware Implementation

• Model Referencing

Some Simulink-based products, such as Real-Time Workshop®, define
additional components. If such a product is installed on your system, the
configuration set also contains the components that it defines.

The Active Set
Only one of the configuration sets associated with a model is active at any
given time. The active set determines the current values of the model’s
parameters. Changing the value of a parameter in the Model Explorer
changes its value in the associated configuration set. You can change the
active or inactive set at any time (except when executing the model). In this
way, you can quickly reconfigure a model for different purposes, e.g., testing
and production, or apply standard configuration settings to new models.

Displaying Configuration Sets
To display the configuration sets associated with a model, open the Model
Explorer (see “The Model Explorer” on page 13-2). The configuration sets
associated with the model appear as gear-shaped nodes in the Model
Explorer’s Model Hierarchy pane.
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The Model Explorer’s Contents pane displays the components of the selected
configuration set. The Model Explorer’s Dialog pane displays a dialog for
setting the parameters of the selected group (see “Configuration Parameters
Dialog Box”).

Activating a Configuration Set
To activate a configuration set, right-click the configuration set’s node to
display the node’s context menu, then select Activate from the context menu.

Opening Configuration Sets
In Model Explorer, to open the configuration parameter dialog for a
configuration set, right-click the configuration set’s node to display the node’s
context menu, then select Open from the context menu. You can open the
configuration parameter dialog for any configuration set, whether it is active
or not. You might want to open a configuration set to inspect or edit the
parameter settings.

The title bar of the dialog indicates if the configuration set is active or inactive.
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Note Every configuration set has its own configuration parameter dialog. As
you change the state of a configuration set, the top-left corner label changes to
reflect the state.

Copying, Deleting, and Moving Configuration Sets
You can use edit commands on the Model Explorer’s Edit or context menus or
object drag-and-drop operations to delete, copy, and move configuration sets
among models displayed in the Model Explorer’s Model Hierarchy pane.

For example, to copy a configuration set, using edit commands:

1 Select the model with a configuration set that you want to copy in the
Model Hierarchy pane.

2 Select the configuration set that you want to copy in the Contents pane.

3 Select Copy from the Model Explorer’s Edit menu or the configuration
set’s context menu.

4 Select the model in which you want to create the copy.

Note You can create a copy in the same model as the original.
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5 Select Paste from the Model Explorer’s Edit menu or from the model’s
context menu.

To copy the configuration set, using object drag-and-drop, hold the right
mouse button down and drag the configuration set’s node to the node of the
model in which you want to create the copy. To move a configuration set from
one model to another, using drag-and-drop, hold the left mouse button down
and drag the configuration set’s node to the node of the destination model.

Note You cannot move or delete a model’s active configuration set.

Copying Configuration Set Components
To copy a configuration set component from one configuration set to another:

1 Select the component in the Model Explorer’s Contents pane.

2 Select Copy from the Model Explorer’s Edit menu or the component’s
context menu.

3 Select the configuration set into which you want to copy the component.

4 Select Paste from the Model Explorer’s Edit menu or the component’s
context menu.

Note The copy replaces the component of the same name in the destination
configuration set. For example, if you copy the Solver component of
configuration set A and paste it into configuration set B, the copy replaces
B’s existing Solver component.

Creating Configuration Sets
To create a new configuration set, select Configuration Set from the Model

Explorer’s Add menu or press the Add Configuration button in the
Model Explorer’s toolbar. You can also create a new configuration set by
copying an existing configuration set.
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Setting Values in Configuration Sets
To set the value of a parameter in a configuration set, select the configuration
set in the Model Explorer and then edit the value of the parameter on the
corresponding dialog in the Model Explorer’s dialog view.

Configuration Set API
An application program interface (API) is provided that permits you to create
and manipulate configuration sets from the command line or in a MAT-file or
M-file. The API includes the Simulink.ConfigSet data object class and the
following model construction commands:

• attachConfigSet

• attachConfigSetCopy

• detachConfigSet

• getConfigSet

• getConfigSets

• setActiveConfigSet

• getActiveConfigSet

• openDialog

• closeDialog

These commands, along with the methods and properties of
Simulink.ConfigSet class, allow an M-file program to create and modify
configuration sets, attach configuration sets to a model, set a model’s active
configuration set, open and close configuration sets, and detach configuration
sets from a model. For example, to create a configuration set from scratch
at the command line, enter

cfg_set = Simulink.ConfigSet

The default name of the new configuration set is Configuration. To change
the name, execute

cfg_set.Name = 'name'
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where name is the set’s new name.

Use get_param and set_param to get and set the value of a parameter in a
configuration set. For example, to specify the Simulink® fixed-step discrete
solver in the configuration set, execute

set_param(cfg_set, 'Solver', 'FixedStepDiscrete')

To save the configuration set in a MAT-file, execute

save mat_file cfg_set

where mat_file is the name of the MAT-file. To load the configuration set,
execute

load mat_file

To prevent or allow a user to change the value of a parameter in a
configuration set using either the Model Explorer or set_param command,
execute

setPropEnabled(cfg_set, 'param’, [0 | 1])

where param is the name of the parameter. To attach a configuration set to
a model, execute

attachConfigSet(model, cfg_set)

where model is the model name (in quotes) or object. To get a model’s active
configuration set, execute

cfg_set = getActiveConfigSet(model)

To get a configuration set’s full name (e.g., 'engine/Configuration'), execute

getFullName(cfg_set)

To set a model’s active set, execute

setActiveConfigSet(model, 'cfg_set_name')

where cfg_set_name is the configuration set’s name.
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To open the configuration parameter dialog for an active configuration set,
execute

openDialog(cfg_set)

To open the configuration parameter dialog for any configuration set, execute

cfg_set= getConfigSet(gcs,'cfg_set_name')
openDialog(cfg_set);

where cfg_set_name is the configuration set’s name.

To close the configuration parameter dialog for a configuration set, execute

closeDialog(cfg_set);

To rename the active configuration set of modelA, copy it, and attach a copy of
that configuration to modelB, execute

activeConfigA = getActiveConfigSet('modelA');
activeConfigA.Name = 'myactiveConfigA';
newConfig = attachConfigSetCopy('modelB', activeConfigA);

where activeConfigA is the active configuration set of modelA. modelA is the
model whose active configuration set you want to copy. modelB is the model
with which you want to associate the copy of the configuration set. You can
also use this command to make multiple copies of one configuration set. This
might be useful if you want to programmatically assign copies of the same
configuration set to multiple models.

To detach a configuration set from a model, execute

detachConfigSet(model, cfg_set)

where model is the model name (in quotes) or object.
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Model Configuration Dialog
The Model Configuration dialog appears in the Model Explorer dialog pane
when you select any model configuration.

You can edit the name and description of your configuration. See “Model
Configuration Pane”.

Model Configuration Preferences Dialog
The Model Configuration Preferences dialog appears in the Model Explorer
dialog pane when you view the default model configuration.
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1 Enable View > Show Configuration Preferences in the Model Explorer
menu.

2 Select Configuration Preferences under the Simulink Root node in the
Model Explorer Model Hierarchy pane.

You can also edit the configuration defaults in the Simulink Preferences
window. See “Model Configuration Pane”.

14-46



Referencing Configuration Sets

Referencing Configuration Sets

In this section...

“Overview of Configuration References” on page 14-47

“Creating a Freestanding Configuration Set” on page 14-50

“Creating and Attaching a Configuration Reference” on page 14-52

“Obtaining a Configuration Reference Handle” on page 14-56

“Attaching a Configuration Reference to Additional Models” on page 14-57

“Changing a Configuration Reference” on page 14-58

“Activating a Configuration Reference” on page 14-59

“Unresolved Configuration References” on page 14-59

“Getting Values from a Referenced Configuration Set” on page 14-60

“Changing Values in a Referenced Configuration Set” on page 14-60

“Replacing a Referenced Configuration Set” on page 14-62

“Building Models and Generating Code” on page 14-63

“Configuration Reference Limitations” on page 14-63

Overview of Configuration References
By default, a configuration set is stored within an individual model, which
allows it to be used only by that model. Alternatively, a configuration set can
stored independently of any model, which allows it to be used by any or all
models.

A configuration set that exists outside any model is called a freestanding
configuration set. Each model that uses a freestanding configuration set does
so by defining a configuration reference that points to the configuration set.
The result is the same as if the referenced configuration set were stored
within the model.

You can use configuration references and freestanding configuration sets to:

• Assign the same configuration set to any number of models
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Each model that uses a given configuration set contains a configuration
reference that points to a MATLAB® variable. The value of that variable
is a freestanding configuration set. All of those models then share that
configuration set, and changing the value of any parameter in the set
changes it for every model that uses the set. This capability is useful
for reconfiguring large numbers of submodels quickly, and for ensuring
consistent configuration of parent models and referenced models.

• Replace the configuration sets of any number of models without
changing the model files

When multiple models use configuration references to access a freestanding
configuration set, assigning a different configuration set to the MATLAB
variable specified by the references assigns that set to all the models. This
capability allows you to maintain a library of configuration sets and assign
them as needed to any number of models in a single operation.

• Use different configuration sets for a referenced model used in
different contexts without changing the model file

A submodel that uses different configuration sets in different contexts
contains a configuration reference that specifies the submodel’s
configuration set as a variable. When an instance of the submodel is called,
the Simulink® software assigns that variable a freestanding configuration
set for the current context.

The next figure shows one way to use configuration references. Each of the
four models represented in the Model Dependency Viewer specifies the
configuration reference named my_reference as its active configuration
set, and my_reference points to a freestanding configuration set named
Configuration. The parameter values in Configuration therefore apply to
all four models, and any change to any parameter in Configuration applies
to all four models.

14-48



Referencing Configuration Sets

To use a configuration reference to link a freestanding configuration set to a
model, you:

1 Create or obtain a configuration set and store it in the base workspace as
the value of a MATLAB variable.

2 Create a configuration reference that specifies the relevant MATLAB
variable.

3 Attach the configuration reference to the model just as you would attach
a configuration set.

4 Activate the reference just as you would activate a configuration set stored
within the model.
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5 Access, set, and change configuration set parameters and the MATLAB
variable as needed.

A configuration reference is implemented as an object of type
Simulink.ConfigSetRef, and a configuration set is an object of type
Simulink.ConfigSet The two classes are similar in many ways. Wherever
the same operation is applicable to both, the relevant functions and methods
are overloaded to work with either class. For example, you can attach or
activate a configuration set or a configuration reference using the same GUI
operations and API syntax.

You cannot nest configuration references: only one level of indirection is
available. You can obtain configuration parameter values by operating on
a configuration reference just as if it were the configuration set that it
references. See “Getting Values from a Referenced Configuration Set” on page
14-60 for details. General information about configuration sets appears in
“Configuration Sets” on page 14-37.

Creating a Freestanding Configuration Set
All freestanding configuration sets are stored in the base workspace as the
values of base workspace variables. Although you can store a configuration set
in a model and point to it with a base workspace variable, such a configuration
set would not be freestanding; trying to use it in a configuration reference
would cause an error. You can store a freestanding configuration set in the
base workspace in these ways:

• Create and populate a new configuration set.

• Copy a configuration set that is stored in a model.

• Load a configuration set that was saved in a MAT-file.

You can store any number of configuration sets in the base workspace,
assigning each to a different variable. You can use any technique to
manipulate a freestanding configuration set and its parameter values that
you could use with a configuration set stored directly in a model.
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Creating and Populating a New Configuration Set
You can create a new configuration set in the base workspace using any of
the techniques described in “Creating Configuration Sets” on page 14-41 or as
follows:

cset = Simulink.ConfigSet

where cset is a new or existing base workspace variable. The new
configuration set initially has default parameter values, copied from the
default configuration set.

Copying a Configuration Set Stored in a Model
You can copy an existing configuration set to the base workspace using
drag and drop operations described in “Copying, Deleting, and Moving
Configuration Sets” on page 14-40, and assign the set to a MATLAB variable.
For example:

cset = copy (getActiveConfigSet(mdl))
cset = copy (getConfigSet(mdl, ConfigSetName))

where mdl is any open model, and ConfigSetName is the name of any
configuration set attached to the model. The first example obtains the
currently active configuration set. The second example obtains a configuration
set by specifying the name under which it appears in the Model Explorer.

Be sure to copy any configuration set obtained from an existing model,
as shown in the examples. Otherwise, cset will refer to the existing
configuration set stored in the model, rather than a new freestanding
configuration set in the base workspace, and any use of a configuration
references that links to cset will cause an error.

Reading a Configuration Set from a MAT-File
To use a freestanding configuration set across multiple MATLAB sessions,
you can save it into a MAT-file. To create the MAT-file, you first copy the
configuration set to a base workspace variable, as previously described, then
save the variable to the MAT-file:

save (workdir/ConfigSetName.mat, cset)
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where workdir is a working directory, ConfigSetName.mat is the name of
the MAT-file, and cset is a base workspace variable whose value is the
configuration set to be saved. When you later reopen your model, you can
reload the configuration set into the variable:

load (workdir/ConfigSetName.mat)

To execute code that reads configuration sets from MAT-files, you can use the
pre-load function of a top model, the MATLAB startup script, and various
other techniques, including entering the load statement(s) interactively. Any
technique that executes the necessary code will work.

Creating and Attaching a Configuration Reference
Once you have stored a configuration set in the base workspace, as described
in “Creating a Freestanding Configuration Set” on page 14-50, you can link to
that configuration set from a configuration reference, and attach the reference
to a model. The model then has the same configuration parameters that it
would if the referenced configuration set were stored directly in the model.
You can attach any number of configuration references to a model. Each must
have a unique name.

GUI Techniques
To create a configuration reference using the GUI:

1 In the Model Explorer, select the model to which the configuration reference
will be attached.

2 Click the Add Reference tool or choose Add > Configuration
Reference.

A new configuration reference attaches to the selected model. The default
name of the new reference is Reference, with a digit appended if necessary
to prevent name conflict. The name of the configuration reference appears
in the Model Hierarchy pane under the Model Workspace icon, below the
names of any configuration sets.
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3 Select the new configuration reference in the Model Hierarchy pane, or
right-click the configuration reference and choose Open from the context
menu.

The Configuration Reference dialog appears in the Dialog pane or a
separate window.
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4 Change the default Name if desired. This name exists for human
readability, and does not affect the configuration reference functionally.

5 Specify the Referenced configuration set to be the base workspace
variable whose value is the freestanding configuration set that you want to
reference. Be careful not to specify the name of a configuration reference.
Configuration references cannot be nested, and an error will result.

6 Click OK or Apply.

The Is Resolved field in the dialog changes to yes.
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If you do not specify a valid Referenced configuration, a warning is posted.
Any attempt to use a configuration reference that lacks a valid Referenced
configuration generates an error. The API equivalent of Referenced
configuration is WSVarName. You can later use the GUI or API to correct
the specification or provide a configuration set with the correct name. See
“Unresolved Configuration References” on page 14-59 for more information.

API Techniques
To create and populate a configuration reference using the API:

1 Create the reference:

cref = Simulink.ConfigSetRef
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2 Change the default name if desired:

cref.Name = 'ConfigSetRefName'

3 Specify the referenced configuration set:

cref.WSVarName = 'cset'

Be careful not to specify the name of a configuration reference.
Configuration references cannot be nested, and an error will result.

4 Attach the reference to a model:

attachConfigSet(mdl, cref, true)

The third argument is optional and authorizes renaming if needed to avoid
a name conflict.

Any attempt to use a configuration reference that does not specify a
valid WSVarName generates an error. The GUI equivalent of WSVarName is
Referenced configuration. You can later use the API or GUI to correct
the reference or provide a configuration set that has the correct name. See
“Unresolved Configuration References” on page 14-59 for more information.

Obtaining a Configuration Reference Handle
Most functions and methods that operate on a configuration reference take
a handle to the reference. If you have created a configuration reference
programmatically, with a statement like

cref = Simulink.ConfigSetRef

the variable cref contains a handle to the reference. If you do not already
have a handle, you can obtain one by executing:

cref = getConfigSet(mdl, 'ConfigSetRefName')

where ConfigSetRefName is the name of the configuration reference as it
appears in the Model Explorer, e.g., Reference. This is the name you specified
by setting the Name field in the Configuration Reference dialog or executing

cref.Name = 'ConfigSetRefName'
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The technique for obtaining a configuration reference handle is the same
as you would use to obtain a configuration set handle. Wherever the same
operation applies to both configuration sets and configuration references,
applicable functions and methods are overloaded to perform correctly with
either class.

Attaching a Configuration Reference to Additional
Models
After you have created a configuration reference and attached it to a model,
you can attach copies of the reference to any number of additional models. To
create and attach a copy of a configuration reference, you can use any GUI or
API technique that you could use to copy and attach a configuration set, such
as dragging, pasting, or a function like attachConfigSetCopy. See “Copying,
Deleting, and Moving Configuration Sets” on page 14-40 and “Configuration
Set API” on page 14-42.

Models do not share configuration reference objects. Each model has its own
copy of any configuration reference attached to it, just as each has its own
copy of any attached configuration set. Configuration references in different
models establish configuration set sharing by specifying the same base
workspace variable, which links the various models to the same freestanding
configuration set.

If you use the GUI, attaching an existing configuration reference to an
additional model automatically attaches a copy, as distinct from a handle
to the original. If necessary to prevent name conflict, the GUI will add or
increment a digit at the end of the copied reference’s name. If you use the
API, be sure to explicitly copy the configuration reference before attaching it,
with statements like:

cref = copy (getConfigSet(mdl, ConfigSetName))
attachConfigSet (cref, mdl, true)

If you omit the copy operation, cref will be a handle to the original
configuration reference, rather than a copy of the reference, and any
attempt to use cref will cause an error. If you omit the argument true to
attachConfigSet, the operation will fail if it would cause a name conflict.
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The following example shows code for obtaining a freestanding configuration
set and attaching references to it to two models. After the code executes, one
of the models contains both an internal configuration set and a configuration
reference that points to a freestanding copy of that configuration set. If the
internal copy is superfluous, it can be removed with detachConfigSet, as
shown in the last line of the example.

% Get copy of original config set as
% a variable in the base workspace
open_system('mdl1')
% Get handle to local cset
cset = getConfigSet('mdl1', 'Configuration')
% Create freestanding copy; original remains in model
cset1 = copy(cset)
% In the original model, create a configuration
% reference to the cset copy
cref1 = Simulink.ConfigSetRef
cref1.WSVarName = 'cset1'
% Rename if name conflict occurs
attachConfigSet('mdl1', cref1, true)

% In a second model, create a configuration
% reference to the same cset
open_system('mdl2')
% Rename if name conflict occurs
attachConfigSetCopy('mdl2', cref1, true)
% Delete original cset from first model
detachConfigSet('mdl1', 'Configuration')

Changing a Configuration Reference
You can change an existing configuration reference as needed by reopening
its Configuration Reference dialog and changing its Name or Referenced
configuration. Similarly, you can use the API on an existing configuration
reference to change its Name or WSVarName. If you refer to a configuration
set that does not yet exist, no error occurs, but the configuration reference
is unusable. The configuration reference becomes usable as soon as the
configuration set exists.
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Activating a Configuration Reference
Once you have created a configuration reference and attached it to a model,
you can activate it using any technique that would activate a configuration
set stored in the model, such as:

• From the GUI, choose Activate from the configuration reference’s context
menu.

• From the API, execute setActiveConfigSet, specifying the configuration
reference as the first argument.

When a configuration reference is active, the Is Active field of the
Configuration Reference dialog is yes, and the Model Explorer shows the
name of the reference suffixed with (Active).

The freestanding configuration set to which the active reference points now
provides the configuration parameters for the model containing the reference.

Unresolved Configuration References
When a configuration reference does not specify a valid configuration set,
the configuration reference is unresolved, and the Is Resolved field of its
Configuration Reference dialog has the value no. If you activate an unresolved
configuration reference, no warning or error occurs. However, an unresolved
configuration reference that is Active provides no configuration parameter
values to the model. Therefore:
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• Fields that display values that can be known only by accessing a
configuration parameter, like Stop Time in the model window, are blank.

• Trying to build the model, simulate it, generate code for it, or otherwise
require it to access configuration parameter values, causes an error.

“Creating and Attaching a Configuration Reference” on page 14-52 describes
techniques for resolving configuration references.

Getting Values from a Referenced Configuration Set
You can use get_param on a configuration reference to obtain parameter
values from the linked configuration set, just as if the reference object were
the configuration set itself. The Simulink software retrieves the referenced
configuration set and performs the indicated get_param on it.

For example, if configuration reference cref links to configuration set cset,
the following operations give identical results:

get_param (cset, 'StopTime')
get_param (cref, 'StopTime')

Changing Values in a Referenced Configuration Set
You cannot change a configuration set in any way, including changing
configuration parameter values, by operating on a configuration reference.
Thus, with cref and cset as above, if you executed:

set_param (cset, 'StopTime', 300)
set_param (cref, 'StopTime', 300) % ILLEGAL

the first operation would succeed, but the second would cause an error.
Instead, you must obtain the configuration set itself and change it directly,
using the GUI or the API.

GUI Techniques
To obtain a referenced configuration set using the GUI:

1 Select the configuration reference in the Model Hierarchy pane, or
right-click the configuration reference and choose Open from the context
menu.
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The Configuration Reference dialog appears in the Dialog pane or a
separate window.

2 Click Open to the right of the Referenced configuration field.

The Configuration Parameters dialog box opens on the configuration set
specified by Referenced configuration. You can now change and apply
or save parameter values as you would for any configuration set.

API Techniques
To obtain a referenced configuration set using the API:
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1 Obtain a handle to the configuration reference, as described in “Obtaining
a Configuration Reference Handle” on page 14-56.

2 Obtain the configuration set cset from the configuration reference cref:

cset = cref.getRefConfigSet

You can now use set_param on cset to change parameter values. Example:

set_param (cset, 'StopTime', 300)

If you want to change parameter values through the GUI, execute:

cset.openDialog

The Configuration Parameters dialog box opens on the specified
configuration set.

Replacing a Referenced Configuration Set
You can completely replace the base workspace variable and configuration
set that a configuration reference uses. However, the pointer from the
configuration reference to the configuration set becomes stale. You must then
execute:

cref.refresh

where cref is the configuration reference. If you do not execute refresh,
the configuration reference will continue to use the previous instance of the
base workspace variable and its configuration set. This example illustrates
the problem.

% Create a new configuration set
cset1=Simulink.ConfigSet;
% Set a non-default stop time
set_param (cset1, 'StopTime', 500)
% Create a new config reference
cref1=Simulink.ConfigSetRef;
% Resolve the config ref to the set
cref1.WsVarName='cset1';
% Attach the config ref to a model
attachConfigSet('mdl1', cref1, true)
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% Replace config set on base workspace
cset1=Simulink.ConfigSet;
% Call to refresh is commented out!
% cset1.refresh;
% Set a different stop time
set_param (cset, 'StopTime', 75)

If you simulate the model, it will stop at 500, not at 75. Calling cset1.refresh
where shown prevents the problem.

Building Models and Generating Code
The Real-Time Workshop® pane of the Configuration Parameters dialog
contains a Build button. Its availability differs depending on whether
the configuration set displayed by the dialog is stored in a model or is a
freestanding configuration set.

• When the pane displays a configuration set stored in a model, the Build
button is enabled, and you can use it to generate and compile code for the
model.

• When the pane displays a freestanding configuration set, the Build button
is disabled because the configuration set does not know which (if any)
models are linked to it.

To provide the same capabilities whether a configuration set is stored in a
model or is freestanding, the Configuration Reference dialog contains a Build
button. This button has the same effect as its equivalent in the Configuration
Parameters dialog, and operates on the model that contains the configuration
reference.

Configuration Reference Limitations

• You cannot nest configuration references: only one level of indirection is
available, so a configuration reference cannot link to another configuration
reference; it must specify a freestanding configuration set.

• If you replace the base workspace variable and configuration set that a
configuration reference uses, you must then execute refresh for every
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configuration reference that uses the replaced variable and set. See
“Replacing a Referenced Configuration Set” on page 14-62.

• If you activate a configuration reference when using a custom target,
the ActivateCallback function does not get triggered to notify
the corresponding freestanding configuration set. Likewise, if a
freestanding configuration set switches from one target to another, the
ActivateCallback does not get triggered to notify the new target, even
if an active configuration reference points to that target. For more
information about ActivateCallback functions, see “rtwgensettings
Structure” in the Real-Time Workshop® Embedded Coder™ Developing
Embedded Targets documentation.
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Diagnosing Simulation Errors

In this section...

“Response to Run-Time Errors” on page 14-65

“Simulation Diagnostics Viewer” on page 14-65

“Creating Custom Simulation Error Messages” on page 14-67

Response to Run-Time Errors
If errors occur during a simulation, the Simulink® software halts the
simulation, opens the subsystems that caused the error (if necessary), and
displays the errors in the Simulation Diagnostics Viewer. The following
sections explain how to use the viewer to determine the cause of the errors,
and how to create custom error messages.

Simulation Diagnostics Viewer
The viewer comprises an Error Summary pane and an Error Message pane.
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Error Summary Pane
The upper pane lists the errors that caused the simulation to terminate. The
pane displays the following information for each error.

Message. Message type (for example, block error, warning, log)

Source. Name of the model element (for example, a block) that caused the
error

Reported by. Component that reported the error (for example, the Simulink
product, the Stateflow® product , the Real-Time Workshop® product, etc.)

Summary. Error message, abbreviated to fit in the column

You can remove any of these columns of information to make more room for
the others. To remove a column, select the viewer’s View menu and uncheck
the corresponding item.

Error Message Pane
The lower pane initially contains the contents of the first error message listed
in the top pane. You can display the contents of other messages by clicking
their entries in the upper pane.

14-66



Diagnosing Simulation Errors

In addition to displaying the viewer, the Simulink software opens (if necessary)
the subsystem that contains the first error source and highlights the source.

You can display the sources of other errors by clicking anywhere in the error
message in the upper pane, by clicking the name of the error source in the
error message (highlighted in blue), or by clicking the Open button on the
viewer.

Changing Font Size
To change the size of the font used to display errors, select Font Size from
the viewer’s menu bar. A menu of font sizes appears. Select the desired font
size from the menu.

Creating Custom Simulation Error Messages
The Simulation Diagnostics Viewer displays the output of any instance of
the MATLAB® error function executed during a simulation. This includes
instances invoked by block or model callbacks, or S-functions that you create
or that are executed by the MATLAB Fcn block.

You can use the MATLAB error function in callbacks and S-functions or in
the MATLAB Fcn block to create custom error messages specific to your
application in several ways:
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• Display the contents of a text string

• Include hyperlinks to an object

• Link to an HTML file

Displaying A Text String
To display the contents of a text string, pass to the error function the string
enclosed by quotation marks.

The following example shows how the user-created function check_signal
can be made to display the string Signal is negative.

The MATLAB Fcn block invokes the following function:

function y=check_signal(x)
if x<0

error('Signal is negative');
else

y=x;
end
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Executing this model displays the error message in the Simulation
Diagnostics Viewer.

Including Hyperlinks
To include a hyperlink to a block, file, or directory, include the item’s path in
the error message enclosed in quotation marks

• error ('Error evaluating parameter in block "mymodel/Mu"')

displays a text hyperlink to the block Mu in the current model in the error
message. Clicking the hyperlink displays the block in the model window.

• error ('Error reading data from "c:/work/test.data"')

displays a text hyperlink to the file test.data in the error message.
Clicking the link displays the file in your preferred MATLAB editor.

• error ('Could not find data in directory "c:/work"')

displays a text hyperlink to the c:/work directory. Clicking the link opens a
system command window (shell) and sets its working directory to c:/work.

Displaying Hyperlinks to Specific Files
This example shows how to display a hyperlink to a specific HTML file.
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error('Signal is negative. See %s', '<a href="([docroot
''/toolbox/simulink/ug/f11-33333.html''])">help</a>')

In this example the Simulation Diagnostics Viewer displays a text hyperlink
labeled help. Clicking the link opens the HTML file.

Note The text hyperlink is enabled only if the corresponding block exists in
the current model or if the corresponding file or directory exists on the user’s
system.
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Improving Simulation Performance and Accuracy

In this section...

“About Improving Performance and Accuracy” on page 14-71

“Speeding Up the Simulation” on page 14-71

“Improving Simulation Accuracy” on page 14-72

About Improving Performance and Accuracy
Simulation performance and accuracy can be affected by many things,
including the model design and choice of configuration parameters.

The solvers handle most model simulations accurately and efficiently with
their default parameter values. However, some models yield better results
if you adjust solver parameters. Also, if you know information about your
model’s behavior, your simulation results can be improved if you provide this
information to the solver.

Speeding Up the Simulation
Slow simulation speed can have many causes. Here are a few:

• Your model includes a MATLAB® Fcn block. When a model includes a
MATLAB Fcn block, the MATLAB interpreter is called at each time step,
drastically slowing down the simulation. Use the built-in Fcn block or
Math Function block whenever possible.

• Your model includes an M-file S-function. M-file S-functions also cause
the MATLAB interpreter to be called at each time step. Consider either
converting the S-function to a subsystem or to a C-MEX file S-function.

• Your model includes a Memory block. Using a Memory block causes the
variable-order solvers (ode15s and ode113) to be reset back to order 1 at
each time step.

• The maximum step size is too small. If you changed the maximum step
size, try running the simulation again with the default value (auto).

• Did you ask for too much accuracy? The default relative tolerance (0.1%
accuracy) is usually sufficient. For models with states that go to zero, if
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the absolute tolerance parameter is too small, the simulation can take too
many steps around the near-zero state values. See the discussion of error
in “Maximum order”.

• The time scale might be too long. Reduce the time interval.

• The problem might be stiff, but you are using a nonstiff solver. Try using
ode15s.

• The model uses sample times that are not multiples of each other. Mixing
sample times that are not multiples of each other causes the solver to take
small enough steps to ensure sample time hits for all sample times.

• The model contains an algebraic loop. The solutions to algebraic loops are
iteratively computed at every time step. Therefore, they severely degrade
performance. For more information, see “Algebraic Loops” on page 2-31.

• Your model feeds a Random Number block into an Integrator block. For
continuous systems, use the Band-Limited White Noise block in the
Sources library.

• Your model contains a scope viewer that displays a large number of
data points. Try adjusting the viewer parameter settings that can affect
performance. For more information, see “How Scope Viewer Parameter
Settings Can Affect Performance” on page 15-9.

Improving Simulation Accuracy
To check your simulation accuracy, run the simulation over a reasonable time
span. Then, either reduce the relative tolerance to 1e-4 (the default is 1e-3)
or reduce the absolute tolerance and run it again. Compare the results of
both simulations. If the results are not significantly different, you can feel
confident that the solution has converged.

If the simulation misses significant behavior at its start, reduce the initial step
size to ensure that the simulation does not step over the significant behavior.

If the simulation results become unstable over time,

• Your system might be unstable.

• If you are using ode15s, you might need to restrict the maximum order to
2 (the maximum order for which the solver is A-stable) or try using the
ode23s solver.
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If the simulation results do not appear to be accurate,

• For a model that has states whose values approach zero, if the absolute
tolerance parameter is too large, the simulation takes too few steps around
areas of near-zero state values. Reduce this parameter value or adjust it
for individual states in the Integrator dialog box.

• If reducing the absolute tolerances does not sufficiently improve the
accuracy, reduce the size of the relative tolerance parameter to reduce the
acceptable error and force smaller step sizes and more steps.

Certain modeling constructs can also produce unexpected or inaccurate
simulation results.

• A Source block that inherits its sample time can produce different
simulation results if, for example, the sample times of the downstream
blocks are modified (see “Propagating Sample Times Back to Source
Blocks”).

• A Derivative block found in an algebraic loop can result in a loss in solver
accuracy.
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Running a Simulation Programmatically

In this section...

“About Simulating Programmatically” on page 14-74

“Using the sim Command” on page 14-74

“Using the set_param Command” on page 14-75

About Simulating Programmatically
Entering simulation commands in the MATLAB® Command Window or
from an M-file enables you to run unattended simulations. You can perform
Monte Carlo analysis by changing the parameters randomly and executing
simulations in a loop. You can use either the sim command or the set_param
command to run a simulation programmatically.

Using the sim Command
The full syntax of the command that runs the simulation is

[t,x,y] = sim(model, timespan, options, ut);

Only the model parameter is required. Parameters not supplied on the
command are taken from the Configuration Parameters dialog box settings.

For detailed syntax for the sim command, see the sim command reference
page. The options parameter is a structure that supplies additional
configuration parameters, including the solver name and error tolerances. You
define parameters in the options structure using the simset command. The
configuration parameters are discussed in “Configuration Sets” on page 14-37.

Programmatic Symbol Resolution
When you use the sim command to run a simulation programmatically, you
have two options that do not exist with interactive simulation: you can specify
a workspace other than the MATLAB base workspace as the last workspace
searched in hierarchical symbol resolution, and a workspace other than the
MATLAB base workspace as the destination for any data logged or exported
during simulation.
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Most simulation is interactive, so most Simulink® documentation does not
mention these possibilities. For information about substituting some other
workspace for the base workspace during programmatic simulation, see the
sim command reference page.

Using the set_param Command
You can use the set_param command to start, stop, pause, continue a
simulation, update a block diagram, or write all logging variables to the base
workspace. The format of the set_param command for this use is

set_param('sys', 'SimulationCommand', 'cmd')

where 'sys' is the name of the system and 'cmd' is 'start', 'stop',
'pause', 'continue', 'update', or 'WriteDataLogs'.

Similarly, you can use the get_param command to check the status of a
simulation. The format of the get_param command for this use is

get_param('sys', 'SimulationStatus')

The Simulink software returns 'stopped', 'initializing', 'running',
'paused', 'updating', 'terminating', and 'external' (used with the
Real-Time Workshop® product).

Note You cannot use set_param to run a simulation in a MATLAB session
that does not have a display, i.e., if you used matlab -nodisplay to start
the session.

Running a Simulation from an S-Function
S-functions can use the set_param command to control simulation execution.
A C MEX S-function can use the mexCallMatlab macro to call the set_param
command itself.
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15 Visualizing Simulation Results

About Scope Blocks, Viewers, Signal Logging, and Test
Points

In this section...

“What are Scope Blocks, Signal Viewers, Test Points and Data Logging?”
on page 15-2

“How Scope Blocks and Signal Viewers Differ” on page 15-3

“Why Use Generators and Signal Viewers Instead of Source and Scope
Blocks?” on page 15-4

What are Scope Blocks, Signal Viewers, Test Points
and Data Logging?
Scope blocks, signal viewers, test points, and data logging provide ways for
you to display and capture results from your simulations.

These icons represent the various data display and data capture devices:
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• To learn how to quickly perform basic signal viewer tasks, see “Performing
Common Viewer Tasks” on page 15-17.

• For detailed information on signal viewers, see “Introducing the Signal
and Scope Manager” on page 8-33.

• To learn how to add and change signal viewers, see “Using the Signal and
Scope Manager” on page 8-39.

• For more information on signal logging, see “Logging Signals” on page 8-49.
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• For more information on Signal Test Points, see “Working with Test Points”
on page 8-70.

• For more information on Scope Blocks, see “Sinks”.

How Scope Blocks and Signal Viewers Differ
You use Scope Blocks and signal viewers to display simulation results, but
as shown in this table, their characteristics differ:

Characteristic Signal Viewer Scope Block

Interface Attach to signal using Signal
Selector or context menu

See “The Signal Selector” on
page 8-44

See “Scope Viewer Context
Menu” on page 15-16

Drag from Library Browser

Scope of
Control

All viewers centrally
managed from Signal and
Scope Manager

See “Introducing the Signal
and Scope Manager” on page
8-33

Each managed individually

Signals per
axis

Multiple One nonbus signal per axis

Axes per
scope

Multiple

“Displaying Multiple Axes”
on page 15-19

One

Data
handling

Save data to a signal logging
object

Save variable data to
workspace as structures or
arrays

Data logging Log data to model-wide data
object

See
Simulink.ModelDataLogs

None
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Characteristic Signal Viewer Scope Block

Scrolling
display data
capability

Yes No

Display • Data markers

• Legends

• Color and line codes
distinguish signals

Color and line codes
distinguish signals

Graph
Refresh
Period

Adjustable
Fixed

Why Use Generators and Signal Viewers Instead of
Source and Scope Blocks?
You should use signal generators and viewers instead of Source and Scope
blocks when:

• You want to navigate to and attach generators or viewers deep within a
model hierarchy.

• You want to centrally manage all generators and viewers present in your
model.

• You want to use the display features provided by signal viewers that are
not available in Scope blocks.

• You want to reduce clutter in your block diagram. Because signal viewers
attach directly to signals, it is not necessary to route them to a Scope block.
This results in fewer signal routes in your block diagram.

• You want to easily view data from referenced models. See “Working with
Test Points” on page 8-70 for more information.
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Methods for Attaching a Generator or Viewer
Generators and viewers attach to signals in your model in one of two ways:

When... Use...

You want to review all of the
scopes and viewers, and the signals
connected to them

Signal and Scope Manager

You want to quickly connect and
disconnect a viewer or generator

Signal Context Menu
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Displaying a Scope Viewer
Click the Scope Viewer icon to display a particular Scope Viewer:
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Two plots are displayed in this viewer example. Each is identified with a
unique color, and the graph has a legend.

• To learn how to add a legend and to zoom into regions in your graph, see
“Performing Common Viewer Tasks” on page 15-17.

• To learn how a viewer can display multiple signals, see “Adding Multiple
Signals to a Scope Viewer” on page 15-17.
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• To learn about the Scope Viewer controls, see “Changing Viewer
Characteristics” on page 15-11.

• To learn how to attach a Scope Viewer to a signal, see “Attaching a Scope
Viewer” on page 15-17.

Tip You must first attach a viewer for the Scope Viewer icon to be visible.
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Things to Know When Using Viewers

In this section...

“About Viewers” on page 15-8

“How the Viewer Determines Trace Color Coding and Line Styles” on page
15-8

“How Scope Viewer Parameter Settings Can Affect Performance” on page
15-9

About Viewers

• The Scope Viewer is not the same as the Scope block. For an explanation
of the differences, see “How Scope Blocks and Signal Viewers Differ” on
page 15-3.

• The Scope Viewer does not show the signal label on the axis.

• The Scope Viewer does not work with the Report Generator.

• The Scope Viewer does not display the simulation minor time step values.

• Not all of the Scope Viewer features are supported when you simulate your
model in Rapid Accelerator mode. For more information, see “Using Scopes
and Viewers with Rapid Accelerator Mode” on page 19-16.

• The Help button for the Scope Viewer is located in the Scope Viewer’s
Parameters dialog box. For more information, see “Scope Viewer
Parameters Dialog Box” on page 15-12.

How the Viewer Determines Trace Color Coding and
Line Styles
The Scope Viewer displays each signal as a separate, color-coded trace, in the
following order:

1 Blue

2 Red

3 Magenta
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4 Cyan

5 Yellow

6 Green

The viewer cycles through the colors if the axis is displaying more than six
signals.

If a signal contains multiple elements (such as a vector or matrix), the viewer
distinguishes the elements with different line styles. If a signal has more
than four elements, the viewer cycles through the line styles. The line styles
retain the color of the signal.

Signal Element Scope Viewer

1

2

3

4

How Scope Viewer Parameter Settings Can Affect
Performance
In some cases, when a Scope Viewer needs to display a large number of data
points, the simulation slows. When this happens, you can improve simulation
performance by adjusting the settings of some of the viewer parameters.
Try one or a combination of the following until you are satisfied with the
simulation performance.

• Turn off scroll mode. See “Scroll” on page 15-13.

• Reduce the time range. See “Time Range” on page 15-13.
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• Use decimation to reduce the number of data points. See “Decimation” on
page 15-14.

• Increase the refresh period to decrease the refresh rate. See “Refresh
Period” on page 15-15.

• Limit the number of data points that the viewer saves to the workspace.
See “Limit data points to last” on page 15-14.
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Changing Viewer Characteristics

In this section...

“The Scope Viewer Toolbar” on page 15-11

“Scope Viewer Parameters Dialog Box” on page 15-12

The Scope Viewer Toolbar
The Scope Viewer toolbar is attached to each Scope Viewer. It has the
following controls:

Icon Function

Opens the Print dialog box so you can print the contents of a
Scope Viewer window.

Opens the Scope Parameters dialog for modifying display
characteristics. For details, see “Scope Viewer Parameters Dialog
Box” on page 15-12.

Simultaneously zooms in on the x and y axes. The zoom feature
is not active while the simulation is running.

For more information, see “Zooming In On Graph Regions” on
page 15-18.

Use this button to zoom in on the x axis only. The zoom feature is
not active while the simulation is running.

For more information, see “Zooming In On Graph Regions” on
page 15-18.

Use this button to zoom in on the y axis only. The zoom feature is
not active while the simulation is running.

For more information, see “Zooming In On Graph Regions” on
page 15-18.

Automatically scales the axis to fully display all signals.
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Icon Function

Stores the current axis settings so you can apply them to the
next simulation.

Restores the graph setting values saved by the most recent Save
axes settings command.

Activates the Signal Selector. For more information, see “The
Signal Selector” on page 8-44.

Docks and undocks the Scope Viewer. When you dock the Scope
Viewer, it is placed within the MATLAB® Command Window
and automatically resized.

Scope Viewer Parameters Dialog Box

Open the Scope Parameters dialog box by clicking on the scope toolbar, or
by selecting Scope parameters from the context menu. There are three tabs:

• General, where you set the axis characteristics and the sampling
decimation value (see “General Tab” on page 15-12).

• History, where you control the amount of stored and displayed data (see
“History Tab” on page 15-14).

• Performance, where you control the scope refresh rate (see “Performance
Tab” on page 15-15).

General Tab
With this tab you control the number of axes, the time range, and the
appearance of your graph.

Number of axes. Set the number of axes in this data field. Each axis is
displayed as a separate graph within a single Scope Viewer.

An example of this is shown in “Adding Multiple Signals to a Scope Viewer”
on page 15-17.
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Time Range. Change the x-axis limits by entering a number or auto in
the Time range field.

Entering a number of seconds causes each screen to display the amount of
data that corresponds to that number of seconds. Enter auto to set the x-axis
to the duration of the simulation.

Note Do not enter variable names in these fields.

Tick labels. Specifies whether to label axes ticks. The options are:

Option Effect

all Places ticks on the outside of all axes

inside Places tick labels inside all axes
(available only on signal viewers)

bottom axis only Places tick labels outside the bottom
axes

Scroll. When you select this option, the scope continuously scrolls the
displayed signals to the left to keep as much data in view as will fit on the
screen at any one time.

In contrast, when this option is not selected, the scope draws a screen full of
data from left to right until the screen is full, erases the screen, and draws
the next screen full of data. This loop is repeated until the end of simulation
time. The effects of this option are discernible only when drawing is slow, for
example, when the model is very large or has a very small step size.

Note In some cases, the simulation slows when the simulation runs with the
scroll option selected. See “How Scope Viewer Parameter Settings Can Affect
Performance” on page 15-9.

Data markers. Displays a marker at each data point on the Scope Viewer
screen.
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Legends. Displays a legend on the scope that indicates the line style used
to display each signal.

Decimation. Logs every Nth data point, where N is the number entered
in the edit field.

For example, suppose that your model uses a fixed-step solver with a step size
of 0.1 s. if you enter a value of 2, data points for this viewer will be recorded
at times 0.0, 0.2, 0.4....

History Tab
With this tab you control the amount of data that the Scope Viewer stores,
displays and stores to the workspace. The values that appear in these fields
are the values that are used in the next simulation.

Limit data points to last. Limits the number of data points saved to the
workspace. Select the Limit data points to last check box and enter a value
in its data field.

The Scope relies on its data history for zooming and autoscaling operations. If
the number of data points is limited to 1,000 and the simulation generates
2,000 data points, only the last 1,000 are available for regenerating the
display.

Save to model signal logging object. At the end of the simulation, this
option saves the data displayed on the Scope Viewer . The data is saved in the
Simulink.ModelDataLogs object used to log data for the model (see “Logging
Signals” on page 8-49 for more information).

For this option to take effect, you must also enable signal logging for the
model as a whole. To do this, check the Signal logging option on the Data
Import/Export pane of the model’s Configuration Parameters dialog box.

Logging Name. Specifies the name under which to store the viewer’s
data in the model’s Simulink.ModelDataLogs object. The name must
be different from the log names specified by other signal viewers or for
other signals, subsystems, or model references logged in the model’s
Simulink.ModelDataLogs object.
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Performance Tab
Controls how frequently the Scope Viewer is refreshed. Reducing the refresh
rate can speed up the simulation in some cases.

Note For information about additional Scope Viewer parameters that can
affect performance, see “How Scope Viewer Parameter Settings Can Affect
Performance” on page 15-9.

This tab contains the following controls.

Refresh Period. Select the units in which the refresh period is expressed.
Options are either seconds or frames, where a frame is the width of the scope’s
screen in seconds. This is the value of the scope’s Time range parameter.

Refresh Slider. Sets the refresh rate.

Drag the slider button to the right to increase the refresh period and hence
decrease the refresh rate.

Freeze Button. Controls refresh.

Click the button to freeze (stop refreshing) or unfreeze the Scope Viewer.
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Scope Viewer Context Menu
The Scope Viewer context menu is a convenient way to make simple changes
to a Scope Viewer without navigating to the Scope Parameters dialog box.

Right-click within a Scope Viewer to display the context menu. It contains
the following controls:

Control Function

Legends Adds a legend to your viewer.

Autoscale Autoscales the viewer axis.

Signal selection Displays the Signal Selector dialog.

For information, see “The Signal
Selector” on page 8-44.

Axes properties Displays the Axis Properties dialog.

You can manually set the minimum
and maximum range for the y axis
here.

Scope parameters Displays the Scope parameters
dialog.

For information, see “Scope Viewer
Parameters Dialog Box” on page
15-12.

Tick labels Displays the Tick Labels dialog.

From here you can turn on and off
various tick options.
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Performing Common Viewer Tasks

In this section...

“Viewing Scope Viewer Help” on page 15-17

“Attaching a Scope Viewer” on page 15-17

“Adding Multiple Signals to a Scope Viewer” on page 15-17

“Adding a Legend” on page 15-18

“Zooming In On Graph Regions” on page 15-18

“Displaying Multiple Axes” on page 15-19

Viewing Scope Viewer Help
The Scope Viewer Help button is in the Scope Viewer’s Parameters dialog.

Access the dialog by clicking on the Scope Viewer toolbar.

Attaching a Scope Viewer

1 In your block diagram, right-click a signal, and from the context menu,
select Create & Connect Viewer.

2 From the list that appears, select the type of scope to be attached.

An empty Scope Viewer will be displayed. You must run the simulation
after the viewer has been attached for the information to be plotted.

Tip You can also attach signal viewers with the Signal and Scope Manager. To
learn how to do this, see “Using the Signal and Scope Manager” on page 8-39

Adding Multiple Signals to a Scope Viewer
To add additional traces to an existing Scope Viewer:

1 In your block diagram, right-click the signal to be added.
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2 From the signal context menu, select Connect to existing viewer.

3 A list of Signal Viewers that have already been created is displayed. From
the list, select the scope to which the new signal will be added.

You can also add signals to Signal Viewers with the Signal and Scope
Manager. To learn how to do this, see “Using the Signal and Scope Manager”
on page 8-39.

Note The simulation must be run again for the new trace to be displayed
in the viewer.

Adding a Legend
To add a legend (a box identifying each signal in a graph):

1 Right-click in the viewer to display the context menu.

2 Click on Legends.

Tip Left-click and drag the legend box to reposition it.

The color and line styles used in the display are described in “How the Viewer
Determines Trace Color Coding and Line Styles” on page 15-8.

Zooming In On Graph Regions

• To zoom in on a region (simultaneously zooming in on the x and y

directions), select from the Scope Viewer toolbar, and left-click
within the graph. While holding down the mouse button, define the region
of interest.

To zoom, click and hold the left mouse button, and drag the mouse to
define the zoom region bounding box. Release the mouse button to effect
the change.
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• Select and use the mouse to zoom only in the x direction.

Define the zoom region by positioning the pointer at one end of the region,
pressing and holding down the left mouse button, then moving the pointer
to the other end of the region. Release the mouse button to effect the
change. To zoom, click and hold the left mouse button, and drag the mouse
to define the zoom region bounding box. Release the mouse button to effect
the change.

• Select and use the mouse to zoom only the y direction.

Tip Use Autoscale ( ) to restore the display if you mistakenly zoom in
too much.

Displaying Multiple Axes
You can add multiple plots (called axes) to a Scope Viewer. Each axes can have
different y-axis settings. This Scope Viewer has three axes, each displaying
a separate signal with their own y axis settings.

To add axes to an existing Scope Viewer:
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1 Open the Scope Viewer Signal Properties dialog.

Access this dialog from the Scope Viewer toolbar or by right-clicking within
a viewer.

For information on the Scope Viewer toolbar, see “The Scope Viewer
Toolbar” on page 15-11.

2 In the Number of axes field, enter the total number of axes for the graph.

3 Click OK to accept the change and dismiss the dialog.

4 In your block diagram, right-click on the signal to be added.

The signal context menu appears.

5 Select Connect to existing viewer.

A list of signal viewers is displayed.

6 From the list, select the scope to which the new signal will be added.

7 From the list of Axes, select the pane to which the signal will be plotted.
The panes are numbered from top to bottom.

Repeat this step until signals for each of the axes have been assigned.

Note Run the simulation again to display the new traces.
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Performing Common Generator Tasks

In this section...

“Attaching a Generator” on page 15-21

“Removing a Generator” on page 15-21

Attaching a Generator

1 Right-click the input to a block (such as a gain block), and from the signal
context menu select Create & Connect Signal Generator.

2 From the list that appears, select the type of scope to be attached.

The generator will appear in the block diagram as a small rectangle that
lists the generator type you have chosen. Double-click this region to display
a dialog from where you can change the generators properties.

You can also attach generators with the Signal and Scope Manager. To learn
how to do this, see “Using the Signal and Scope Manager” on page 8-39.

Removing a Generator
To remove the generator from the block diagram:

1 Right-click a generator.

2 From the context menu, select Disconnect Generator.
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Viewing Output Trajectories

In this section...

“Using the Scope Block” on page 16-2

“Using Return Variables” on page 16-2

“Using the To Workspace Block” on page 16-3

Using the Scope Block
You can display output trajectories on a Scope block during simulation as
illustrated by the following model.

The display on the Scope shows the output trajectory. The Scope block enables
you to zoom in on an area of interest or save the data to the workspace.

The XY Graph block enables you to plot one signal against another.

Using Return Variables
By returning time and output histories, you can use the plotting commands
provided in the MATLAB® software to display and annotate the output
trajectories.

The block labeled Out is an Outport block from the Ports & Subsystems
library. The output trajectory, yout, is returned by the integration solver. For
more information, see “Data Import/Export Pane”.
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You can also run this simulation from the Simulation menu by specifying
variables for the time, output, and states on the Data Import/Export pane
of the Configuration Parameters dialog box. You can then plot these
results using

plot(tout,yout)

Using the To Workspace Block
The To Workspace block can be used to return output trajectories to the
workspace. The following model illustrates this use:

The variables y and t appear in the workspace when the simulation is
complete. You store the time vector by feeding a Clock block into a To
Workspace block. You can also acquire the time vector by entering a variable
name for the time on the Data Import/Export pane of the Configuration
Parameters dialog box, for menu-driven simulations, or by returning it using
the sim command (see “Data Import/Export Pane” for more information).

The To Workspace block can accept an array input, with each input element’s
trajectory stored in the resulting workspace variable.
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Linearizing Models

In this section...

“About Linearizing Models” on page 16-4

“Linearization with Referenced Models” on page 16-6

“Linearization Using the ’v5’ Algorithm” on page 16-8

About Linearizing Models
The Simulink® product provides the linmod, linmod2, and dlinmod functions
to extract linear models in the form of the state-space matrices A, B, C, and D.
State-space matrices describe the linear input-output relationship as

where x, u, and y are state, input, and output vectors, respectively. For
example, the following model is called lmod.
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To extract the linear model of this system, enter this command.

[A,B,C,D] = linmod('lmod')

A =
-2 -1 -1
1 0 0
0 1 -1

B =
1
0
0

C =
0 1 0
0 0 -1

D =
0
1

Inputs and outputs must be defined using Inport and Outport blocks from the
Ports & Subsystems library. Source and sink blocks do not act as inputs and
outputs. Inport blocks can be used in conjunction with source blocks, using
a Sum block. Once the data is in the state-space form or converted to an
LTI object, you can apply functions in the Control System Toolbox™ product
for further analysis:

• Conversion to an LTI object

sys = ss(A,B,C,D);

• Bode phase and magnitude frequency plot

bode(A,B,C,D) or bode(sys)

• Linearized time response

step(A,B,C,D) or step(sys)
impulse(A,B,C,D) or impulse(sys)
lsim(A,B,C,D,u,t) or lsim(sys,u,t)
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You can use other functions in the Control System Toolbox and the Robust
Control Toolbox™ products for linear control system design.

When the model is nonlinear, an operating point can be chosen at which
to extract the linearized model. Extra arguments to linmod specify the
operating point.

[A,B,C,D] = linmod('sys', x, u)

For discrete systems or mixed continuous and discrete systems, use the
function dlinmod for linearization. This function has the same calling syntax
as linmod except that the second right-hand argument must contain a sample
time at which to perform the linearization.

Linearization with Referenced Models
You can use linmod to extract a linear model from a Simulink environment
that contains Model blocks.

Note In normal simulation mode, the linmod command applies the
block-by-block linearization algorithm on blocks inside the referenced
model. If the model block is in accelerated mode, the linmod command uses
numerical perturbation to linearize the referenced model. Due to limitations
on linearizing multirate model blocks in accelerator mode, you should use
normal mode simulation for all models referenced by model blocks when
linearizing with referenced models. See the Control Design documentation for
an explanation of the block-by-block linearization algorithm.

For example, consider the f14 model mdlref_f14.mdl. The Aircraft Dynamics
Model block refers to the model mdlref_dynamics.mdl.
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To linearize the mdlref_f14 model, call the linmod command on the top
mdlref_f14 model as follows.
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[A,B,C,D] = linmod('mdlref_f14')

The resulting state-space model corresponds to the complete f14 model,
including the referenced model.

You can call linmod with a state and input operating point for models that
contain Model blocks. When using operating points, the state vector x refers
to the total state vector for the top model and any referenced models. You
must enter the state vector using the structure format. To get the complete
state vector, call

x = Simulink.BlockDiagram.getInitialState(topModelName)

Linearization Using the ’v5’ Algorithm
Calling the linmod command with the 'v5' argument invokes the
perturbation algorithm created prior to MATLAB® software version 5.3. This
algorithm also allows you to specify the perturbation values used to perform
the perturbation of all the states and inputs of the model.

[A,B,C,D]=linmod('sys',x,u,para,xpert,upert,'v5')

Using linmod with the 'v5' option to linearize a model that contains
Derivative or Transport Delay blocks can be troublesome. Before linearizing,
replace these blocks with specially designed blocks that avoid the problems.
These blocks are in the Simulink Extras library in the Linearization
sublibrary.

You access the Extras library by opening the Blocksets & Toolboxes icon:

• For the Derivative block, use the Switched derivative for linearization.

• For the Transport Delay block, use the Switched transport delay for
linearization. (Using this block requires that you have the Control System
Toolbox product.)

When using a Derivative block, you can also try to incorporate the derivative
term in other blocks. For example, if you have a Derivative block in series
with a Transfer Fcn block, it is better implemented (although this is not
always possible) with a single Transfer Fcn block of the form
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In this example, the blocks on the left of this figure can be replaced by the
block on the right.
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Finding Steady-State Points
The Simulink® trim function uses a model to determine steady-state points of
a dynamic system that satisfy input, output, and state conditions that you
specify. Consider, for example, this model, called lmod.

You can use the trim function to find the values of the input and the states
that set both outputs to 1. First, make initial guesses for the state variables
(x) and input values (u), then set the desired value for the output (y).

x = [0; 0; 0];
u = 0;
y = [1; 1];

Use index variables to indicate which variables are fixed and which can vary.

ix = []; % Don't fix any of the states
iu = []; % Don't fix the input
iy = [1;2]; % Fix both output 1 and output 2
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Invoking trim returns the solution. Your results might differ because of
roundoff error.

[x,u,y,dx] = trim('lmod',x,u,y,ix,iu,iy)

x =
0.0000
1.0000
1.0000

u =
2

y =
1.0000
1.0000

dx =
1.0e-015 *
-0.2220
-0.0227
0.3331

Note that there might be no solution to equilibrium point problems. If that
is the case, trim returns a solution that minimizes the maximum deviation
from the desired result after first trying to set the derivatives to zero. For a
description of the trim syntax, see trim in the Simulink Reference.
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About Masks

In this section...

“What are Masks?” on page 17-2

“Mask Features” on page 17-2

“Creating Masks” on page 17-5

What are Masks?
A mask is a custom user interface for a subsystem that hides the subsystem’s
contents, making it appear to the user as an atomic block with its own
icon and parameter dialog box. Note that this is different from an Atomic
Subsystem, which the Simulink® software treats as a unit when determining
the execution order of block methods. Masking a subsystem provides only
graphical, not functional, grouping. The Simulink Mask Editor enables you to
create a mask for any subsystem. Masking a subsystem allows you to

• Replace the parameter dialogs of a subsystem and its contents with a
single parameter dialog with its own block description, parameter prompts,
and help text

• Replace a subsystem’s standard icon with a custom icon that depicts its
purpose

• Prevent unintended modification of subsystems by hiding their contents
behind a mask

• Create a custom block by encapsulating a block diagram that defines the
block’s behavior in a masked subsystem and then placing the masked
subsystem in a library

Note You can also mask S-Function and Model blocks. The instructions for
masking Subsystem blocks apply to S-Function and Model blocks as well
except where noted.

Mask Features
Masks can include any of the following features.
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Mask Icon
The mask icon replaces a subsystem’s standard icon, i.e., it appears in a block
diagram in place of the standard icon for a subsystem block. The Simulink
product uses MATLAB® code that you supply to draw the custom icon. You
can use any of the MATLAB drawing commands in the icon code. This gives
you great flexibility in designing an icon for a masked subsystem.

Mask Parameters
You can define a set of user-settable parameters for a masked subsystem. The
value of a parameter is stored in the mask workspace (see “Mask Workspace”
on page 17-4) as the value of a variable whose name you specify. These
associated variables allow you to link mask parameters to specific parameters
of blocks inside a masked subsystem (internal parameters) such that setting
a mask parameter sets the associated block parameter (see “Linking Mask
Parameters to Block Parameters” on page 17-39).

Note If you intend to allow the user to specify the model referenced by a
masked Model block or a Model block in a masked subsystem, you must
ensure that the mask requires that the user specify the model name as a
literal value rather than as a workspace variable. This is because Simulink
updates model reference targets before evaluating block parameters. The
recommended way to force the user to specify the model name as a literal is
to use a pop-up control on the mask to specify the model name. See “Pop-Up
Control” on page 17-31 for more information.

Mask Parameter Dialog Box
The mask parameter dialog box contains controls that enable a user to set
the values of the mask’s parameters and hence the values of any internal
parameters linked to the mask parameters.

The mask parameter dialog box replaces the subsystem’s standard parameter
dialog box, i.e., clicking on the masked subsystem’s icon causes the mask
dialog box to appear instead of the standard parameter dialog box for a
Subsystem block
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Note Use the 'mask' option of the open_system command to open a block’s
mask dialog box at the MATLAB command line or in an M program.

You can customize every feature of the mask dialog box, including which
parameters appear on the dialog box, the order in which they appear,
parameter prompts, the controls used to edit the parameters, and the
parameter callbacks (code used to process parameter values entered by the
user).

Mask Initialization Code
The initialization code is MATLAB code that you specify and that the
Simulink software runs to initialize the masked subsystem at critical times,
such as model loading and the start of a simulation run (see “Initialization
Pane” on page 17-33). You can use the initialization code to set the initial
values of the masked subsystem’s mask parameters.

Mask Workspace
A workspace is associated with each masked subsystem that you create. The
current values of the subsystem’s parameters are stored in the workspace as
well as any variables created by the block’s initialization code and parameter
callbacks. You can use model and mask workspace variables to initialize
a masked subsystem and to set the values of blocks inside the masked
subsystem, subject to the following rules.

• The Permit Hierarchical Resolution option of the subsystem must
be set to All or ExplicitOnly. See “Resolving Symbols” on page 3-69,
“Hierarchical Symbol Resolution” on page 3-70, and Permit Hierarchical
Resolution for more information.

• A block parameter expression can refer only to variables defined in the
mask workspaces of the subsystem or nested subsystems that contain the
block or in the model’s workspace.

• A valid reference to a variable defined on more than one level in the model
hierarchy resolves to the most local definition. For example, suppose that
model M contains masked subsystem A, which contains masked subsystem
B. Further suppose that B refers to a variable x that exists in both A’s and
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M’s workspaces. In this case, the reference resolves to the value in A’s
workspace.

• A masked subsystem’s initialization code can refer only to variables in
its local workspace.

• The mask workspace of a Model block is not visible to the model that
it references. Any variables used by the referenced model must resolve
to workspaces defined in the referenced model or to the base (i.e., the
MATLAB) workspace.

Hierarchical Symbol Resolution in Mask Workspaces. When the
Simulink software tries to resolve a symbol defined in a masked block, it
searches the mask workspaces in hierarchical order, then proceeds upward to
the model and base workspaces. See “Resolving Symbols” on page 3-69 for
information about symbol resolution.

Creating Masks
See “Masking a Subsystem” on page 17-14 for an overview of the process of
creating a masked subsystem. See “Masked Subsystem Example” on page
17-6 for an example of the process.
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Masked Subsystem Example

In this section...

“Introduction to Example” on page 17-6

“Creating Mask Dialog Box Prompts” on page 17-8

“Creating the Block Description and Help Text” on page 17-10

“Creating the Block Icon” on page 17-11

Introduction to Example
This simple subsystem (masking_example) models the equation for a line,
y = mx + b.
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Ordinarily, when you double-click a Subsystem block, the Subsystem block
opens, displaying its blocks in a separate window. The mx + b subsystem
contains a Gain block, named Slope, whose Gain parameter is specified as m,
and a Constant block, named Intercept, whose Constant value parameter is
specified as b. These parameters represent the slope and intercept of a line.

This example creates a custom dialog box and icon for the subsystem. One
dialog box contains prompts for both the slope and the intercept.

After you create the mask, double-click the Subsystem block to open the mask
dialog box. The mask dialog box and icon look like this:

A user enters values for Slope and Intercept in the mask dialog box.
These values are available to all the blocks in the underlying subsystem.
Masking this subsystem creates a self-contained functional unit with its own
application-specific parameters, Slope and Intercept. The mask maps these
mask parameters to the generic parameters of the underlying blocks. The
complexity of the subsystem is encapsulated by a new interface that has the
look and feel of a built-in MATLAB® block.

To create a mask for this subsystem, you need to

• Specify the prompts for the mask dialog box parameters. In this example,
the mask dialog box has prompts for the slope and intercept.

• Specify the variable name used to store the value of each parameter.
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• Enter the documentation of the block, consisting of the block description
and the block help text.

• Specify the drawing command that creates the block icon.

• Specify the commands that provide the variables needed by the drawing
command (there are none in this example).

Creating Mask Dialog Box Prompts
To create the mask for this subsystem, select the Subsystem block and choose
Mask Subsystem from the Edit menu.

This example primarily uses the Mask Editor’s Parameters pane to create
the masked subsystem’s dialog box (see “Parameters Pane” on page 17-24).
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The Mask Editor enables you to specify these attributes of a mask parameter:

• Prompt, the text label that describes the parameter

• Control type, the style of user interface control that determines how
parameter values are entered or selected

• Variable, the name of the variable that stores the parameter value

Generally, it is convenient to refer to masked parameters by their prompts.
In this example, the parameter associated with slope is referred to as the
Slope parameter, and the parameter associated with intercept is referred to
as the Intercept parameter.

The slope and intercept are defined as edit controls. This means that the user
types values into edit fields in the mask dialog box. These values are stored in
variables in the mask workspace. A masked block can access variables in its
mask workspace. In this example, the value entered for the slope is assigned
to the variable m. The Slope block in the masked subsystem gets the value
for the slope parameter from the mask workspace.

This figure shows how the slope parameter definitions in the Mask Editor
map to the actual mask dialog box parameters.

After you create the mask parameters for slope and intercept, click OK. Then
double-click the Subsystem block to open the newly constructed dialog box.
Enter 3 for the Slope and 2 for the Intercept parameter.
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Creating the Block Description and Help Text
The mask type, block description, and help text are defined on the
Documentation pane (see “Documentation Pane” on page 17-36). For this
sample masked block, the pane looks like this.
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Creating the Block Icon
So far, we have created a customized dialog box for the mx + b subsystem.
However, the Subsystem block still displays the generic Simulink® subsystem
icon. An appropriate icon for this masked block is a plot that indicates the
slope of the line. For a slope of 3, that icon looks like this.
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The block icon is defined on the Icon pane. For this block, the Icon pane
looks like this.
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The drawing command

plot([0 1],[0 m]+(m<0))

plots a line from (0,0) to (1,m). If the slope is negative, the line is shifted up
by 1 to keep it within the visible drawing area of the block.
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The drawing commands have access to all the variables in the mask
workspace. As you enter different values of slope, the icon updates the slope
of the plotted line.

Select Normalized as the Drawing coordinates parameter, located at the
bottom of the list of icon properties, to specify that the icon be drawn in a
frame whose bottom-left corner is (0,0) and whose top-right corner is (1,1).
See “Icon Pane” on page 17-20 for more information.
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Masking a Block

In this section...

“About Block Masking” on page 17-14

“Masking a Subsystem” on page 17-14

“Masking a Built-in Block” on page 17-16

About Block Masking
You use the model editor to mask Subsystem, Model, and S-function blocks,
and the set_param command to mask built-in blocks.

Note The Simulink® product does not support masking port block, e.g.,
Inport, Outport, Trigger, etc., used in a library.

Note Ensure that the mask parameter names differ from existing block
parameter names. You cannot use built-in block parameter names, such as
name, as mask parameter names. Doing so will result in an error message
being displayed.

Masking a Subsystem
To mask a Subsystem:

1 Select the block.

2 Select Mask Subsystem from the model editor’s Edit menu or from
the block’s context menu. (Right-click the subsystem block to display its
context menu.)

The Mask Editor appears.
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See “Mask Editor” on page 17-17 for a detailed description of the Mask
Editor.

3 Use the Mask Editor’s tabbed panes to perform any of the following tasks.

• Create a custom icon for the masked subsystem (see “Icon Pane” on page
17-20).

• Create parameters that allow a user to set subsystem options (see “Mask
Editor” on page 17-17).

• Initialize the masked subsystem’s parameters

• Create online user documentation for the subsystem
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4 Click Apply to apply the mask to the subsystem or OK to apply the mask
and dismiss the Mask Editor.

Masking a Built-in Block
You can reduce the size of your model by directly masking built-in blocks
instead of placing them inside a subsystem. To mask a built-in block:

1 Select the block in the model.

2 Type the following command at the MATLAB® command prompt:

set_param(gcb,'Mask','on')

3 Select Edit Mask from the model editor’s Edit menu or from the block’s
context menu. (Right-click the block to display its context menu.) The
Mask Editor appears. See “Mask Editor” on page 17-17 for a detailed
description of the Mask Editor.

4 Use the Mask Editor’s tabbed panes to perform any of the following tasks.

• Create a custom icon for the masked block (see “Icon Pane” on page
17-20).

• Create a custom mask parameter dialog box for the block (see
“Parameters Pane” on page 17-24).

• Initialize the masked block’s workspace

• Create online user documentation for the block

5 Click Apply to apply the mask to the block or OK to apply the mask and
dismiss the Mask Editor.

17-16



Mask Editor

Mask Editor

In this section...

“Creating a Subsystem Mask” on page 17-17

“Icon Pane” on page 17-20

“Parameters Pane” on page 17-24

“Control Types” on page 17-30

“Initialization Pane” on page 17-33

“Documentation Pane” on page 17-36

Note The Mask Editor requires that MATLAB® start with Java™ enabled.
This means you cannot use the Mask Editor if you start the MATLAB product
with the -nojvm option.

Creating a Subsystem Mask

• To create a subsystem mask, select the subsystem block icon and then select
Mask Subsystem from the Edit menu of the model window containing
the subsystem’s block.

• To create a mask on a built-in block, see “Masking a Built-in Block” on
page 17-16.

• To edit an existing mask, select the block’s icon and then select Edit Mask
from the Edit menu of the model window containing the subsystem’s block.

A Mask Editor like the following appears in either case.
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The Mask Editor contains a set of tabbed panes, each of which enables you to
define a feature of the mask:

• The Icon pane enables you to define the block icon (see “Icon Pane” on
page 17-20).

• The Parameters pane enables you to define and describe mask dialog box
parameter prompts and name the variables associated with the parameters
(see “Parameters Pane” on page 17-24).

• The Initialization pane enables you to specify initialization commands
(see “Initialization Pane” on page 17-33).
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• The Documentation pane enables you to define the mask type and specify
the block description and the block help (see “Documentation Pane” on
page 17-36).

Five buttons appear along the bottom of the Mask Editor:

• The Unmask button deactivates the mask and closes the Mask Editor.
While the model is still active, the mask information is still retained so
that you can reactivate it. To reactivate the mask, select the block and
choose Mask Subsystem. The Mask Editor opens, displaying the previous
settings. When you close the model, the inactive mask information is
discarded. If you want the mask information after this, you will need to
recreate it the next time you open the model.

• The OK button applies the mask settings on all panes and closes the Mask
Editor.

• The Cancel button closes the Mask Editor without applying any changes
made since you last clicked the Apply button.

• The Help button displays the contents of this section.

• The Apply button creates or changes the mask using the information that
appears on all masking panes. The Mask Editor remains open.

To see the system under the mask without unmasking it, select the Subsystem
block, then select Look Under Mask from the Edit menu. This command
opens the subsystem. The block’s mask is not affected.
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Icon Pane
The Mask Editor’s Icon pane enables you to create icons that can contain
descriptive text, state equations, images, and graphics.
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The Icon pane contains the following controls.

Drawing commands
This field allows you to enter commands that draw the block’s icon. A set
of commands is provided that can display text, one or more plots, or show
a transfer function (see “Mask Icon Drawing Commands” in the online
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Simulink® reference). You must use only these commands to draw your icon.
The drawing commands are executed in the order in which they appear in this
field. Drawing commands have access to all variables in the mask workspace.
If the drawing commands cannot be successfully executed, the icon displays
three question marks.

This example demonstrates how to create an improved icon for the mx + b
sample masked subsystem discussed earlier in this section. First you must
enter the following initialization commands to define the data that enables
the drawing command to produce an accurate icon regardless of the shape
of the block:

pos = get_param(gcb, 'Position');
width = pos(3) - pos(1); height = pos(4) - pos(2);
x = [0, width];
if (m >= 0), y = [0, (m*width)]; end
if (m < 0), y = [height, (height + (m*width))]; end

The drawing command that generates this icon is plot(x,y).

The drawing commands are executed when you:

• Load the model

• Run or update the block diagram

• Apply any changes made in the mask parameter dialog box, either by
clicking Apply or OK.

• Apply any changes made in the Mask Editor, either by clicking Apply or
OK

• Make changes to the block diagram that affect the appearance of the block,
such as rotating the block

• Copy the masked block within the same model or between different models

Examples of drawing commands
This panel illustrates the usage of the various icon drawing commands
supported by the Simulink product. To determine the syntax of a command,
select the command from the Command list. An example of the selected
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command is displayed at the bottom of the panel and the icon produced by
the command to the right of the list.

Icon options
These controls allow you to specify the following attributes of the block icon.

Frame. The icon frame is the rectangle that encloses the block. You can
choose to show or hide the frame by setting the Frame parameter to Visible
or Invisible. The default is to make the icon frame visible. For example, this
figure shows visible and invisible icon frames for an AND gate block.

Transparency. The icon can be set to Opaque or Transparent, either
hiding or showing what is underneath the icon. Opaque, the default, covers
information the Simulink software draws, such as port labels. This figure
shows opaque and transparent icons for an AND gate block. Notice the text
on the transparent icon.

Rotation. When the block is rotated or flipped, you can choose whether to
rotate or flip the icon or to have it remain fixed in its original orientation. The
default is not to rotate the icon. The icon rotation is consistent with block port
rotation. This figure shows the results of choosing Fixed and Rotates icon
rotation when the AND gate block is rotated.
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Units. This option controls the coordinate system used by the drawing
commands. It applies only to plot and text drawing commands. You can
select from among these choices: Autoscale, Normalized, and Pixel.

• Autoscale scales the icon to fit the block frame. When the block is resized,
the icon is also resized. For example, this figure shows the icon drawn
using these vectors:

X = [0 2 3 4 9]; Y = [4 6 3 5 8];

The lower-left corner of the block frame is (0,3) and the upper-right corner
is (9,8). The range of the x-axis is 9 (from 0 to 9), while the range of the
y-axis is 5 (from 3 to 8).

• Normalized draws the icon within a block frame whose bottom-left corner
is (0,0) and whose top-right corner is (1,1). Only X and Y values between
0 and 1 appear. When the block is resized, the icon is also resized. For
example, this figure shows the icon drawn using these vectors:

X = [.0 .2 .3 .4 .9]; Y = [.4 .6 .3 .5 .8];

• Pixel draws the icon with X and Y values expressed in pixels. The icon
is not automatically resized when the block is resized. To force the icon to
resize with the block, define the drawing commands in terms of the block
size.
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Parameters Pane
The Parameters pane allows you to create and modify masked subsystem
parameters (mask parameters, for short) that determine the behavior of the
masked subsystem.

The Parameters pane contains the following elements:

• The Dialog parameters panel allows you to select and change the major
properties of the mask’s parameters (see “Dialog Parameters Panel” on
page 17-25).

• The Options for selected parameter panel allows you to set additional
options for the parameter selected in the Dialog parameters panel.
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• The buttons on the left side of the Parameters pane allow you to add,
delete, and change the order of appearance of parameters on the mask’s
parameter dialog box (see “Dialog Parameters Panel” on page 17-25).

Dialog Parameters Panel
Lists the mask’s parameters in tabular form. Each row displays the major
attributes of one of the mask’s parameters.

Prompt. Text that identifies the parameter on a masked subsystem’s dialog
box.

Variable. Name of the variable that stores the parameter’s value in the
mask’s workspace (see “Mask Workspace” on page 17-4). You can use this
variable as the value of parameters of blocks inside the masked subsystem,
thereby allowing the user to set the parameters via the mask dialog box.
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Note The set_param and get_param commands are insensitive to case
differences in mask variable names. For example, suppose a model named
MyModel contains a masked subsystem named A that defines a mask variable
named Volume. Then, the following line of code returns the value of the
Volume parameter.

get_param(MyModel/A, 'voLUME')

However, case does matter when using a mask variable as the value of a
block parameter inside the masked subsystem. For example, suppose a
Gain block inside the masked subsystem A specifies VOLUME as the value
of its Gain parameter. This variable name does not resolve in the masked
subsystem’s workspace, as it contains a mask variable named Volume. If
the base workspace does not contain a variable named VOLUME, simulating
MyModel produces an error.

Type. Type of control used to edit the value of this parameter. The control
appears on the mask’s parameter dialog box following the parameter prompt.
The button that follows the type name in the Parameters pane pops up a list
of supported commands (see “Control Types” on page 17-30). To change the
current control type, select another type from the list.

Evaluate. If checked, this option causes the Simulink software to evaluate
the expression entered by the user before it is assigned to the variable.
Otherwise, the expression itself is treated as a string value and is assigned to
the variable. For example, if the user enters the expression gain in an edit
field and the Evaluate option is checked, gain is evaluated and the resultis
assigned to the variable. Otherwise, the string 'gain' is assigned to the
variable. See “Check Box Control” on page 17-31 and “Pop-Up Control” on page
17-31 for information on how this option affects evaluation of the parameters.

If you need both the string entered and the evaluated value, clear the
Evaluate option. To get the value of a base workspace variable entered as
the literal value of the mask parameter, use the MATLAB evalin command
in the mask initialization code. For example, suppose the user enters the
string 'gain' as the literal value of the mask parameter k where gain is the
name of a base workspace variable. To obtain the value of the base workspace
variable, use the following command in the mask’s initialization code:
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value = evalin('base', k)

Tunable. Selecting this option allows a user to change the value of the mask
parameter while a simulation is running.

Note This setting is ignored if the block being masked is a source block, i.e.,
the block has outputs but no input ports. In such a case, even if this option
is selected, you cannot tune the parameter while a simulation is running.
See “Changing Source Block Parameters During Simulation” on page 6-17
for more information.

Options for Selected Parameter Panel
This panel allows you to set additional options for the parameter selected in
the Dialog parameters table.

Show parameter. The selected parameter appears on the masked block’s
parameter dialog box only if this option is checked (the default).

Enable parameter. Clearing this option grays the selected parameter’s
prompt and disables its edit control. This means that the user cannot set
the value of the parameter.

Popups. This field is enabled only if the edit control for the selected
parameter is a pop-up. Enter the values of the pop-up control in this field,
each on a separate line.

Callback. Enter the MATLAB code that you want the Simulink software to
execute when a user applies a change to the selected parameter, i.e., selects
the Apply or OK button on the mask dialog box. You can use such callbacks
to create dynamic dialogs, i.e., dialogs whose appearance changes, depending
on changes to control settings made by the user, e.g., enabling an edit field
when a user checks a check box (see “Creating Dynamic Mask Parameter
Dialog Boxes” on page 17-40 more information).
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Note Callbacks are not intended to be used to alter the contents of a masked
subsystem. Altering a masked subsystem’s contents in a callback, for example
by adding or deleting blocks or changing block parameter values, can trigger
errors during model update or simulation. If you need to modify the contents
of a masked subsystem, use the mask’s initialization code to perform the
modifications (see “Initialization Pane” on page 17-33).

The callback can create and reference variables only in the block’s base
workspace. If the callback needs the value of a mask parameter, it can use
get_param to obtain the value, e.g.,

if str2num(get_param(gcb, 'g'))<0
error('Gain is negative.')

end

The Simulink software executes the callback commands when you

• Open the mask parameter dialog box. Callback commands execute top
down, starting with the top mask dialog parameter

• Modify a parameter value in the mask parameter dialog box then change
the cursor’s focus, i.e., press the Tab key or click into another field in the
dialog

Note The callback commands are not executed when the parameter value
is modified using the set_param command.

• Modify the parameter value, either in the mask parameter dialog box or via
a call to set_param, than apply the change by clicking Apply or OK. Any
mask initialization commands execute after the callback commands. (See
“Initialization Pane” on page 17-33.)

• Cancel any applied changes made in the mask dialog box by clicking
Cancel.

• Hover over the masked block to see the block’s data tip, when the data tip
contains parameter names and values. The callback executes again when
the block data tip disappears.
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Note The callback commands do not execute if the mask dialog box is
open when the block data tip appears.

For information on debugging dialog callbacks, see “Debugging Masks” on
page 17-52.

Parameter Buttons
The following sections explain the purpose of the buttons that appear on the
Parameters pane in the order of their appearance from the top of the pane.

Add Button. Adds a parameter to the mask’s parameter list. The newly
created parameter appears in the adjacent Dialog parameters table.
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Delete Button. Deletes the parameter currently selected in the Dialog
parameters table.

Up Button. Moves the currently selected parameter up one row in the Dialog
parameters table. Dialog parameters appear in the mask’s parameter dialog
box (see “Mask Parameter Dialog Box” on page 17-3) in the same order in
which they appear in the Dialog parameters table. This button (and the
next) thus allows you to determine the order in which parameters appear
on the dialog box.
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Down Button. Moves the currently selected parameter down one row in
the Dialog parameters table and hence down one position on the mask’s
parameter dialog box.

Control Types
You can choose how parameter values are entered or selected. You can create
three styles of controls: edit fields, check boxes, and pop-up controls. For
example, this figure shows the parameter area of a mask dialog box that uses
all three styles of controls (with the pop-up control open).

Edit Control
An edit field enables the user to enter a parameter value by typing it into
a field. This figure shows how the prompt for the sample edit control was
defined.

The value of the variable associated with the parameter is determined by
the Evaluate option.
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Evaluate Value

On The result of evaluating the expression entered in the field

Off The actual string entered in the field

Check Box Control
A check box enables the user to choose between two alternatives by selecting
or deselecting a check box. This figure shows how the sample check box
control is defined.

The value of the variable associated with the parameter depends on whether
the Evaluate option is selected.

Control State
Evaluated
Value Literal Value

Selected 1 'on'

Unselected 0 'off'

Pop-Up Control
A pop-up enables the user to choose a parameter value from a list of possible
values. Specify the values in the Popups field on the Options for selected
parameter pane (see “Popups” on page 17-27). The following example shows
a pop-up parameter.
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The value of the variable associated with the parameter (Color) depends
on the item selected from the pop-up list and whether the Evaluate option
is checked (on).

Evaluate Value

On Index of the value selected from the list, starting with 1.
For example, if the third item is selected, the parameter
value is 3.

Off String that is the value selected. If the third item is
selected, the parameter value is 'green'.
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Initialization Pane
The Initialization pane allows you to enter MATLAB commands that
initialize the masked subsystem.

The initialization commands are executed when you

• Load the model

• Start a simulation or update the model’s block diagram

• Make changes to the block diagram that affect the appearance of the block,
such as rotating the block
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• Copy the masked subsystem within the same model or between different
models

• Apply any changes to the block’s dialog that affect the block’s appearance
or behavior, such as changing the value of a mask parameter on which the
block’s icon drawing code depends.

The Initialization pane includes the following controls.

Dialog variables
The Dialog variables list displays the names of the variables associated
with the subsystem’s mask parameters, i.e., the parameters defined in the
Parameters pane. You can copy the name of a parameter from this list and
paste it into the adjacent Initialization commands field, using the Simulink
keyboard copy and paste commands. You can also use the list to change the
names of mask parameter variables. To change a name, double-click the
name in the list. An edit field containing the existing name appears. Edit
the existing name and press Enter or click outside the edit field to confirm
your changes.

Initialization commands
Enter the initialization commands in this field. You can enter any valid
MATLAB expression, consisting of MATLAB functions and scripts, operators,
and variables defined in the mask workspace. Initialization commands cannot
access base workspace variables. Terminate initialization commands with a
semicolon to avoid echoing results to the Command Window. For information
on debugging initialization commands, see “Debugging Masks” on page 17-52.
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Allow library block to modify its contents
This check box is enabled only if the masked subsystem resides in a library.
Checking this option allows the block’s initialization code to modify the
contents of the masked subsystem, i.e., it lets the code add or delete blocks
and set the parameters of those blocks. Otherwise, an error is generated
when a masked library block tries to modify its contents in any way. To set
this option at the MATLAB prompt, select the self-modifying block and enter
the following command.

set_param(gcb, 'MaskSelfModifiable', 'on');

Then save the block.

Initialization Command Limitations
Mask initialization commands must observe the following rules:

• Do not use initialization code to create dynamic mask dialogs, i.e., dialogs
whose appearance or control settings change depending on changes made to
other control settings. Instead, use the mask callbacks provided specifically
for this purpose (see “Creating Dynamic Mask Parameter Dialog Boxes” on
page 17-40 for more information).

• Avoid prefacing variable names in initialization commands with L_ and M_
to prevent undesirable results. These specific prefixes are reserved for
use with internal variable names.

• Avoid using set_param commands to set parameters of blocks residing in
masked subsystems that reside in the masked subsystem being initialized.
Trying to set parameters of blocks in lower-level masked subsystems can
trigger unresolvable symbol errors if lower-level masked subsystems
reference symbols defined by higher-level masked subsystems. Suppose,
for example, a masked subsystem A contains masked subsystem B, which
contains Gain block C, whose Gain parameter references a variable defined
by B. Suppose also that subsystem A’s initialization code contains the
command

set_param([gcb '/B/C'], 'SampleTime', '-1');

Simulating or updating a model containing A causes an unresolvable
symbol error.
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Documentation Pane
The Documentation pane enables you to define or modify the type,
description, and help text for a masked block.

This figure shows how fields on the Documentation pane correspond to the
mx + b sample mask block’s dialog box.

Mask Type Field
The mask type is a block classification used only for purposes of
documentation. It appears in the block’s dialog box and on all Mask Editor
panes for the block. You can choose any name you want for the mask type.
When the Simulink product creates the block’s dialog box, it adds “(mask)”
after the mask type to differentiate masked blocks from built-in blocks.
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Mask Description Field
The block description is informative text that appears in the block’s dialog box
in the frame under the mask type. If you are designing a system for others to
use, this is a good place to describe the block’s purpose or function.

Long lines of text are automatically wrapped. You can force line breaks by
using the Enter or Return key.

Block Help Field
You can provide help text that is displayed when the Help button is clicked on
the masked block’s dialog box. If you create models for others to use, this is a
good place to explain how the block works and how to enter its parameters.

You can include user-written documentation for a masked block’s help. You
can specify any of the following for the masked block help text:

• URL specification (a string starting with http:, www, file:, ftp:, or
mailto:)

• web command (launches a browser)

• eval command (evaluates a MATLAB string)

• HTML-tagged text to be displayed in a Web browser

The first line of the masked block help text is examined. If a URL specification
is detected, for example,

http://www.mathworks.com

or

file:///c:/mydir/helpdoc.html

the specified file is displayed in the browser. If a web command is detected,
for example,

web([docroot '/My Blockset Doc/' get_param(gcb,'MaskType')...
'.html'])
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or an eval command, for example,

eval('!Word My_Spec.doc')

the specified command is executed. Otherwise, the contents of the Block
Help field is displayed, which can include HTML tags, in the browser.

Note, if you enter HTML-tagged text, the Simulink software copies that text
into a temporary directory and displays it from that temporary directory.
If you want to include an image (for example, with the img tag) with
that text, you need to place the image file in that temporary directory.
(You can use tempdir to find the temporary directory for your system.)
Alternatively, you can save the HTML-tagged text into an HTML file (such
as hello.html) in the current directory and display that file directly (for
example, web('hello.html', '-helpbrowser')). This method enables you
to place referenced image files in the same directory as the HTML file.
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Linking Mask Parameters to Block Parameters
The variables associated with mask parameters allow you to link mask
parameters with block parameters. This in turn allows a user to use the mask
to set the values of parameters of blocks inside the masked subsystem.

To link the parameters, open the block’s parameter dialog box and enter an
expression in the block parameter’s value field that uses the mask parameter.
The mx + b masked subsystem, described earlier in this chapter, uses this
approach to link the Slope and Intercept mask parameters to corresponding
parameters of a Gain and Constant block, respectively, that reside in the
subsystem.

You can use a masked block’s initialization code to link mask parameters
indirectly to block parameters. In this approach, the initialization code
creates variables in the mask workspace whose values are functions of the
mask parameters and that appear in expressions that set the values of
parameters of blocks concealed by the mask.
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Creating Dynamic Mask Parameter Dialog Boxes

In this section...

“About Creating Masked Dialog Boxes” on page 17-40

“Setting Masked Block Dialog Parameters” on page 17-41

“Predefined Masked Dialog Parameters” on page 17-44

About Creating Masked Dialog Boxes
You can create dialogs for masked blocks whose appearance changes in
response to user input. Features of masked dialog boxes that can change in
this way include

• Visibility of parameter controls

Changing a parameter can cause the control for another parameter to
appear or disappear. The dialog expands or shrinks when a control appears
or disappears, respectively.

• Enabled state of parameter controls

Changing a parameter can cause the control for another parameter to be
enabled or disabled for input. A disabled control is grayed to indicate
visually that it is disabled.

• Parameter values

Changing a parameter can cause related parameters to be set to
appropriate values.

Creating a dynamic masked dialog entails using the mask editor in
combination with the set_param command. Specifically, you use the Mask
Editor to define the dialog’s parameters, both static and dynamic. For each
dynamic parameter, you enter a callback function that defines the dialog’s
response to changes to that parameter (see “Callback” on page 17-27). The
callback function can in turn use the set_param command to set mask dialog
parameters that affect the appearance and settings of other controls on the
dialog (see “Setting Masked Block Dialog Parameters” on page 17-41). Finally,
you save the model or library containing the masked subsystem to complete
the creation of the dynamic masked dialog.
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Setting Masked Block Dialog Parameters
The Simulink® software defines a set of masked block parameters that define
the current state of the masked block’s dialog. You can use the mask editor
to inspect and set many of these parameters. The Simulink get_param and
set_param commands also let you inspect and set mask dialog parameters.
The advantage? The set_param command allows you to set parameters and
hence change a dialog’s appearance while the dialog is open. This in turn
allows you to create dynamic masked dialogs.

For example, you can use the set_param command in mask callback functions
to be invoked when a user changes the values of user-defined parameters. The
callback functions in turn can use set_param commands to change the values
of the masked dialog’s predefined parameters and hence its state, for example,
to hide, show, enable, or disable a user-defined parameter control.

The following example creates a mask dialog with two parameters. The first
parameter is a pop-up menu that selects one of three gain values: 2, 5, or
User-defined. The selection in this pop-up menu determines the visibility
of an edit field used to specify the user-defined gain. See Predefined Masked
Dialog Parameters for more information on the syntax and use of the various
masked dialog parameters used in this example.

1 Mask a subsystem as described in steps one and two in Masking a
Subsystem.

2 Select the Parameters pane on the Mask Editor.

3 Add a parameter.

• Enter Gain: in the Prompt field

• Enter gain in the Variable field

• Select popup in the Type field

4 Enter the following three values in the Popups (one per line) field:

2
5
User-defined

5 Enter the following code in the Dialog callback field:
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% Get the mask parameter values. This is a cell
% array of strings.
maskStr = get_param(gcb,'MaskValues');

% The pop-up menu is the first mask parameter.
% Check the value selected in the pop-up
if strcmp(maskStr{1}(1),'U'),

% Set the visibility of both parameters on when
% User-defined is selected in the pop-up.

set_param(gcb,'MaskVisibilities',{'on';'on'}),

else

% Turn off the visibility of the Value field
% when User-defined is not selected.

set_param(gcb,'MaskVisibilities',{'on';'off'}),

% Set the string in the Values field equal to the
% string selected in the Gain pop-up menu.

maskStr{2}=maskStr{1};
set_param(gcb,'MaskValues',maskStr);

end

6 Add a second parameter.

• Enter Value: in the Prompt field

• Enter val in the Variable field

• Uncheck Show parameter in the Options for selected parameter
group. This turns the visibility of this parameter off, by default.

7 Select Apply on the Mask Editor. The Mask Editor now looks like this
when the gain parameter is selected and comments are removed from the
mask callback code:
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Double-clicking on the new masked subsystem opens the Mask Parameters
dialog box. Selecting 2 or 5 for the Gain parameter hides the Value
parameter, while selecting User-defined makes the Value parameter visible.
Note that any blocks in the masked subsystem that need the gain value
should reference the mask variable val as the set_param in the else code
assures that val contains the current value of the gain when 2 or 5 is selected
in the popup.
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Predefined Masked Dialog Parameters
The following predefined parameters are associated with masked dialogs.

MaskCallbacks
The value of this parameter is a cell array of strings that specify callback
expressions for the dialog’s user-defined parameter controls. The first cell
defines the callback for the first parameter’s control, the second for the second
parameter control, etc. The callbacks can be any valid MATLAB® expressions,
including expressions that invoke M-file commands. This means that you can
implement complex callbacks as M-files.

You can use either the mask editor or the MATLAB command line to specify
mask callbacks. To use the mask editor to enter a callback for a parameter,
enter the callback in the Callback field for the parameter.

The easiest way to set callbacks for a mask dialog at the MATLAB command
is to first select the corresponding masked dialog in a model or library window
and then to issue a set_param command at the MATLAB command line. For
example, the following code

set_param(gcb,'MaskCallbacks',{'parm1_callback', '',...
'parm3_callback'});

defines callbacks for the first and third parameters of the masked dialog for
the currently selected block. To save the callback settings, save the model or
library containing the masked block.

MaskDescription
The value of this parameter is a string specifying the description of this
block. You can change a masked block’s description dynamically by setting
this parameter in a mask callback.

MaskDisplay
The value of this parameter is string that specifies the drawing commands for
the block’s icon.
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MaskEnables
The value of this parameter is a cell array of strings that define the enabled
state of the user-defined parameter controls for this dialog. The first cell
defines the enabled state of the control for the first parameter, the second for
the second parameter, etc. A value of 'on' indicates that the corresponding
control is enabled for user input; a value of 'off' indicates that the control
is disabled.

You can enable or disable user input dynamically by setting this parameter in
a callback. For example, the following command in a callback

set_param(gcb,'MaskEnables',{'on','on','off'});

would disable the third control of the currently open masked block’s dialog.
Disabled controls are colored gray to indicate visually that they are disabled.

MaskInitialization
The value of this parameter is string that specifies the initialization
commands for the mask workspace.

MaskPrompts
The value of this parameter is a cell array of strings that specify prompts
for user-defined parameters. The first cell defines the prompt for the first
parameter, the second for the second parameter, etc.

MaskType
The value of this parameter is the mask type of the block associated with
this dialog.

MaskValues
The value of this parameter is a cell array of strings that specify the values of
user-defined parameters for this dialog. The first cell defines the value for the
first parameter, the second for the second parameter, etc.
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MaskVisibilities
The value of this parameter is a cell array of strings that specify the visibility
of the user-defined parameter controls for this dialog. The first cell defines
the visibility of the control for the first parameter, the second for the second
parameter, etc. A value of 'on' indicates that the corresponding control is
visible; a value of 'off' indicates that the control is hidden.

You can hide or show user-defined parameter controls dynamically by setting
this parameter in the callback for a control. For example, the following
command in a callback

set_param(gcb,'MaskVisibilities',{'on','off','on'});

would hide the control for the currently selected block’s second user-defined
mask parameter. The Simulink software expands or shrinks a dialog to show
or hide a control, respectively.

Note For a full list of predefined masked block parameters see the Mask
Parameters reference page.
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Masking Library Blocks

In this section...

“Why Mask Blocks?” on page 17-47

“Specifying Default Values for Library Block Mask Parameters” on page
17-47

“Creating Self-Modifying Masks for Library Blocks” on page 17-48

Why Mask Blocks?
Masking a library block allows you to hide the contents of the block and create
a custom mask parameter dialog box for every copy of the library block. You
mask blocks in a library (see Chapter 7, “Working with Block Libraries”)
just as you would mask blocks in a Simulink® model (see “Masking a Block”
on page 17-14).

Specifying Default Values for Library Block Mask
Parameters
When you create a mask for a library block, the edit fields on the mask
parameter dialog box, by default, have a value of zero, check boxes are not
selected, and drop-down lists select the first item in the list. To change default
parameter values in a masked library block:

1 Unlock the library (see ).

2 Double-click the block to access the mask parameter dialog box.

3 Fill in the desired default values or change check box or drop-down list
settings, then apply the changes and close the dialog box.

4 Save the library.

When the block is copied into a model and opened, the default values appear
on the block’s dialog box.

17-47



17 Creating Block Masks

Creating Self-Modifying Masks for Library Blocks
You can create masked library blocks that can modify their structural
contents. These self-modifying masks allow you to

• Modify the contents of a masked subsystem based on parameters in the
mask parameter dialog box or when the subsystem is initially dragged
from the library into a new model.

• Vary the number of ports on a multiport S-function that resides in a library.

Creating Self-Modifying Masks Using the Mask Editor
To create a self-modifying mask using the Mask Editor:

1 Unlock the library (see ).

2 Select the block in the library.

3 Select Edit Mask from the model editor’s Edit menu or from the block’s
context menu. (Right-click the block to display its context menu.) The
Mask Editor opens.

4 In the Mask Editor’s Initialization pane, select the Allow library block
to modify its contents option.

5 Click Apply to apply the change or OK to apply the change and dismiss
the Mask Editor.

Creating Self-Modifying Masks from the Command Line
To create a self-modifying mask from the command line:

1 Unlock the library using the following command:

set_param(gcs,'Lock','off')

2 Specify that the block is self-modifying by using the following command:

set_param(block_name,'MaskSelfModifiable','on')

where block_name is the full path to the block in the library.
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Self-Modifying Mask Example
The library selfModifying_example.mdl contains a masked subsystem
that modifies its number of input ports based on a selection made in the
subsystem’s mask parameter dialog box.

Select the subsystem then select View Mask from the model editor’s Edit
menu or from the block’s context menu. (Right-click the block to display its
context menu.) The Mask Editor opens. The Mask Editor’s Parameters
pane defines one mask parameter variable numIn that stores the value for the
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Number of inports option. This mask parameter’s dialog callback adds or
removes Input ports inside the masked subsystem based on the selection
made in the Number of inports list.

To allow the dialog callback to function properly, the Allow library block
to modify its contents option on the Mask Editor’s Initialization pane is
selected. If this option was not selected, copies of the library block could not
modify their structural contents and changing the selection in the Number
of inports list would produce an error.
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Debugging Masks

In this section...

“About Debugging Masks” on page 17-52

“Debugging Masks Using the Mask Editor” on page 17-52

“Debugging Masks Using the MATLAB® Editor/Debugger” on page 17-52

About Debugging Masks
You can use the MATLAB® tools to debug mask initialization commands and
dialog callbacks either in the Mask Editor or the MATLAB Editor/Debugger.

Note You cannot debug icon drawing commands using the MATLAB
Editor/Debugger. Use the syntax examples provided in the Mask Editor’s
Icon pane to help solve errors in the icon drawing commands.

Debugging Masks Using the Mask Editor
You can debug initialization commands and parameter callbacks entered
directly into the Mask Editor in these ways:

• Remove the terminating semicolon from a command to echo its results to
the MATLAB Command Window.

• Place a keyboard command in the code to stop execution and give control
to the keyboard. For more information, see the help text for the keyboard
command.

Debugging Masks Using the MATLAB®

Editor/Debugger
You can debug initialization commands and parameter callbacks written in
M-files using the MATLAB Editor/Debugger. For example, consider masking
a subsystem that calculates the equation of a line. See “Masked Subsystem
Example” on page 17-6 for information on creating this example.
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1 Write an M-file script initcommand.m that contains initialization
commands to calculate the x and y values of the line.
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2 Enter the name of the script into the Initialization commands field in
the Mask Editor’s Initialization pane.
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3 Use the MATLAB Editor/Debugger to place breakpoints in the M-file
and step through the code. See “Editing and Debugging M-Files” in
the MATLAB Desktop Tools and Development Environment for more
information on editing and debugging M-files.

Note The Simulink® software catches errors in parameter callbacks and
initialization commands. To stop execution when an error occurs, you must
issue the following command at the MATLAB command prompt:

dbstop if caught error

You can view the contents of the mask workspace while debugging M-file
initialization commands. When debugging M-file parameter callbacks, you
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can access only the block’s base workspace. If you need the value of a mask
parameter, use the get_param command.
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Introduction to the Debugger
With the debugger you run your simulation method by method. You can
stop after each method to examine the execution results. In this way you
can pinpoint problems in your model to specific blocks, parameters, or
interconnections.

Note Methods are functions that the Simulink® software uses to solve a
model at each time step during the simulation. Blocks are made up of
multiple methods. “Block execution” in this documentation is shorthand for
“block methods execution.” Block diagram execution is a multi-step operation
that requires execution of the different block methods in all the blocks in a
diagram at various points during the process of solving a model at each time
step during simulation, as specified by the simulation loop.

The debugger has both a graphical and a command-line user interface. The
graphical interface allows you to access the most commonly used features
of the debugger. The command-line interface gives you access all of the
capabilities in the debugger. If you can use either to perform a task, the
documentation shows you first how to use the graphical interface, then the
command-line interface.
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Using the Debugger’s Graphical User Interface

In this section...

“Displaying the Graphical Interface” on page 18-3

“Toolbar” on page 18-4

“Breakpoints Pane” on page 18-6

“Simulation Loop Pane” on page 18-7

“Outputs Pane” on page 18-8

“Sorted List Pane” on page 18-9

“Status Pane” on page 18-10

Displaying the Graphical Interface
Select Simulink Debugger from a model window’s Tools menu to display
the debugger graphical interface.
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Note The debugger graphical user interface does not display state or solver
information. The command line interface does provide this information.
See “Displaying System States” on page 18-36 and “Displaying Solver
Information” on page 18-36.

Toolbar
The debugger toolbar appears at the top of the debugger window.

�����	

From left to right, the toolbar contains the following command buttons:

Button Purpose

Step into the next method (see “Stepping Commands” on
page 18-21 for more information on this command, and the
following stepping commands).

Step over the next method.
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Button Purpose

Step out of the current method.

Step to the first method at the start of next time step.

Step to the next block method.

Start or continue the simulation.

Pause the simulation.

Stop the simulation.

Break before the selected block.

Display inputs and outputs of the selected block when
executed (same as trace gcb).

Display the current inputs and outputs of selected block
(same as probe gcb).

Toggle animation mode on or off (see “Animation Mode”
on page 18-23). The slider next to this button controls the
animation rate.

Display help for the debugger.

Close the debugger.
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Breakpoints Pane
To display the Breakpoints pane, select the Break Points tab on the
debugger window.

�	��#��"�������

The Breakpoints pane allows you to specify block methods or conditions
at which to stop a simulation. See “Setting Breakpoints” on page 18-27 for
more information.

Note The debugger grays out and disables the Breakpoints pane when you
select animation mode. (see “Animation Mode” on page 18-23). This prevents
you from setting breakpoints and indicates that animation mode ignores
existing breakpoints.
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Simulation Loop Pane
To display the Simulation Loop pane, select the Simulation Loop tab on
the debugger window.

The Simulation Loop pane contains three columns:

• Method

• Breakpoints

• ID

Method Column
The Method column lists the methods that have been called thus far in the
simulation as a method tree with expandable/collapsible nodes. Each node
of the tree represents a method that calls other methods. Expanding a node
shows the methods that the block method calls. Clicking a block method name
highlights the corresponding block in the model diagram.

Whenever the simulation stops, the debugger highlights the name of the
method where the simulation has stopped as well as the methods that invoked
it. The highlighted method names indicate the current state of the method
call stack.
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Breakpoints Column
The breakpoints column consists of check boxes. Selecting a check box sets a
breakpoint at the method whose name appears to the left of the check box.
See “Setting Breakpoints from the Simulation Loop Pane” on page 18-29 for
more information.

Note This column is disabled when its animation mode is selected (see
“Animation Mode” on page 18-23), because in animation mode you can’t set
breakpoints.

ID Column
The ID column lists the IDs of the methods listed in the Methods column.
See “Method ID” on page 18-11 for more information.

Outputs Pane
To display the Outputs pane, select the Outputs tab on the debugger window.

The Outputs pane displays the same debugger output that would appear in the
MATLAB® command window if the debugger were running in command-line
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mode. The output includes the debugger command prompt and the inputs,
outputs, and states of the block at whose method the simulation is currently
paused (see “Block Data Output” on page 18-20). The command prompt
displays current simulation time and the name and index of the method in
which the debugger is currently stopped (see “Block ID” on page 18-11).

Sorted List Pane
To display the Sorted List pane, select the Sorted List tab on the debugger
window.

The Sorted List pane displays the sorted lists for the model being debugged.
See “Displaying a Models Sorted Lists” on page 18-38 for more information.
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Status Pane
To display the Status pane, select the Status tab on the debugger window.

The Status pane displays the values of various debugger options and other
status information.
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Using the Debugger’s Command-Line Interface

In this section...

“Controlling the Debugger” on page 18-11

“Method ID” on page 18-11

“Block ID” on page 18-11

“Accessing the MATLAB® Workspace” on page 18-12

Controlling the Debugger
In command-line mode, you control the debugger by entering commands at the
debugger command line in the MATLAB® Command Window. The debugger
accepts abbreviations for debugger commands. See “Simulink® Debugger
Commands — Alphabetical List” for a list of command abbreviations and
repeatable commands.

Note You can repeat some commands by entering an empty command (i.e.,
by pressing the Enter key) at the command line.

Method ID
Some of the Simulink software commands and messages use method IDs
to refer to methods. A method ID is an integer assigned to a method the
first time the method is invoked. The debugger assigns method indexes
sequentially, starting with 0.

Block ID
Some of the debugger commands and messages use block IDs to refer to
blocks. Block IDs are assigned to blocks while generating the model’s sorted
lists during the compilation phase of the simulation. A block ID has the
form sid:bid, where sid is an integer identifying the system that contains
the block (either the root system or a nonvirtual subsystem) and bid is the
position of the block in the system’s sorted list. For example, the block index
0:1 refers to the first block in the model’s root system. The slist command
shows the block ID for each debugged block in the model.
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Accessing the MATLAB® Workspace
You can enter any MATLAB expression at the sldebug prompt. For example,
suppose you are at a breakpoint and you are logging time and output of your
model as tout and yout. The following command creates a plot.

(sldebug ...) plot(tout, yout)

You cannot display the value of a workspace variable whose name is partially
or entirely the same as that of a debugger command by entering it at the
debugger command prompt. You can, however, use the eval command to work
around this problem. For example, use eval('s') to determine the value of s
rather then s(tep) the simulation.
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Getting Online Help
You can get online help on using the debugger by clicking the Help button on
the debugger toolbar. Clicking the Help button displays help for the debugger
in the MATLAB® product Help browser.

.����������

In command-line mode, you can get a brief description of the debugger
commands by typing help at the debug prompt.
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Starting the Debugger
You can start the debugger either from a model window or from the command
line. To start the debugger from a model window, select Simulink Debugger
from the model window Tools menu. The debugger graphical user interface
appears (see “Using the Debugger’s Graphical User Interface” on page 18-3).

To start the debugger from the MATLAB® Command Window, enter either a
sim command or the sldebug command. For example the following commands
load the demo model vdp into memory, starts the simulation, and stops the
simulation at the first block in the model’s execution list

sim('vdp',[0,10],simset('debug','on'))

or

sldebug 'vdp'

Note When running the debugger in graphical user interface (GUI) mode,
you must explicitly start the simulation. See “Starting a Simulation” on page
18-15 for more information.
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Starting a Simulation
To start the simulation, click the Start/Continue button on the debugger
toolbar.

���	�)����"����������

The simulation starts and stops at the first simulation method that is to be
executed. It displays the name of the method in its Simulation Loop pane
and in the debug pointer on the block diagram. The debug pointer indicates
on the block diagram which block method is being executed at each step.
At this point, you can

• Set breakpoints.

• Run the simulation step by step.

• Continue the simulation to the next breakpoint or end.

• Examine data.

• Perform other debugging tasks.

As the simulation progresses, the block diagram updates with debug pointers.
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The debugger displays the name of the method in the Simulation Loop pane,
as shown in the following figure:
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The debugger also displays a graphical debug pointer (see “Debug Pointer” on
page 18-25) in the block diagram of the model that you are debugging. The
debug pointer points to the first block method to be executed.

����'���"���	

The following sections explain how to use the debugger controls to perform
these debugging tasks.
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Note When you start the debugger in GUI mode, the debugger command-line
interface is also active in the Command Window of the MATLAB® product.
However, to prevent synchronization errors between the graphical and
command-line interfaces you should avoid using the command-line interface.

18-18



Running a Simulation Step by Step

Running a Simulation Step by Step

In this section...

“Introduction” on page 18-19

“Block Data Output” on page 18-20

“Stepping Commands” on page 18-21

“Continuing a Simulation” on page 18-22

“Running a Simulation Nonstop” on page 18-24

“Debug Pointer” on page 18-25

Introduction
The debugger provides various commands that let you advance a simulation
from the method where it is currently suspended (the next method) by various
increments (see “Stepping Commands” on page 18-21). For example, you
can advance the simulation

• Into or over the next method

• Out of the current method

• To the top of the simulation loop.

After each advance, the debugger displays information that enables you to
determine the point to which the simulation has advanced and the results of
advancing the simulation to that point.

For example, in GUI mode, after each step command, the debugger highlights
the current method call stack in the Simulation Loop pane. The call
stack comprises the next method and the methods that invoked the next
method either directly or indirectly. The debugger highlights the call stack
by highlighting the names of the methods that make up the call stack in
the Simulation Loop pane.
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In command-line mode, you can use the where command to display the
method call stack. If the next method is a block method, the debugger points
the debug pointer at the block corresponding to the method (see “Debug
Pointer” on page 18-25 for more information). If the block of the next method
to be executed resides in a subsystem, the debugger opens the subsystem and
points to the block in the subsystem block diagram.

Block Data Output
After executing a block method, the debugger prints any or all of the following
block data in the debugger Output panel (in GUI mode) or, if in command
line mode, the MATLAB® Command Window:

• Un = v

where v is the current value of the block’s nth input.

• Yn = v
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where v is the current value of the block’s nth output.

• CSTATE = v

where v is the value of the block’s continuous state vector.

• DSTATE = v

where v is the value of the block’s discrete state vector.

The debugger also displays the current time, the ID and name of the next
method to be executed, and the name of the block to which the method applies
in the MATLAB Command Window. The following example illustrates typical
debugger outputs after a step command.

Stepping Commands
Command-line mode provides the following commands for advancing a
simulation incrementally:

This command... Advances the simulation...

step [in into] Into the next method, stopping at the first method
in the next method or, if the next method does not
contain any methods, at the end of the next method

step over To the method that follows the next method, executing
all methods invoked directly or indirectly by the next
method
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This command... Advances the simulation...

step out To the end of the current method, executing any
remaining methods invoked by the current method

step top To the first method of the next time step (i.e., the top
of the simulation loop)

step blockmth To the next block method to be executed, executing all
intervening model- and system-level methods

next Same as step over

Buttons in the debugger toolbar allow you to access these commands in GUI
mode.

Clicking a button has the same effect as entering the corresponding command
at the debugger command line.

Continuing a Simulation
In GUI mode, the Stop button turns red when the debugger suspends
the simulation for any reason. To continue the simulation, click the
Start/Continue button. In command-line mode, enter continue to continue
the simulation. By default, the debugger runs the simulation to the next
breakpoint (see “Setting Breakpoints” on page 18-27) or to the end of the
simulation, whichever comes first.
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Animation Mode
In animation mode, the Start/Continue button or the continue command
advances the simulation method by method, pausing after each method, to
the first method of the next major time step. While running the simulation in
animation mode, the debugger uses its debug pointer (see “Debug Pointer”
on page 18-25) to indicate on the block diagram which block method is being
executed at each step. The moving pointer shows the simulation progress.

Note In animation mode, the debugger does not allow you to set breakpoints
and ignores any breakpoints that you set when animating the simulation.

To enable animation when running the debugger in GUI mode, click the
Animation Mode button on the debugger toolbar.

Use the slider on the debugger toolbar to increase or decrease the delay
between method invocations, and so slow down or speed up the animation
rate. To disable animation mode when running the debugger in GUI mode,
toggle the Animation Mode button on the toolbar.

To enable animation when running the debugger in command-line mode,
enter the animate command at the command line. The animate command has
an optional delay parameter for you to specify the length of the pause between
method invocations (1 second by default), and thereby accelerate or slow down
the animation. For example, the command

animate 0.5
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causes the animation to run at twice its default rate. To disable animation
mode when running the debugger in command-line mode, at the command
line enter:

animate stop

Running a Simulation Nonstop
The run command lets you run a simulation to the end of the simulation,
skipping any intervening breakpoints. At the end of the simulation, the
debugger returns you to the command line. To continue debugging a model,
you must restart the debugger.

Note The GUI mode does not provide a graphical version of the run command.
To run the simulation to the end, you must first clear all breakpoints and
then click the Start/Continue button.
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Debug Pointer
The debugger displays a debug pointer on the block diagram whenever it
stops the simulation at a method.

-�������!������ ����#���"���	 
��!����"��

The debug pointer is an annotation that indicates the next method to be
executed when simulation resumes. It consists of the following elements:

• Next method box

• Block pointer

• Method tile
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Next Method Box
The next method box appears in the upper-left corner of the block diagram. It
specifies the name and ID of the next method to be executed.

Block Pointer
The block pointer appears when the next method is a block method. It
indicates the block on which the next method operates.

Method Tile
The method tile is a rectangular patch of color that appears when the next
method is a block method. The tile overlays a portion of the block on which the
next method executes. The color and position of the tile on the block indicate
the type of the next block method as follows.

In animation mode, the tiles persist for the length of the current major time
step and a number appears in each tile. The number specifies the number
of times that the corresponding method has been invoked for the block thus
far in the time step.
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Setting Breakpoints

In this section...

“About Breakpoints” on page 18-27

“Setting Unconditional Breakpoints” on page 18-27

“Setting Conditional Breakpoints” on page 18-30

About Breakpoints
The debugger allows you to define stopping points called breakpoints in a
simulation. You can then run a simulation from breakpoint to breakpoint,
using the debugger continue command. The debugger lets you define two
types of breakpoints: unconditional and conditional. An unconditional
breakpoint occurs whenever a simulation reaches a method that you specified
previously. A conditional breakpoint occurs when a condition that you
specified in advance arises in the simulation.

Breakpoints are useful when you know that a problem occurs at a certain
point in your program or when a certain condition occurs. By defining
an appropriate breakpoint and running the simulation via the continue
command, you can skip immediately to the point in the simulation where the
problem occurs.

Setting Unconditional Breakpoints
You can set unconditional breakpoints from the:

• Debugger toolbar

• Simulation Loop pane

• MATLAB® product Command Window (command-line mode only)

Setting Breakpoints from the Debugger Toolbar
To set a breakpoint on a block’s methods, select the block and then click
the Breakpoint button on the debugger toolbar. If you set a break point
on a block, the debugger stops at any method that the execution reaches in
the block.
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The debugger displays the name of the selected block in the Break/Display
points panel of the Breakpoints pane.

Note Clicking the Breakpoint button on the toolbar sets breakpoints on the
invocations of a block’s methods in major time steps.

You can temporarily disable the breakpoints on a block by deselecting the
check box in the breakpoints column of the panel. To clear the breakpoints on
a block and remove its entry from the panel,

1 Select the entry.

2 Click the Remove selected point button on the panel.
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Note You cannot set a breakpoint on a virtual block. A virtual block is
purely graphical: it indicates a grouping or relationship among a model’s
computational blocks. The debugger warns you if you try to set a breakpoint
on a virtual block. You can get a listing of a model’s nonvirtual blocks, using
the slist command (see “Displaying a Model’s Nonvirtual Blocks” on page
18-40).

Setting Breakpoints from the Simulation Loop Pane
To set a breakpoint at a particular invocation of a method displayed in the
Simulation Loop pane, select the check box next to the method’s name in
the breakpoint column of the pane.

To clear the breakpoint, deselect the check box.
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Setting Breakpoints from the Command Window
In command-line mode, use the break and bafter commands to set
breakpoints before or after a specified method, respectively. Use the clear
command to clear breakpoints.

Setting Conditional Breakpoints
You can use either the Break on conditions controls group on the debugger
Breakpoints pane

or the following commands (in command-line mode) to set conditional
breakpoints.

This
command... Causes the Simulation to Stop...

tbreak [t] At a simulation time step

ebreak At a recoverable error in the model

nanbreak At the occurrence of an underflow or overflow (NaN) or
infinite (Inf) value

xbreak When the simulation reaches the state that determines
the simulation step size

zcbreak When a zero crossing occurs between simulation time steps
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Setting Breakpoints at Time Steps
To set a breakpoint at a time step, enter a time in the debugger Break at
time field (GUI mode) or enter the time using the tbreak command. This
causes the debugger to stop the simulation at the Outputs.Major method of
the model at the first time step that follows the specified time. For example,
starting vdp in debug mode and entering the commands

tbreak 2
continue

causes the debugger to halt the simulation at the vdp.Outputs.Major method
of time step 2.078 as indicated by the output of the continue command.

%--------------------------------------------------------------
%
[TM = 2.078784598291364 ] vdp.Outputs.Major
(sldebug @18):

Breaking on Nonfinite Values
Selecting the debugger NaN values option or entering the nanbreak
command causes the simulation to stop when a computed value is infinite or
outside the range of values that is supported by the machine running the
simulation. This option is useful for pinpointing computational errors in
a model.

Breaking on Step-Size Limiting Steps
Selecting the Step size limited by state option or entering the xbreak
command causes the debugger to stop the simulation when the model uses a
variable-step solver and the solver encounters a state that limits the size of
the steps that it can take. This command is useful in debugging models that
appear to require an excessive number of simulation time steps to solve.

Breaking at Zero Crossings
Selecting the Zero crossings option or entering the zcbreak command
causes the simulation to halt when a nonsampled zero crossing is detected in
a model that includes blocks where zero crossings can arise. After halting,
the ID, type, and name of the block in which the zero crossing was detected is
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displayed. The block ID (s:b:p) consists of a system index s, block index b,
and port index p separated by colons (see “Block ID” on page 18-11).

For example, setting a zero-crossing break at the start of execution of the
zeroxing demo model,

>> sldebug zeroxing
%--------------------------------------------------------------
%
[TM = 0 ] zeroxing.Simulate
(sldebug @0): >> zcbreak
Break at zero crossing events : enabled

and continuing the simulation

(sldebug @0): >> continue

results in a zero-crossing break at

2 Zero crossings detected at the following locations

6 0:5:1 Saturate 'zeroxing/Saturation'

7 0:5:2 Saturate 'zeroxing/Saturation'

ZeroCrossing Events detected. Interrupting model execution

%----------------------------------------------------------------%

[Tm = 0.4 ] zeroxing.zc.SearchLoop

(sldebug @55): >>

If a model does not include blocks capable of producing nonsampled zero
crossings, the command prints a message advising you of this fact.

Breaking on Solver Errors
Selecting the debugger Solver Errors option or entering the ebreak
command causes the simulation to stop if the solver detects a recoverable error
in the model. If you do not set or disable this breakpoint, the solver recovers
from the error and proceeds with the simulation without notifying you.
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Displaying Information About the Simulation

In this section...

“Displaying Block I/O” on page 18-33

“Displaying Algebraic Loop Information” on page 18-35

“Displaying System States” on page 18-36

“Displaying Solver Information” on page 18-36

Displaying Block I/O
The debugger allows you to display block I/O by clicking the appropriate
buttons on the debugger toolbar

or by entering the appropriate debugger command.

This
command... Displays a Blocks I/O...

probe Immediately

disp At every breakpoint any time execution stops

trace Whenever the block executes

Note The two debugger toolbar buttons, Watch Block I/O ( ) and Display

Block I/O ( ) correspond, respectively, to trace gcb and probe gcb. The
probe and disp commands do not have a one-to-one correspondence with
the debugger toolbar buttons.
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Displaying I/O of a Selected Block
To display the I/O of a block, select the block and click in GUI mode or
enter the probe command in command-line mode. In the following table,
the probe gcb command has a corresponding toolbar button. The other
commands do not.

Command Description

probe Enter or exit probe mode. In probe mode, the debugger
displays the current inputs and outputs of any block
that you select in the model’s block diagram. Typing any
command causes the debugger to exit probe mode.

probe gcb
Display I/O of selected block. Same as .

probe s:b Print the I/O of the block specified by system number s
and block number b.

The debugger prints the current inputs, outputs, and states of the selected
block in the debugger Outputs pane (GUI mode) or the Command Window of
the MATLAB® product.

The probe command is useful when you need to examine the I/O of a block
whose I/O is not otherwise displayed. For example, suppose you are using the
step command to run a model method by method. Each time you step the
simulation, the debugger displays the inputs and outputs of the current block.
The probe command lets you examine the I/O of other blocks as well.

Displaying Block I/O Automatically at Breakpoints
The disp command causes the debugger to display a specified block’s inputs
and outputs whenever it halts the simulation. You can specify a block either
by entering its block index or by selecting it in the block diagram and entering
gcb as the disp command argument. You can remove any block from the
debugger list of display points, using the undisp command. For example, to
remove block 0:0, either select the block in the model diagram and enter
undisp gcb or simply enter undisp 0:0.
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Note Automatic display of block I/O at breakpoints is not available in the
debugger GUI mode.

The disp command is useful when you need to monitor the I/O of a specific
block or set of blocks as you step through a simulation. Using the disp
command, you can specify the blocks you want to monitor and the debugger
will then redisplay the I/O of those blocks on every step. Note that the
debugger always displays the I/O of the current block when you step through
a model block by block, using the step command. You do not need to use the
disp command if you are interested in watching only the I/O of the current
block.

Watching Block I/O
To watch a block, select the block and click in the debugger toolbar or
enter the trace command. In GUI mode, if a breakpoint exists on the block,
you can set a watch on it as well by selecting the check box for the block in
the watch column of the Break/Display points pane. In command-line
mode, you can also specify the block by specifying its block index in the trace
command. You can remove a block from the debugger list of trace points using
the untrace command.

The debugger displays a watched block’s I/O whenever the block executes.
Watching a block allows you obtain a complete record of the block’s I/O
without having to stop the simulation.

Displaying Algebraic Loop Information
The atrace command causes the debugger to display information about a
model’s algebraic loops (see “Algebraic Loops” on page 2-31) each time they
are solved. The command takes a single argument that specifies the amount
of information to display.

This
command... Displays for each algebraic loop...

atrace 0 No information
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This
command... Displays for each algebraic loop...

atrace 1 The loop variable solution, the number of iterations
required to solve the loop, and the estimated solution error

atrace 2 Same as level 1

atrace 3 Level 2 plus the Jacobian matrix used to solve the loop

atrace 4 Level 3 plus intermediate solutions of the loop variable

Displaying System States
The states debug command lists the current values of the system’s states
in the MATLAB product Command Window. For example, the following
sequence of commands shows the states of the bouncing ball demo (bounce)
after its first and second time steps.

sldebug bounce

[Tm=0 ] **Start** of system 'bounce' outputs

(sldebug @0:0 'bounce/Position'): states

Continuous state vector (value,index,name):

10 0 (0:0 'bounce/Position')

15 1 (0:5 'bounce/Velocity')

(sldebug @0:0 'bounce/Position'): next

[Tm=0.01 ] **Start** of system 'bounce' outputs

(sldebug @0:0 'bounce/Position'): states

Continuous state vector (value,index,name):

10.1495095 0 (0:0 'bounce/Position')

14.9019 1 (0:5 'bounce/Velocity')

Displaying Solver Information
The strace command allows you to pinpoint problems in solving a models
differential equations that can slow down simulation performance. Executing
this command causes the debugger to display solver-related information at
the command line of the MATLAB product when you run or step through
a simulation. The information includes the sizes of the steps taken by the
solver, the estimated integration error resulting from the step size, whether
a step size succeeded (i.e., met the accuracy requirements that the model
specifies), the times at which solver resets occur, etc. If you are concerned
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about the time required to simulate your model, this information can help you
to decide whether the solver you have chosen is the culprit and hence whether
choosing another solver might shorten the time required to solve the model.
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Displaying Information About the Model

In this section...

“Displaying a Models Sorted Lists” on page 18-38

“Displaying a Block” on page 18-39

Displaying a Models Sorted Lists
In GUI mode, the debugger Sorted List pane displays lists of blocks for
a models root system and each nonvirtual subsystem. Each list lists the
blocks that the subsystems contains sorted according to their computational
dependencies, alphabetical order, and other block sorting rules. In
command-line mode, you can use the slist command to display a model’s
sorted lists.

---- Sorted list for 'vdp' [12 blocks, 9 nonvirtual blocks,
directFeed=0]

0:0 'vdp/Integrator1' (Integrator)
0:1 'vdp/Out1' (Outport)
0:2 'vdp/Integrator2' (Integrator)
0:3 'vdp/Out2' (Outport)
0:4 'vdp/Fcn' (Fcn)
0:5 'vdp/Product' (Product)
0:6 'vdp/Mu' (Gain)
0:7 'vdp/Scope' (Scope)
0:8 'vdp/Sum' (Sum)

These displays include the block index for each command. You can use them
to determine the block IDs of the models blocks. Some debugger commands
accept block IDs as arguments.

Identifying Blocks in Algebraic Loops
If a block belongs to an algebraic list, the slist command displays an
algebraic loop identifier in the entry for the block in the sorted list. The
identifier has the form

algId=s#n
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where s is the index of the subsystem containing the algebraic loop and n is
the index of the algebraic loop in the subsystem. For example, the following
entry for an Integrator block indicates that it participates in the first algebraic
loop at the root level of the model.

0:1 'test/ss/I1' (Integrator, tid=0) [algId=0#1, discontinuity]

You can use the debugger ashow command to highlight the blocks and lines
that make up an algebraic loop. See “Displaying Algebraic Loops” on page
18-41 for more information.

Displaying a Block
To determine the block in a models diagram that corresponds to a particular
index, enter bshow s:b at the command prompt, where s:b is the block index.
The bshow command opens the system containing the block (if necessary) and
selects the block in the systems window.

Displaying a Models Nonvirtual Systems
The systems command displays a list of the nonvirtual systems in the model
that you are debugging. For example, the clutch demo (clutch) contains the
following systems:

sldebug clutch

[Tm=0 ] **Start** of system 'clutch' outputs

(sldebug @0:0 'clutch/Clutch Pedal'): systems

0 'clutch'

1 'clutch/Locked'

2 'clutch/Unlocked'

Note The systems command does not list subsystems that are purely
graphical. That is, subsystems that the model diagram represents as
Subsystem blocks but that are solved as part of a parent system. are not
listed. In Simulink® models, the root system and triggered or enabled
subsystems are true systems. All other subsystems are virtual (that is,
graphical) and do not appear in the listing from the systems command.
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Displaying a Model’s Nonvirtual Blocks
The slist command displays a list of the nonvirtual blocks in a model. The
listing groups the blocks by system. For example, the following sequence of
commands produces a list of the nonvirtual blocks in the Van der Pol (vdp)
demo model.

sldebug vdp
[Tm=0 ] **Start** of system 'vdp' outputs
(sldebug @0:0 'vdp/Integrator1'): slist
---- Sorted list for 'vdp' [12 blocks, 9 nonvirtual blocks,
directFeed=0]

0:0 'vdp/Integrator1' (Integrator)
0:1 'vdp/Out1' (Outport)
0:2 'vdp/Integrator2' (Integrator)
0:3 'vdp/Out2' (Outport)
0:4 'vdp/Fcn' (Fcn)
0:5 'vdp/Product' (Product)
0:6 'vdp/Mu' (Gain)
0:7 'vdp/Scope' (Scope)
0:8 'vdp/Sum' (Sum)

Note The slist command does not list blocks that are purely graphical.
That is, blocks that indicate relationships between or groupings among
computational blocks.

Displaying Blocks with Potential Zero Crossings
The zclist command displays a list of blocks in which nonsampled zero
crossings can occur during a simulation. For example, zclist displays the
following list for the clutch sample model:

(sldebug @0:0 'clutch/Clutch Pedal'): zclist
2:3 'clutch/Unlocked/Sign' (Signum)
0:4 'clutch/Lockup Detection/Velocities Match' (HitCross)
0:10 'clutch/Lockup Detection/Required Friction

for Lockup/Abs' (Abs)
0:11 'clutch/Lockup Detection/Required Friction for

Lockup/ Relational Operator' (RelationalOperator)
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0:18 'clutch/Break Apart Detection/Abs' (Abs)
0:20 'clutch/Break Apart Detection/Relational Operator'

(RelationalOperator)
0:24 'clutch/Unlocked' (SubSystem)
0:27 'clutch/Locked' (SubSystem)

Displaying Algebraic Loops
The ashow command highlights a specified algebraic loop or the algebraic
loop that contains a specified block. To highlight a specified algebraic loop,
enter ashow s#n, where s is the index of the system (see “Identifying Blocks
in Algebraic Loops” on page 18-38) that contains the loop and n is the index
of the loop in the system. To display the loop that contains the currently
selected block, enter ashow gcb. To show a loop that contains a specified
block, enter ashow s:b, where s:b is the block’s index. To clear algebraic-loop
highlighting from the model diagram, enter ashow clear.

Displaying Debugger Status
In GUI mode, the debugger displays the settings of various debug options,
such as conditional breakpoints, in its Status panel. In command-line mode,
the status command displays debugger settings. For example, the following
sequence of commands displays the initial debug settings for the vdp model:

sim('vdp',[0,10],simset('debug','on'))
[Tm=0 ] **Start** of system 'vdp' outputs
(sldebug @0:0 'vdp/Integrator1'): status

Current simulation time: 0 (MajorTimeStep)
Last command: ""
Stop in minor times steps is disabled.
Break at zero crossing events is disabled.
Break when step size is limiting by a state is disabled.
Break on non-finite (NaN,Inf) values is disabled.
Display of integration information is disabled.
Algebraic loop tracing level is at 0.
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What Is Acceleration?
Acceleration is a mode of operation in the Simulink® product that you can use
to speed up the execution of your model. The Simulink software includes two
modes of acceleration: Accelerator mode and the Rapid Accelerator mode.
Both modes replace the normal interpreted code with compiled target code.
Using compiled code speeds up simulation of many models, especially those
where run time is long compared to the time associated with compilation and
checking to see if the target is up to date.

The Accelerator mode works with any model that does not include “Algebraic
Loops” on page 2-31, but performance decreases if a model contains blocks
that do not support acceleration. The Accelerator mode supports the Simulink
debugger and profiler. These tools assist in debugging and determining
relative performance of various parts of your model. For more information,
see “Using the Accelerator Mode with the Simulink® Debugger” on page 19-31
and “Capturing Performance Data” on page 19-33.

The Rapid Accelerator mode works with only those models containing blocks
that support code generation of a standalone executable. For this reason,
Rapid Accelerator mode does not support the debugger or profiler. However,
this mode generally results in faster execution than the Accelerator mode.
When used with dual-core processors, the Rapid Accelerator mode runs
Simulink and the MATLAB® technical computing environment from one core
while the rapid accelerator target runs as a separate process on a second core.

For more information about the performance characteristics of the Accelerator
and Rapid Accelerator modes, and how to measure the difference in
performance, see “Comparing Performance” on page 19-24.
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How the Acceleration Modes Work

In this section...

“Overview” on page 19-3

“Normal Mode” on page 19-3

“Accelerator Mode” on page 19-4

“Rapid Accelerator Mode” on page 19-5

Overview
The Accelerator and Rapid Accelerator modes use portions of the Real-Time
Workshop® product to create an executable. These modes replace the
interpreted code normally used in Simulink® simulations, shortening model
run time.

Although the acceleration modes use some Real-Time Workshop code
generation technology, you do not need the Real-Time Workshop software
installed to accelerate your model.

Note The code generated by the Accelerator and Rapid Accelerator modes
is suitable only for speeding the simulation of your model. You must use the
Real-Time Workshop product if you want to generate code for other purposes.

Normal Mode
In Normal mode, the MATLAB® technical computing environment is the
foundation on which the Simulink software is built.Simulink controls the
solver and model methods used during simulation. Model methods include
such things as computation of model outputs. Normal mode runs in one
process.
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Accelerator Mode
The Accelerator mode generates and links code into a C-MEX S-function.
Simulink uses this acceleration target code to perform the simulation, and the
code remains available for use in later simulations.

Simulink checks that the acceleration target code is up to date before reusing
it. As explained in “Code Regeneration in Accelerated Models” on page 19-7,
the target code regenerates if it is not up to date.

In Accelerator mode, the model methods are separate from the Simulink
software and are part of the Acceleration target code. A C-MEX S-function
API communicates with the Simulink software, and a MEX API communicates
with MATLAB. The target code executes in the same process as MATLAB
and Simulink.
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Rapid Accelerator Mode
The Rapid Accelerator mode creates a Rapid Accelerator standalone executable
from your model. This executable includes the solver and model methods,
but it resides outside of MATLAB and Simulink. It uses External mode (see
“External Mode”) to communicate with Simulink.
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MATLAB and Simulink run in one process, and if a second processing core is
available, the standalone executable runs there.
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Code Regeneration in Accelerated Models

In this section...

“Structural Changes That Cause Rebuilds” on page 19-7

“Determining If the Simulation Will Rebuild” on page 19-7

Structural Changes That Cause Rebuilds
Changing the structure of your model causes the Rapid Accelerator mode
to regenerate the standalone executable, and for the Accelerator mode to
regenerate the target code and update (overwrite) the existing MEX-file.

Examples of model structure changes that result in a rebuild include:

• Changing the solver type, for example from Variable-step to Fixed-step

• Adding or deleting blocks or connections between blocks

• Changing the values of nontunable block parameters, for example, the
Initial seed parameter of the Random Number block

• Changing the number of inputs or outputs of blocks, even if the connectivity
is vectorized

• Changing the number of states in the model

• Selecting a different function in the Trigonometric Function block

• Changing signs used in a Sum block

• Adding a Target Language Compiler (TLC) file to inline an S-function

• Changing the sim command output argument when using the Rapid
Accelerator mode

• Changing solver parameters such as stop time, or rel tol when using
the Rapid Accelerator mode

Determining If the Simulation Will Rebuild
The Accelerator and Rapid Accelerator modes use a checksum to determine if
the model has changed, indicating that the code should be regenerated. The
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checksum is an array of four integers computed using an MD5 checksum
algorithm based on attributes of the model and the blocks it contains.

Use the Simulink.BlockDiagram.getChecksum command to obtain the
checksum for your model. For example:

cs1 = Simulink.BlockDiagram.getChecksum('myModel');

Obtain a second checksum after you have altered your model. The code
regenerates if the new checksum does not match the previous checksum. You
can use the information in the checksum to determine why the simulation
target rebuilt. For a detailed explanation of this procedure, see the demo
model slAccelDemoWhyRebuild.
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Choosing a Simulation Mode

In this section...

“Tradeoffs” on page 19-9

“Comparing Modes” on page 19-10

“Decision Tree” on page 19-11

Tradeoffs
In general, you must trade off simulation speed against flexibility when
choosing either Accelerator mode or Rapid Accelerator mode instead of
Normal mode.
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Normal mode offers the greatest flexibility for making model adjustments and
displaying results, but it runs the slowest. Rapid Accelerator mode runs the
fastest, but this mode does not support the debugger or profiler, and works
only with those models for which C code is available for all of the blocks in
the model. Accelerator mode lies between these two in performance and in
interaction with your model.

Comparing Modes
The following table compares the characteristics of Normal mode, Accelerator
mode, and Rapid Accelerator mode.

Then use this mode...
If you want to...

Normal Accelerator Rapid
Accelerator

Performance

Run your model in a separate address space

Efficiently run batch and Monte Carlo
simulations

Model Adjustment

Change model parameters such as solver type,
stop time without rebuilding

Change block tunable parameters such as gain

Model Requirement

Accelerate your model even if C code is not used
for all blocks

Support M-file S-function blocks

Permit algebraic loops in your model

Have your model work with the debugger or
profiler

Have your model include C++ code
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Then use this mode...
If you want to...

Normal Accelerator Rapid
Accelerator

Data Display

Use scopes and signal viewers See “Using
Scopes and

Viewers
with Rapid
Accelerator
Mode” on

page 19-16

Use scopes and signal viewers when running
your model from the command line

Note Scopes and viewers do not update if you run your model from the
command line in Rapid Accelerator mode.

Decision Tree
The following decision tree can help you select between Normal mode,
Accelerator mode, or Rapid Accelerator mode.

See “Comparing Performance” on page 19-24 to understand how effective the
accelerator modes will be in improving the performance of your model.
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Designing Your Model for Effective Acceleration

In this section...

“Selecting Blocks for Accelerator Mode” on page 19-13

“Selecting Blocks for Rapid Accelerator Mode” on page 19-14

“Controlling S-Function Execution” on page 19-14

“Accelerator and Rapid Accelerator Mode Fixed-Point Considerations” on
page 19-15

“Using Scopes and Viewers with Rapid Accelerator Mode” on page 19-16

“Factors Inhibiting Acceleration” on page 19-16

Selecting Blocks for Accelerator Mode
For some blocks, the Accelerator mode uses normal interpreted code rather
than C code. The Accelerator mode runs even if these blocks are in your
model, but with degraded performance.

These Simulink® blocks use interpreted code:

• Display

• Embedded MATLAB Function

• From File

• From Workspace

• Inport (root level only)

• MATLAB Fcn

• Outport (root level only)

• Scope

• To File

• To Workspace

• Transport Delay

• Variable Transport Delay
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• XY Graph

Note In some instances, Normal mode output might not precisely match the
output from Accelerator mode because of slight differences in the numerical
precision between the interpreted and compiled versions of a model.

Selecting Blocks for Rapid Accelerator Mode
Blocks that do not support code generation (such as SimEvents®), or blocks
that generate code only for a specific target (such as vxWorks), cannot be
simulated in Rapid Accelerator mode.

Additionally, Rapid Accelerator mode does not work if your model contains
any of the following blocks:

• MATLAB Fcn

• Device driver S-functions, such as blocks from the XPC Target product, or
those targeting Freescale™ MPC555

Note In some instances, Normal mode output might not precisely match
the output from Rapid Accelerator mode because of slight differences in the
numerical precision between the interpreted and compiled versions of a model.

Controlling S-Function Execution
Inlining S-functions using the Target Language Compiler increases
performance with the Accelerator mode by eliminating unnecessary calls to
the Simulink application program interface (API). By default, however, the
Accelerator mode ignores an inlining TLC file for an S-function, even though
the file exists. The Rapid Accelerator mode always uses the TLC file if one
is available.

A device driver S-Function block written to access specific hardware registers
on an I/O board is one example of why this behavior was chosen as the
default. Because the Simulink software runs on the host system rather than
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the target, it cannot access the targets I/O registers and so would fail when
attempting to do so.

To direct the Accelerator mode to use the TLC file instead of the
S-function MEX-file, specify SS_OPTION_USE_TLC_WITH_ACCELERATOR in the
mdlInitializeSizes function of the S-function, as in this example:

static void mdlInitializeSizes(SimStruct *S)
{
/* Code deleted */
ssSetOptions(S, SS_OPTION_USE_TLC_WITH_ACCELERATOR);
}

Accelerator and Rapid Accelerator Mode Fixed-Point
Considerations

• Fixed-point signals or vectors greater than 32 bits are not supported by the
Accelerator or Rapid Accelerator mode.

• The Accelerator mode and Rapid Accelerator mode store integers as
compactly as possible:

Word Size (Bits) Data Type Used

1 to 8 int8
uint8

9 to 16 int16
uint16

17 to 32 int32
uint32

• Simulink® Fixed Point™ does not collect data in the Accelerator or Rapid
Accelerator mode.

• The fixed-point options min, max, and overflow are not supported by
either the Accelerator or Rapid Accelerator modes.
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Using Scopes and Viewers with Rapid Accelerator
Mode
Running the simulation from the command line or the menu determines
behavior of scopes and viewers in Rapid Accelerator mode.

Scope or
Viewer Type

Simulation Run from
Menu

Simulation Run from
Command Line

Simulink Scope
blocks

Same support as Normal
mode

• Logging is supported

• Scope window is not
updated

Simulink signal
viewer scopes

Graphics are updated, but
logging is not supported

Not supported

Other signal
viewer scopes

Support limited to that
available in External mode

Not supported

Signal logging Not supported Not supported

Multirate signal
viewers

Not supported Not supported

Rapid Accelerator mode does not support multirate signal viewers such as
the Signal Processing Blockset™ spectrum scope or the Communications
Blockset™ scatterplot, signal trajectory, or eye diagram scopes.

Note Although scopes and viewers do not update when you run Rapid
Accelerator mode from the command line, they do update when you use the
menu. “Running Acceleration Mode from the User Interface” on page 19-20
shows how to run Rapid Accelerator mode from the menu. “Interacting with
the Acceleration Modes Programmatically” on page 19-28 shows how to run
the simulation from the command line.

Factors Inhibiting Acceleration
You cannot use the Accelerator or Rapid Accelerator mode if your model:
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• Passes array parameters to M-file S-functions that are not numeric,
logical, or character arrays, are sparse arrays, or that have more than two
dimensions

• Contains algebraic loops

• Uses Fcn blocks containing trigonometric functions having complex inputs

Rapid Accelerator mode does not support targets written in C++.

For Rapid Accelerator mode, model parameters must be one of these data
types:

• boolean

• uint8 or int8

• uint16 or int16

• uint32 or int32

• single or double

Reserved Keywords
Certain words are reserved for use by the Real-Time Workshop® code language
and by Accelerator mode and Rapid Accelerator mode. These keywords must
not appear as function or variable names on a subsystem, or as exported
global signal names. Using the reserved keywords results in the Simulink
software reporting an error, and the model cannot be compiled or run.

The keywords reserved for the Real-Time Workshop product are listed in
“Configuring Generated Identifiers”. Additional keywords that apply only to
the Accelerator and Rapid accelerator modes are:

muDoubleScalarAbs muDoubleScalarCos muDoubleScalarMod

muDoubleScalarAcos muDoubleScalarCosh muDoubleScalarPower

muDoubleScalarAcosh muDoubleScalarExp muDoubleScalarRound

muDoubleScalarAsin muDoubleScalarFloor muDoubleScalarSign

muDoubleScalarAsinh muDoubleScalarHypot muDoubleScalarSin
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muDoubleScalarAtan, muDoubleScalarLog muDoubleScalarSinh

muDoubleScalarAtan2 muDoubleScalarLog10 muDoubleScalarSqrt

muDoubleScalarAtanh muDoubleScalarMax muDoubleScalarTan

muDoubleScalarCeil muDoubleScalarMin muDoubleScalarTanh
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Performing Acceleration

In this section...

“Customizing the Build Process” on page 19-19

“Running Acceleration Mode from the User Interface” on page 19-20

“Making Run-Time Changes” on page 19-21

Customizing the Build Process
Compiler optimizations are off by default. This results in faster build times.
To optimize acceleration of your model, set the compiler optimization level
from the Optimization pane in the Configuration Parameters dialog box.

Select Optimizations on (faster runs) when you want to create optimized
code. Code generation takes longer with this option, but the model runs faster.
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Select Verbose accelerator builds to display progress information using
code generation, and to see the compiler options in use.

Running Acceleration Mode from the User Interface
To accelerate a model, first open it, and then from the Simulation menu,
select either Accelerator or Rapid Accelerator. Then start the simulation.

The following example shows how to accelerate the already opened f14 model
using the Accelerator mode:

1 From the Simulation menu, select Accelerator.

Alternatively, you can select Accelerator from the model editor’s toolbar.

2 From the Simulation menu, select Start.
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The Accelerator and Rapid Accelerator modes first check to see if code
was previously compiled for your model. If code was created previously,
the Accelerator or Rapid Accelerator modes run the model. If code was
not previously built, they first generate and compile the C code, and then
run the model.

For reasons why these modes rebuild your model, see “Code Regeneration
in Accelerated Models” on page 19-7.

The Accelerator mode places the generated code in a subdirectory called
modelname_accel_rtw (for example, f14_accel_rtw), and places a compiled
MEX-file in the current working directory.

The Rapid Accelerator mode places the generated code in a subdirectory called
modelname_raccel_rtw (for example, f14_raccel_rtw).

Note The warnings that blocks generate during simulation (such as
divide-by-zero and integer overflow) are not displayed when your model runs
in Accelerator or Rapid Accelerator modes.

Making Run-Time Changes
A feature of the Accelerator and Rapid Accelerator modes is that simple
adjustments (such as changing the value of a Gain or Constant block) can
be made to the model while the simulation is still running. More complex
changes (for example, changing from a sin to tan function) are not allowed
during run time.

The Simulink® software issues a warning if you attempt to make a change
that is not permitted. The absence of a warning indicates that the change
was accepted. The warning does not stop the current simulation, and the
simulation continues with the previous values. If you wish to alter the model
in ways that are not permitted during run time, you must first stop the
simulation, make the change, and then restart the simulation.

In general, simple model changes are more likely to result in code regeneration
when in Rapid Accelerator mode than when in Accelerator mode. For instance,
changing the stop time in Rapid Accelerator mode causes code to regenerate,
but does not cause Accelerator mode to regenerate code.
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Improving Acceleration Mode Performance

In this section...

“Techniques” on page 19-22

“C Compilers” on page 19-23

Techniques
To get the best performance when accelerating your models:

• Verify that the Configuration Parameters dialog box settings are as follows:

On this pane... Set... To...

Solver Diagnostics Solver data
inconsistency

none

Data Validity
Diagnostics

Array bounds
exceeded

none

Optimization Signal storage reuse selected

• Disable Stateflow® debugging and animation.

• Inline user-written S-functions (these are TLC files that direct the
Real-Time Workshop® software to create C code for the S-function). See
“Controlling S-Function Execution” on page 19-14 for a discussion on how
the Accelerator mode and Rapid Accelerator mode work with inlined
S-functions.

For information on how to inline S-functions, consult “Writing S-Functions
for Real-Time Workshop Code Generation”.

• When logging large amounts of data (for instance, when using the
Workspace I/O, To Workspace, To File, or Scope blocks), use decimation or
limit the output to display only the last part of the simulation.

• Customize the code generation process to improve simulation speed. See
“Customizing the Build Process” on page 19-19 for details.
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C Compilers
On computers running the Microsoft® Windows® operating system, the
Accelerator and Rapid Accelerator modes use the default 32-bit C compiler
supplied by The MathWorks to compile your model. If you have a C compiler
installed on your PC, you can configure the mex command to use it instead.
You might choose to do this if your C compiler produces highly optimized
code since this would further improve acceleration, or if you wish to use a
64-bit compiler.

Note Technical Note 1601 (which is available at www.mathworks.com) lists
the 32- and 64-bit C compilers that are compatible with the MATLAB®

software for all supported computing platforms.
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Comparing Performance

In this section...

“Performance of the Simulation Modes” on page 19-24

“Measuring Performance” on page 19-26

Performance of the Simulation Modes
The Accelerator and Rapid Accelerator modes give the best speed improvement
compared to Normal mode when simulation execution time exceeds the
time required for code generation. For this reason, the Accelerator and
Rapid Accelerator modes generally perform better than Normal mode when
simulation execution times are several minutes or more. However, models
with a significant number of Stateflow® or Embedded MATLAB™ blocks
might show only a small speed improvement over Normal mode because in
Normal mode these blocks also simulate through code generation.

Including tunable parameters in your model can also increase the simulation
time.

The figure shows in general terms the performance of a hypothetical model
simulated in Normal, Accelerator, and Rapid Accelerator modes.
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Performance When the Target Must Be Rebuilt
The solid lines in the figure show performance when the target code must be
rebuilt (“all targets out of date”). For this hypothetical model, the time scale is
on the order of minutes, but it could be longer for more complex models.

As generalized in the figure, the time required to compile the model in Normal
mode is less than the time required to build either the Accelerator target or
Rapid Accelerator executable. It is evident from the figure that for small
simulation stop times Normal mode results in quicker overall simulation
times than either Accelerator mode or Rapid Accelerator mode.

The crossover point where Accelerator mode or Rapid Accelerator mode result
in faster execution times depends on the complexity and content of your model.
For instance, those models running in Accelerator mode containing large
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numbers of blocks using interpreted code (see “Selecting Blocks for Accelerator
Mode” on page 19-13) might not run much faster than they would in Normal
mode unless the simulation stop time is very large. Similarly, models with a
large Stateflow or Embedded MATLAB content might not show much speed
improvement over Normal mode unless the simulation stop times are long.

For illustration purposes, the graphic represents a model with a large number
of Stateflow or Embedded MATLAB blocks. The curve labeled “Normal”
would have much smaller initial elapsed time than shown if the model did not
contain these blocks.

Performance When the Targets Are Up to Date
As shown by the broken lines in the figure (“all targets up to date”) the time
for the Simulink® software to determine if the Accelerator target or the Rapid
Accelerator executable are up to date is significantly less than the time
required to generate code (“all targets out of date”). You can take advantage of
this characteristic when you wish to test various design tradeoffs.

For instance, you can generate the Accelerator mode target code once and use
it to simulate your model with a series of gain settings. This is an especially
efficient way to use the Accelerator or Rapid Accelerator modes because this
type of change does not result in the target code being regenerated. This
means the target code is generated the first time the model runs, but on
subsequent runs the Simulink code spends only the time necessary to verify
that the target is up to date. This process is much faster than generating code,
so subsequent runs can be significantly faster than the initial run.

Because checking the targets is quicker than code generation, the crossover
point is smaller when the target is up to date than when code must be
generated. This means subsequent runs of your model might simulate faster
in Accelerator or Rapid Accelerator mode when compared to Normal mode,
even for short stop times.

Measuring Performance
You can use the tic, toc, and sim commands to compare Accelerator mode or
Rapid Accelerator mode execution times to Normal mode.
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1 Use load_system to load your model into memory without opening a
window.

2 From the Simulation menu, select Normal.

3 Use the tic, toc, and sim commands at the command line prompt to
measure how long the model takes to simulate in Normal mode:

tic,[t,x,y]=sim('myModel',10000);toc

tic and toc work together to record and return the elapsed time and
display a message such as the following:

Elapsed time is 17.789364 seconds.

4 Select either Accelerator or Rapid Accelerator from the Simulation
menu, and build an executable for the model by clicking the Start button.
The acceleration modes use this executable in subsequent simulations as
long as the model remains structurally unchanged. “Code Regeneration
in Accelerated Models” on page 19-7 discusses the things that cause your
model to rebuild.

5 Rerun the compiled model at the command prompt:

tic,[t,x,y]=sim('myModel',10000);toc

6 The elapsed time displayed shows the run time for the accelerated model.
For example:

Elapsed time is 12.419914 seconds.

The difference in elapsed times (5.369450 seconds in this example) shows the
improvement obtained by accelerating your model.
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Interacting with the Acceleration Modes Programmatically

In this section...

“Why Interact Programmatically?” on page 19-28

“Building Accelerator Mode MEX-files” on page 19-28

“Controlling Simulation” on page 19-28

“Simulating Your Model” on page 19-29

“Customizing the Acceleration Build Process” on page 19-30

Why Interact Programmatically?
You can build an accelerated model, select the simulation mode, and run the
simulation from the command prompt or from M-files. With this flexibility,
you can create Accelerator mode MEX-files in batch mode, allowing you to
build the C code and executable before running the simulations. When you
use the Accelerator mode interactively at a later time, it will not be necessary
to generate or compile MEX-files at the start of the accelerated simulations.

Building Accelerator Mode MEX-files
With the accelbuild command, you can build the Accelerator mode MEX-file
without actually simulating the model. For example, to build an Accelerator
mode simulation of myModel:

accelbuild myModel

Controlling Simulation
You can control the simulation mode from the command line prompt by using
the set_param command:

set_param(’modelname’,'simulationmode','mode')

The simulation mode can be normal, accelerator, rapid, or external.

For example, to simulate your model with the Accelerator mode, you would
use:

19-28



Interacting with the Acceleration Modes Programmatically

set_param('myModel','simulationmode','accelerator')

You can use gcs (“get current system”) to set parameters for the currently
active model (that is, the active model window) rather than modelname if you
do not wish to explicitly specify the model name.

For example, to prepare to simulate the currently opened system with the
rapid accelerator mode, you would use:

set_param(gcs,'simulationmode','rapid')

Simulating Your Model
Use set_param to configure the model parameters (such as acceleration mode
and stop time), and the sim command to start the simulation:

sim('modelname')

You can substitute gcs for modelname if you do not want to explicitly specify
the model name.

Unless target code has already been generated, the sim command first builds
the executable and then runs the simulation. However, if the target code
has already been generated and no significant changes have been made to
the model (see “Code Regeneration in Accelerated Models” on page 19-7
for a description), the sim command executes the generated code without
regenerating the code. This process lets you run your model after making
simple changes without having to wait for the model to rebuild.

Simulation Example
The following sequence shows how to programmatically simulate myModel in
Rapid Accelerator mode for 10,000 seconds.

First open myModel, and then type the following in the Command Window:

set_param('myModel','simulationmode','rapid');
set_param('myModel','stoptime','10000');
sim('myModel');
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Use the sim command again to resimulate after making a change to your
model. If the change is minor (adjusting the gain of a gain block, for instance),
the simulation runs without regenerating code.

Customizing the Acceleration Build Process
You can programmatically control the Accelerator mode and Rapid Accelerator
mode build process and the amount of information displayed during the build
process. See “Customizing the Build Process” on page 19-19 for details on
why doing so might be advantageous.

Controlling the Build Process
Use the SimCompilerOptimization parameter to control the acceleration
build process. The permitted values are on or off. The default is off.

Enter the following at the command prompt to turn on compiler optimization:

set_param('myModel', 'SimCompilerOptimization', 'on')

Controlling Information During Code Generation
Use the AccelVerboseBuild parameter to display progress information
during code generation. The permitted values are on or off. The default is
off.

Enter the following at the command prompt to turn on verbose build:

set_param('myModel', 'AccelVerboseBuild', 'on')
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Using the Accelerator Mode with the Simulink® Debugger

In this section...

“Advantages of Using Accelerator Mode with the Debugger” on page 19-31

“How to Run the Debugger” on page 19-31

“When to Switch Back to Normal Mode” on page 19-32

Advantages of Using Accelerator Mode with the
Debugger
The Accelerator mode can shorten the length of your debugging sessions if
you have large and complex models. For example, you can use the Accelerator
mode to simulate a large model and quickly reach a distant break point.

For more information on the debugger, see Chapter 18, “Simulink® Debugger”.

Note You cannot use the Rapid Accelerator mode with the debugger.

How to Run the Debugger
To run your model in the Accelerator mode with the debugger:

1 From the Simulation menu, select Accelerator.

2 At the command prompt, enter:

sldebug modelname

3 At the debugger prompt, set a time break:

tbreak 10000
continue

4 Once you reach the breakpoint, use the debugger command emode (execution
mode) to toggle between Accelerator and Normal mode.
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When to Switch Back to Normal Mode
You must switch to Normal mode to step through the simulation by blocks,
and when you want to use the following debug commands:

• trace

• break

• zcbreak

• nanbreak
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Capturing Performance Data

In this section...

“What Is the Profiler?” on page 19-33

“How the Profiler Works” on page 19-33

“Enabling the Profiler” on page 19-35

“Simulation Profile” on page 19-36

What Is the Profiler?
The profiler captures data while your model runs and identifies the parts of
your model requiring the most time to simulate. You use this information to
decide where to focus your model optimization efforts.

Note You cannot use the Rapid Accelerator mode with the profiler.

Performance data showing the time spent executing each function in your
model is placed in a report called the simulation profile.

How the Profiler Works
The following pseudocode summarizes the execution model on which the
profiler is based.

Sim()
ModelInitialize().
ModelExecute()
for t = tStart to tEnd
Output()
Update()
Integrate()
Compute states from derivs by repeatedly calling:
MinorOutput()
MinorDeriv()

Locate any zero crossings by repeatedly calling:
MinorOutput()
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MinorZeroCrossings()
EndIntegrate
Set time t = tNew.

EndModelExecute
ModelTerminate

EndSim

According to this conceptual model, your model is executed by invoking the
following functions zero, one, or more times, depending on the function and
the model.

Function Purpose Level

sim Simulate the model. This
top-level function invokes the
other functions required to
simulate the model. The time
spent in this function is the total
time required to simulate the
model.

System

ModelInitialize Set up the model for simulation. System

ModelExecute Execute the model by invoking
the output, update, integrate,
etc., functions for each block at
each time step from the start to
the end of simulation.

System

Output Compute the outputs of a block at
the current time step.

Block

Update Update a block’s state at the
current time step.

Block

Integrate Compute a block’s continuous
states by integrating the state
derivatives at the current time
step.

Block

MinorOutput Compute a block’s output at a
minor time step.

Block
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Function Purpose Level

MinorDeriv Compute a block’s state
derivatives at a minor time
step.

Block

MinorZeroCrossings Compute a block’s zero-crossing
values at a minor time step.

Block

ModelTerminate Free memory and perform any
other end-of-simulation cleanup.

System

Nonvirtual Subsystem Compute the output of a
nonvirtual subsystem at the
current time step by invoking
the output, update, integrate,
etc., functions for each block
that it contains. The time
spent in this function is the
time required to execute the
nonvirtual subsystem.

Block

The profiler measures the time required to execute each invocation of these
functions and generates a report at the end of the model that describes how
much time was spent in each function.

Enabling the Profiler
To profile a model, open the model and select Profiler from the Tools menu.
Then start the simulation. When the simulation finishes, the Simulink®

code generates and displays the simulation profile for the model in the Help
browser.

Note Enabling the profiler on a parent model does not enable profiling for
referenced models. Profiling must be enabled separately for each submodel.
Profiling occurs only if the submodel executes in Normal mode. See Chapter
5, “Referencing a Model” for more information.
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Simulation Profile
The Simulink software stores the simulation profile in the MATLAB® software
working directory.

The report has two sections: a summary and a detailed report.
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Summary Section
The summary file displays the following performance totals.

Item Description

Total Recorded Time Total time required to simulate the model

Number of Block Methods Total number of invocations of block-level
functions (e.g., Output())

Number of Internal
Methods

Total number of invocations of system-level
functions (e.g., ModelExecute)

Number of Nonvirtual
Subsystem Methods

Total number of invocations of nonvirtual
subsystem functions

Clock Precision Precision of the profiler’s time measurement

The summary section then shows summary profiles for each function invoked
to simulate the model. For each function listed, the summary profile specifies
the following information.

Item Description

Name Name of function. This item is a hyperlink. Clicking it
displays a detailed profile of this function.

Time Total time spent executing all invocations of this function
as an absolute value and as a percentage of the total
simulation time

Calls Number of times this function was invoked

Time/Call Average time required for each invocation of this function,
including the time spent in functions invoked by this
function

Self Time Average time required to execute this function, excluding
time spent in functions called by this function

Location Specifies the block or model executed for which this
function is invoked. This item is a hyperlink. Clicking it
highlights the corresponding icon in the model diagram.
The link works only if you are viewing the profile in the
Help browser.
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Detailed Profile Section
This section contains detailed profiles for each function invoked to simulate
the model. Each detailed profile contains all the information shown in the
summary profile for the function. In addition, the detailed profile displays the
function (parent function) that invoked the profiled function and the functions
(child functions) invoked by the profiled function. Clicking the name of the
parent or a child function takes you to the detailed profile for that function.
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Adding Items to Model Editor Menus

In this section...

“About Adding Items to the Model Editor Menus” on page 20-2

“Code Example” on page 20-2

“Defining Menu Items” on page 20-4

“Registering Menu Customizations” on page 20-9

“Callback Info Object” on page 20-10

“Debugging Custom Menu Callbacks” on page 20-10

“About Menu Tags” on page 20-10

About Adding Items to the Model Editor Menus
You can add commands and submenus to the end of the Simulink® model
editor menus. Adding an item to the end of a Model Editor menu entails
performing the following tasks:

• For each item, create a function, called a schema function, that defines the
item (see “Defining Menu Items” on page 20-4).

• Register the menu customizations with the Simulink customization
manager at startup, e.g., in an sl_customization.m file on the MATLAB®

path (see “Registering Menu Customizations” on page 20-9).

• Create callback functions that implement the commands triggered by the
items that you add to the menus.

Note You can use the procedures described in the following sections to
customize the Stateflow® Chart Editor’s menu.

Code Example
The following sl_customization.m file adds four items to the editor’s Tools
menu.
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function sl_customization(cm)

%% Register custom menu function.

cm.addCustomMenuFcn('Simulink:ToolsMenu', @getMyMenuItems);

end

%% Define the custom menu function.

function schemaFcns = getMyMenuItems(callbackInfo)

schemaFcns = {@getItem1,...

@getItem2,...

{@getItem3,3}... %% Pass 3 as user data to getItem3.

@getItem4};

end

%% Define the schema function for first menu item.

function schema = getItem1(callbackInfo)

schema = sl_action_schema;

schema.label = 'Item One';

schema.userdata = 'item one';

schema.callback = @myCallback1;

end

function myCallback1(callbackInfo)

disp(['Callback for item ' callbackInfo.userdata ' was called']);

end

function schema = getItem2(callbackInfo)

% Make a submenu label 'Item Two' with

% the menu item above three times.

schema = sl_container_schema;

schema.label = 'Item Two';

schema.childrenFcns = {@getItem1, @getItem1, @getItem1};

end

function schema = getItem3(callbackInfo)

% Create a menu item whose label is

% 'Item Three: 3', with the 3 being passed

% from getMyItems above.

schema = sl_action_schema;

20-3



20 Customizing the Simulink® User Interface

schema.label = ['Item Three: ' num2str(callbackInfo.userdata)];

end

function myToggleCallback(callbackInfo)

if strcmp(get_param(gcs, 'ScreenColor'), 'red') == 0

set_param(gcs, 'ScreenColor', 'red');

else

set_param(gcs, 'ScreenColor', 'white');

end

end

%% Define the schema function for a toggle menu item.

function schema = getItem4(callbackInfo)

schema = sl_toggle_schema;

schema.label = 'Red Screen';

if strcmp(get_param(gcs, 'ScreenColor'), 'red') == 1

schema.checked = 'checked';

else

schema.checked = 'unchecked';

end

schema.callback = @myToggleCallback;

end

Defining Menu Items
You define a menu item by creating a function that returns an object, called
a schema object, that specifies the information needed to create the menu
item. The menu item that you define may trigger a custom action or display a
custom submenu. See the following sections for more information.

• “Defining Menu Items That Trigger Custom Commands” on page 20-4

• “Defining Custom Submenus” on page 20-7

Defining Menu Items That Trigger Custom Commands
To define an item that triggers a custom command, your schema function
must accept a callback info object (see “Callback Info Object” on page 20-10)
and create and return an action schema object (see “Action Schema Object”
on page 20-5) that specifies the item’s label and a function, called a callback,
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to be invoked when the user selects the item. For example, the following
schema function defines a menu item that displays a message when selected
by the user.

function schema = getItem1(callbackInfo)

%% Create an instance of an action schema.
schema = sl_action_schema;

%% Specify the menu item's label.
schema.label = 'My Item 1';

%% Specify the menu item's callback function.
schema.callback = @myCallback1;

end

function myCallback1(callbackInfo)
disp(['Callback for item ' callbackInfo.userdata

' was called']);
end

Action Schema Object. This object specifies information about menu items
that trigger commands that you define, including the label that appears on
the menu item and the function to be invoked when the user selects the menu
item. Use the function sl_action_schema to create instances of this object
in your schema functions. Its properties include

• tag

Optional string that identifies this action, for example, so that it can be
referenced by a filter function.

• label

String specifying the label that appears on a menu item that triggers
this action.

• state

String that specifies the state of this action. Valid values are 'Enabled'
(the default), 'Disabled', and 'Hidden'.
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• statustip

String specifying text to appear in the editor’s status bar when the user
selects the menu item that triggers this action.

• userdata

Data that you specify. May be of any type.

• accelerator

String specifying a keyboard shortcut that a user may use to trigger this
action. The string must be of the form 'Ctrl+K', where K is the shortcut
key. For example, 'Ctrl+T' specifies that the user may invoke this action
by holding down the Ctrl key and pressing the T key.

• callback

String specifying a MATLAB expression to be evaluated or a handle to a
function to be invoked when a user selects the menu item that triggers this
action. This function must accept one argument: a callback info object.

Toggle Schema Object. This object specifies information about a menu
item that toggles some object on or off. Use the function sl_toggle_schema to
create instances of this object in your schema functions. Its properties include

• tag

Optional string that identifies this toggle action, for example, so that it can
be referenced by a filter function.

• label

String specifying the label that appears on a menu item that triggers this
toggle action.

• checked

This property must be set to one of the following values:

'checked' Menu item displays a check mark.

'unchecked'Menu item does not display a check mark.

• state
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String that specifies the state of this toggle action. Valid values are
'Enabled' (the default), 'Disabled', and 'Hidden'.

• statustip

String specifying text to appear in the editor’s status bar when the user
selects the menu item that triggers this toggle action.

• userdata

Data that you specify. May be of any type.

• accelerator

String specifying a keyboard shortcut that a user may use to trigger this
action. The string must be of the form 'Ctrl+K', where K is the shortcut
key. For example, 'Ctrl+T' specifies that the user may invoke this action
by holding down the Ctrl key and pressing the T key.

• callback

String specifying a MATLAB expression to be evaluated or a handle to a
function to be invoked when a user selects the menu item that triggers this
action. This function must accept one argument: a callback info object.

Defining Custom Submenus
To define a submenu, create a schema function that accepts a callback
info object and returns a container schema object (see “Container Schema
Object” on page 20-7) that specifies the schemas that define the items on the
submenu. For example, the following schema function defines a submenu that
contains three instances of the menu item defined in the example in “Defining
Menu Items That Trigger Custom Commands” on page 20-4.

function schema = getItem2( callbackInfo )
schema = sl_container_schema;
schema.label = 'Item Two';
schema.childrenFcns = {@getItem1, @getItem1, @getItem1};

end

Container Schema Object. A container schema object specifies a submenu’s
label and its contents. Use the function sl_container_schema to create
instances of this object in your schema functions. Properties of the object
include
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• tag

Optional string that identifies this submenu.

• label

String specifying the submenu’s label.

• state

String that specifies the state of this submenu. Valid values are 'Enabled'
(the default), 'Disabled', and 'Hidden'.

• statustip

String specifying text to appear in the editor’s status bar when the user
selects this submenu.

• userdata

Data that you specify. May be of any type.

• childrenFcns

Cell array that specifies the contents of the submenu. Each entry in the
cell array can be

- a pointer to a schema function that defines an item on the submenu (see
“Defining Menu Items” on page 20-4)

- a two-element cell array whose first element is a pointer to a schema
function that defines an item entry and whose second element is data to
be inserted as user data in the callback info object (see “Callback Info
Object” on page 20-10) passed to the schema function

- 'separator', which causes a separator to appear between the item
defined by the preceding entry in the cell array and the item defined in
the following entry. This case is ignored for this entry, e.g., 'SEPARATOR'
and 'Separator' are valid entries. A separator is also suppresses if it
would appear at the beginning or end of the submenu and combines
separators that would appear successively (e.g., as a result of an item
being hidden) into a single separator.

For example, the following cell array specifies two submenu entries:

{@getItem1, 'separator', {@getItem2, 1}}

In this example, a 1 is passed to getItem2 via a callback info object.
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• generateFcn

Pointer to a function that returns a cell array defining the contents of the
submenu. The cell array must have the same format as that specified for
the container schema objects childrenFcns property.

Note The generateFcn property takes precedence over the childrenFcns
property. If you set both, the childrenFcns property is ignored and the cell
array returned by the generateFcn is used to create the submenu.

Registering Menu Customizations
You must register custom items to be included on a Simulink menu with the
customization manager. Use the sl_customization.m file for a Simulink
installation (see “Registering Customizations” on page 20-21) to perform this
task. In particular, for each menu that you want to customize, your system’s
sl_customization function must invoke the customization manager’s
addCustomMenuFcn method (see “Customization Manager” on page 20-21).
Each invocation should pass the tag of the menu (see “About Menu Tags” on
page 20-10) to be customized and a custom menu function that specifies the
items to be added to the menu (see “Creating the Custom Menu Function” on
page 20-9) . For example, the following sl_customization function adds custom
items to the Simulink Tools menu.

function sl_customization(cm)
%% Register custom menu function.
cm.addCustomMenuFcn('Simulink:ToolsMenu', @getMyItems);

Creating the Custom Menu Function
The custom menu function returns a list of schema functions that define
custom items that you want to appear on the model editor menus (see
“Defining Menu Items” on page 20-4 ).

Your custom menu function should accept a callback info object (see “Callback
Info Object” on page 20-10) and return a cell array that lists the schema
functions. Each element of the cell array can be either a handle to a schema
function or a two-element cell array whose first element is a handle to a
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schema function and whose second element is user-defined data to be passed
to the schema function. For example, the following custom menu function
returns a cell array that lists three schema functions.

function schemas = getMyItems(callbackInfo)
schemas = {@getItem1, ...

@getItem2, ...
{@getItem3,3} }; % Pass 3 as userdata to getItem3.

end

Callback Info Object
Instances of these objects are passed to menu customization functions.
Properties of these objects include

• uiObject

Handle to the owner of the menu for which this is the callback. The owner
can be the Simulink editor or the Stateflow editor.

• model

Handle to the model being displayed in the editor window.

• userdata

User data. The value of this field can be any type of data.

Debugging Custom Menu Callbacks
On systems using the Microsoft® Windows® operating system, selecting a
custom menu item whose callback contains a breakpoint can cause the
mouse to become unresponsive or the menu to remain open and on top of
other windows. To fix these problems, use the M-file debugger’s keyboard
commands to continue execution of the callback.

About Menu Tags
A menu tag is a string that identifies a Simulink Model Editor or Stateflow
Chart Editor menu bar or menu. You need to know a menu’s tag to add
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custom items to it (see “Registering Menu Customizations” on page 20-9). You
can configure the editor to display all (see “Displaying Menu Tags” on page
20-11) but the following tags:

Tag Usage

Simulink:MenuBar Add menus to Model Editor’s menu bar.

Simulink:ContextMenu Add items to the end of Model Editor’s context
menu.

Simulink:PreContextMenu Add items to the beginning of Model Editor’s
context menu.

Stateflow:MenuBar Add menus to Chart Editor’s menu bar.

Stateflow:ContextMenu Add items to the end of Chart Editor’s context
menu.

Stateflow:PreContextMenu Add items to the beginning of Chart Editor’s
context menu.

Displaying Menu Tags
You can configure the Simulink software (and the Stateflow product) to display
the tag for a menu item next to the item’s label, allowing you to determine at
a glance the tag for a menu. To configure the editor to display menu tags, set
the customization manager’s showWidgetIdAsToolTip property to true, e.g.,
by entering the following commands at the command line:

cm = sl_customization_manager;
cm.showWidgetIdAsToolTip=true;
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The tag of each menu item appears next to the item’s label on the menu:

To turn off tag display, enter the following command at the command line:

cm.showWidgetIdAsToolTip=false;

Note Some menu items may not work while menu tag display is enabled. To
ensure that all items work, turn off menu tag display before using the menus.
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Disabling and Hiding Model Editor Menu Items

In this section...

“About Disabling and Hiding Model Editor Menu Items” on page 20-13

“Example: Disabling the New Model Command on the Simulink® Editor’s
File Menu” on page 20-13

“Creating a Filter Function” on page 20-13

“Registering a Filter Function” on page 20-14

About Disabling and Hiding Model Editor Menu Items
You can disable or hide items that appear on the Simulink® model editor
menus. To disable or hide a menu item, you must:

• Create a filter function that disables or hides the menu item (see “Creating
a Filter Function” on page 20-13).

• Register the filter function with the customization manager (see
“Registering a Filter Function” on page 20-14).

For more information on Model Editor menu items, see:

Example: Disabling the New Model Command on
the Simulink® Editor’s File Menu

function sl_customization(cm)
cm.addCustomFilterFcn('Simulink:NewModel',@myFilter);

end

function state = myFilter(callbackInfo)
state = 'Disabled';

end

Creating a Filter Function
Your filter function must accept a callback info object and return a string that
specifies the state that you want to assign to the menu item. Valid states are
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• 'Hidden'

• 'Disabled'

• 'Enabled'

Your filter function may have to compete with other filter functions and
with Simulink itself to assign a state to an item. Who succeeds depends
on the strength of the state that each assigns to the item. 'Hidden' is the
strongest state. If any filter function or Simulink assigns 'Hidden' to the
item, it is hidden. 'Enabled' is the weakest state. For an item to be enabled,
all filter functions and the Simulink or Stateflow® products must assign
'Enabled'to the item. The 'Disabled' state is of middling strength. It
overrides 'Enabled' but is itself overridden by 'Hidden'. For example, if any
filter function or Simulink or Stateflow assigns 'Disabled' to a menu item
and none assigns 'Hidden' to the item, the item is disabled.

Note The Simulink software does not allow you to filter some menu items,
for example, the Exit MATLAB item on the Simulink File menu. An error
message is displayed if you attempt to filter a menu item that you are not
allowed to filter.

Registering a Filter Function
Use the customization manager’s addCustomFilterFcn method to register a
filter function. The addCustomFilterFcn method takes two arguments: a tag
that identifies the menu or menu item to be filtered (see “Displaying Menu
Tags” on page 20-11) and a pointer to the filter function itself. For example,
the following code registers a filter function for the New Model item on the
Simulink File menu.

function sl_customization(cm)
cm.addCustomFilterFcn('Simulink:NewModel',@myFilter);

end
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Disabling and Hiding Dialog Box Controls

In this section...

“About Disabling and Hiding Controls” on page 20-15

“Example: Disabling a Button on a Simulink® Dialog Box” on page 20-16

“Writing Control Customization Callback Functions” on page 20-17

“Dialog Box Methods” on page 20-17

“Dialog Box and Widget IDs” on page 20-18

“Registering Control Customization Callback Functions” on page 20-19

About Disabling and Hiding Controls
The Simulink® product includes a customization API that allows you to
disable and hide controls (also referred to as widgets), such as text fields
and buttons, on most of its dialog boxes. The customization API allows you
to disable or hide controls on an entire class of dialog boxes, for example,
parameter dialog boxes via a single method call.

Before attempting to customize a Simulink dialog box or class of dialog
boxes, you must first ensure that the dialog box or class of dialog boxes
is customizable. Any dialog box that appears in the dialog pane of Model
Explorer is customizable. In addition, any dialog box that has dialog and
widget IDs is customizable. To determine whether a standalone dialog box
(i.e., one that does not appear in Model Explorer) is customizable, open the
dialog box, enable dialog and widget ID display (see “Dialog Box and Widget
IDs” on page 20-18), and position the mouse over a widget. If a widget ID
appears, the dialog box is customizable.

Once you have determined that a dialog box or class of dialog boxes is
customizable, you must write M-code to customize the dialog boxes. This
entails writing callback functions that disable or hide controls for a specific
dialog box or class of dialog boxes (see “Writing Control Customization
Callback Functions” on page 20-17) and registering the callback functions
via an object called the customization manager (see “Registering Control
Customization Callback Functions” on page 20-19). Simulink then invokes
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the callback functions to disable or hide the controls whenever a user opens
the dialog boxes.

For more information on Dialog Box controls, see:

Example: Disabling a Button on a Simulink® Dialog
Box
The following sl_customization.m file disables the Build button on the
Real-Time Workshop pane of the Configuration Parameters dialog box for
any model whose name contains “engine.”

function sl_customization(cm)

% Disable for standalone Configuration Parameters dialog box.

cm.addDlgPreOpenFcn('Simulink.ConfigSet',@disableRTWBuildButton)

% Disable for Configuration Parameters dialog box that appears in

% the Model Explorer.

cm.addDlgPreOpenFcn('Simulink.RTWCC',@disableRTWBuildButton)

end

function disableRTWBuildButton(dialogH)

hSrc = dialogH.getSource; % Simulink.RTWCC

hModel = hSrc.getModel;

modelName = get_param(hModel, 'Name');

if ~isempty(strfind(modelName, 'engine'))

% Takes a cell array of widget Factory ID.

dialogH.disableWidgets({'Simulink.RTWCC.Build'})

end

end

To test this customization:

1 Put the preceding sl_customization.m file on the path.
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2 Register the customization by entering sl_refresh_customizations at
the command line or by restarting the MATLAB® software (see “Registering
Customizations” on page 20-21).

3 Open the sldemo_engine demo model, for example, by entering the
command sldemo_engine at the command line.

Writing Control Customization Callback Functions
A callback function for disabling or hiding controls on a dialog box should
accept one argument: a handle to the dialog box object that contains the
controls you want to disable or hide. The dialog box object provides methods
that the callback function can use to disable or hide the controls that the
dialog box contains.

The dialog box object also provides access to objects containing information
about the current model. Your callback function can use these objects to
determine whether to disable or hide controls. For example, the following
callback function uses these objects to disable the Build button on the
Real-Time Workshop pane of the Configuration Parameters dialog box
displayed in Model Explorer for any model whose name contains “engine.”

function disableRTWBuildButton(dialogH)

hSrc = dialogH.getSource; % Simulink.RTWCC
hModel = hSrc.getModel;
modelName = get_param(hModel, 'Name');

if ~isempty(strfind(modelName, 'engine'))
% Takes a cell array of widget Factory ID.
dialogH.disableWidgets({'Simulink.RTWCC.Build'})

end

Dialog Box Methods
Dialog box objects provide the following methods for enabling, disabling, and
hiding controls:

• disableWidgets(widgetIDs)

• hideWidgets(widgetIDs)
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where widgetIDs is a cell array of widget identifiers (see “Dialog Box and
Widget IDs” on page 20-18) that specify the widgets to be disabled or hidden.

Dialog Box and Widget IDs
Dialog box and widget IDs are strings that identify a control on a Simulink
dialog box. To determine the dialog box and widget ID for a particular control,
execute the following code at the command line:

cm = sl_customization_manager;
cm.showWidgetIdAsToolTip = true

Then, open the dialog box that contains the control and move the mouse
cursor over the control to display a tooltip listing the dialog box and the widget
IDs for the control. For example, moving the cursor over the Start time field
on the Solver pane of the Configuration Parameters dialog box reveals that
the dialog box ID for the Solver pane is Simulink.SolverCC and the widget
ID for the Start time field is Simulink.SolverCC.StartTime.
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Note The tooltip displays “not customizable” for controls that are not
customizable.

Registering Control Customization Callback Functions
To register control customization callback functions for a particular
installation of the Simulink product, include code in the installation’s
sl_customization.m file (see “Registering Customizations” on page 20-21)
that invokes the customization manager’s addDlgPreOpenFcn on the callbacks.

The addDlgPreOpenFcn takes two arguments. The first argument is a dialog
box ID (see “Dialog Box and Widget IDs” on page 20-18) and the second
is a pointer to the callback function to be registered. Invoking this method
causes the registered function to be invoked for each dialog box of the type
specified by the dialog box ID. The function is invoked before the dialog box
is opened, allowing the function to perform the customizations before they
become visible to the user.

The following example registers a callback that disables the Build button on
the Real-Time Workshop pane of the Configuration Parameters dialog box
(see “Writing Control Customization Callback Functions” on page 20-17).

function sl_customization(cm)

% Disable for standalone Configuration Parameters dialog box.

cm.addDlgPreOpenFcn('Simulink.ConfigSet',@disableRTWBuildButton)

% Disable for Configuration Parameters dialog box that appears in

% the Model Explorer

cm.addDlgPreOpenFcn('Simulink.RTWCC',@disableRTWBuildButton)

end
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Note Registering a customization callback causes the Simulink software to
invoke the callback for every instance of the class of dialog boxes specified by
the method’s dialog box ID argument. This allows you to use a single callback
to disable or hide a control for an entire class of dialog boxes. In particular,
you can use a single callback to disable or hide the control for a parameter
that is common to most built-in blocks. This is because most built-in block
dialog boxes are instances of the same dialog box super class.
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Registering Customizations

In this section...

“About Registering User Interface Customizations” on page 20-21

“Customization Manager” on page 20-21

About Registering User Interface Customizations
You must register your user-interface customizations using an M-file function
called sl_customization.m. This is located on the MATLAB® path of the
Simulink® installation that you want to customize. The sl_customization
function should accept one argument: a handle to an object called the
Simulink.CustomizationManager, e.g.,

function sl_customization(cm)

The customization manager object includes methods for registering menu
and control customizations (see “Customization Manager” on page 20-21).
Your instance of the sl_customization function should use these methods to
register customizations specific to your application. For more information, see
the following sections on performing customizations.

• “Adding Items to Model Editor Menus” on page 20-2

• “Disabling and Hiding Model Editor Menu Items” on page 20-13

• “Disabling and Hiding Dialog Box Controls” on page 20-15

The sl_customization.m file is read when the Simulink software starts. If
you subsequently change the sl_customization.m file, you must restart
the Simulink software or enter the following command at the command line
to effect the changes:

sl_refresh_customizations

Customization Manager
The customization manager includes the following methods:
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• addCustomMenuFcn(stdMenuTag, menuSpecsFcn)

Adds the menus specified by menuSpecsFcn to the end of the
standard Simulink menu specified by stdMenuTag. The stdMenuTag
argument is a string that specifies the menu to be customized. For
example, the stdMenuTag for the Simulink editor’s Tools menu is
'Simulink:ToolsMenu' (see “Displaying Menu Tags” on page 20-11 for
more information). The menuSpecsFcn argument is a handle to a function
that returns a list of functions that specify the items to be added to the
specified menu. See “Adding Items to Model Editor Menus” on page 20-2
for more information.

• addCustomFilterFcn(stdMenuItemID, filterFcn)

Adds a custom filter function specified by filterFcn for the standard
Simulink model editor menu item specified by stdMenuItemID. The
stdMenuItemID argument is a string that identifies the menu item. For
example, the ID for the New Model item on the Simulink editor’s File
menu is 'Simulink:NewModel' (see “Displaying Menu Tags” on page 20-11
for more information) . The filterFcn argument is a pointer to a function
that hides or disables the specified menu item. See “Disabling and Hiding
Model Editor Menu Items” on page 20-13 for more information.
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When to Create Custom Blocks
Custom blocks allow you to expand the modeling functionality provided by the
Simulink® product. By creating a custom block, you can:

• Model behaviors for which the Simulink product does not provide a built-in
solution.

• Build more advanced systems.

• Encapsulate systems into a library block that can be copied into multiple
models.

• Provide custom graphical user interfaces or analysis routines.
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Types of Custom Blocks

In this section...

“MATLAB® Function Blocks” on page 21-3

“Subsystem Blocks” on page 21-4

“S-Function Blocks” on page 21-4

MATLAB® Function Blocks
MATLAB® function blocks allow you to use functions to define custom
functionality. These blocks serve as a good starting point for creating a
custom block if:

• You have an existing MATLAB function that models the custom
functionality.

• You find it easier to model custom functionality via a MATLAB function
than via a block diagram.

• The custom functionality does not include continuous or discrete dynamic
states.

You can create a custom block from an M-function using one of the following
types of MATLAB function blocks.

• The Fcn block allows you to use a MATLAB expression to define a
single-input, single-output (SISO) block.

• The MATLAB Fcn block allows you to use a MATLAB function to define a
SISO block.

• The Embedded MATLAB Function block allows you to define a custom
block with multiple inputs and outputs that can be deployed to embedded
processors.

Each of these blocks has advantages in particular modeling applications.
For example, you can generate code from models containing Embedded
MATLAB™ Function blocks while you cannot generate code for models
containing a Fcn block.
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Subsystem Blocks
Subsystem blocks allow you to build a Simulink® diagram to define custom
functionality. These blocks serve as a good starting point for creating a
custom block if:

• You have an existing Simulink diagram that models custom functionality.

• You find it easier to model custom functionality via a graphical
representation than via hand-written code.

• The custom functionality is a function of continuous or discrete system
states.

• The custom functionality can be modeled using existing Simulink blocks.

Once you have a Simulink subsystem that models the desired behavior, you
can convert it into a custom block by:

1 Masking the block to hide the block’s contents and provide a custom block
dialog.

2 Placing the block in a library to prohibit modifications and allow for easily
updating copies of the block.

See Chapter 7, “Working with Block Libraries” and Chapter 17, “Creating
Block Masks” in Using Simulink for more information.

S-Function Blocks
S-function blocks allow you to write M, C, or C++ code to define custom
functionality. These blocks serve as a good starting point for creating a
custom block if:

• You have existing M, C, or C++ code that models custom functionality.

• You need to model continuous or discrete dynamic states or other system
behaviors that require access to the S-function API.

• The custom functionality cannot be modeled using existing Simulink blocks.

You can create a custom block from an S-function using one of the following
types of S-function blocks.
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• The Level-2 M-File S-Function block allows you to write your S-function in
M. (See “Writing S-Functions in M”.) An M-file S-function can be debugged
during simulation using the MATLAB debugger.

• The S-Function block allows you to write your S-function in C or C++, or
to incorporate existing code into your model via a C MEX wrapper. (See
“Writing S-Functions in C”.)

• The S-Function Builder block assists you in creating a new C MEX
S-function or a wrapper function to incorporate legacy C or C++ code. (See
“Building S-Functions Automatically”.)

• The Legacy Code Tool transforms existing C or C++ functions into C MEX
S-functions. (See “Integrating Existing C Functions into Simulink Models
with the Legacy Code Tool”.)

The S-function target in the Real-Time Workshop® product automatically
generates a C MEX S-function from a graphical subsystem. If you want to
build your custom block in a Simulink subsystem, but implement the final
version of the block in an S-function, you can use the S-function target to
convert the subsystem to an S-function. See “S-Function Target” in the
Real-Time Workshop User’s Guide for details and limitations on using the
S-function target.

Comparing M-File S-Functions to Embedded MATLAB™
Functions
M-file S-functions and Embedded MATLAB functions have some fundamental
differences.

• The Real-Time Workshop product can generate code for both M-file
S-functions and Embedded MATLAB functions. However, M-file
S-functions require a Target Language Compiler (TLC) file for code
generation. Embedded MATLAB functions do not require a TLC-file.

• M-file S-functions can use any MATLAB function. Embedded MATLAB
functions support only a subset of the MATLAB functions. See “Embedded
MATLAB Function Library Reference” in the Embedded MATLAB
documentation for a list of supported functions.

• M-file S-functions can model discrete and continuous state dynamics.
Embedded MATLAB functions cannot model state dynamics.
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Using S-Function Blocks to Incorporate Legacy Code
Each S-function block allows you to incorporate legacy code into your model,
as follows.

• An M-file S-function accesses legacy code through its TLC-file. Therefore,
the legacy code is available only in the generated code, not during
simulation.

• A C MEX S-functions directly calls legacy C or C++ code.

• The S-Function Builder generates a wrapper function that calls the legacy
C or C++ code.

• The Legacy Code Tool generates a C MEX S-function to call the legacy C
or C++ code, which is optimized for embedded systems. See “Integrating
Existing C Functions into Simulink Models with the Legacy Code Tool”
for more information.

See “Integrating Legacy and Custom Code” in the Real-Time Workshop User’s
Guide for more information.

See “Example Using S-Functions to Incorporate Legacy C Code” in “Writing
S-Functions” for an example.
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Comparison of Custom Block Functionality

In this section...

“Custom Block Considerations” on page 21-7

“Modeling Requirements” on page 21-10

“Speed and Code Generation Requirements” on page 21-13

Custom Block Considerations
When creating a custom block, you may want to consider the following.

• Does the custom block need multiple input and output ports?

• Does the block need to model continuous or discrete state behavior?

• Will the block’s inputs and outputs have various data attributes, such as
data types or complexity?

• How important is the affect of the custom block on the speed of updating
the Simulink® diagram or simulating the Simulink model?

• Do you need to generate code for a model containing the custom block?

The following two tables provide an overview of how each custom block
type addresses the previous questions. More detailed information for each
consideration follows these two tables.

Modeling Requirements

Custom Block
Type

Supports Multiple
Inputs and Outputs

Models State
Dynamics

Supports Various Data
Attributes

Subsystem Yes, including bus
signals.

Yes. Yes, including all data types,
numeric types, and dimensions
supported by the Simulink
software. Also supports
frame-based signals.
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Modeling Requirements (Continued)

Custom Block
Type

Supports Multiple
Inputs and Outputs

Models State
Dynamics

Supports Various Data
Attributes

Fcn No. Must have a single
vector input and scalar
output.

No. Supports only real scalar
signals with a data type of
double or single.

MATLAB® Fcn No. Must have a
single vector input and
output.

No. Supports only n-D, real, or
complex signals with a data
type of double.

Embedded
MATLAB™
Function

Yes, including bus
signals.

No. Yes, including all data types,
numeric types, and dimensions
supported by the Simulink
software. Also supports
frame-based signals.

Level-2 M-file
S-function

Yes. Yes, including
limited access
to other
S-function
APIs.

Yes, including all data types,
numeric types, and dimensions
supported by the Simulink
software. Also supports
frame-based signals.

C MEX S-function Yes, including bus
signals if using the
Legacy Code Tool to
generate the S-function.

Yes, including
full access to
all S-function
APIs.

Yes, including all data types,
numeric types, and dimensions
supported by the Simulink
software. Also supports
frame-based signals.
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Speed and Code Generation Requirements

Custom Block
Type

Speed of Updating
the Diagram

Simulation Overhead Code Generation
Support

Subsystem Proportional to the
complexity of the
subsystem. For
library blocks, can
be slower the first
time the library is
loaded.

Proportional to the
complexity of the
subsystem. Library
blocks introduce no
additional overhead.

Natively supported.

Fcn Very fast. Minimal, but these
blocks also provide
limited functionality.

Natively supported.

MATLAB Fcn Fast. High and incurred
when calling out to the
MATLAB interpreter.
These calls add overhead
that should be avoided
if simulation speed is a
concern.

Not supported.

Embedded
MATLAB Function

Can be slower if code
must be generated to
update the diagram.

Minimal if the MATLAB
interpreter is not called.
Simulation speed is
equivalent to C MEX
S-functions when the
MATLAB interpreter is
not called.

Natively supported,
with exceptions. See
“Code Generation” on
page 21-16 for more
information.
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Speed and Code Generation Requirements (Continued)

Custom Block
Type

Speed of Updating
the Diagram

Simulation Overhead Code Generation
Support

Level-2 M-file
S-function

Can be slower if the
S-function overrides
methods executed
when updating the
diagram.

Higher than for
MATLAB Fcn blocks
because the MATLAB
interpreter is called for
every S-function method
used. Very flexible, but
very costly.

M-file S-functions
initialized as a
SimViewingDevice
do not generate code.
Otherwise, M-file
S-functions require
a TLC-file for code
generation.

C MEX S-function Can be slower if the
S-function overrides
methods executed
when updating the
diagram.

Minimal, but
proportional to the
complexity of the
algorithm and the
efficiency of the code.

Might require a
TLC-file.

Modeling Requirements

Multiple Input and Output Ports
The following types of custom blocks support multiple input and output ports.

Custom
Block Type

Multiple Input and Output Port Support

Subsystem Supports multiple input and output ports, including bus
signals. In addition, you can modify the number of input
and output ports based on user-defined parameters. See
“Self-Modifying Linked Subsystems” on page 7-5 for more
information.

Fcn, MATLAB
Fcn

Supports only a single input and a single output port. You
must use a Mux block to combine the inputs and a Demux
block to separate the outputs if you need to pass multiple
signals into or out of these blocks.
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Custom
Block Type

Multiple Input and Output Port Support

Embedded
MATLAB
Function

Supports multiple input and output ports, including bus
signals. See “Working with Structures and Bus Signals” on
page 22-77 for more information.

S-function
(M-file or C
MEX)

Supports multiple input and output ports. In addition, you
can modify the number of input and output ports based on
user-defined parameters. S-functions generated using the
Legacy Code Tool also accept Simulink bus signals. See
“Integrating Existing C Functions into Simulink Models
with the Legacy Code Tool” for more information.

State Behavior and the S-Function API
Simulink blocks communicate with the Simulink engine through the
S-function API, a set of methods that fully specifies the behavior of blocks.
Each custom block type accesses a different sets of the S-function APIs, as
follows.

Custom
Block Type

S-Function API Support

Subsystem Communicates directly with the engine. You can model
state behaviors using appropriate blocks from the
Continuous and Discrete Simulink block libraries.

Fcn, MATLAB
Fcn,
Embedded
MATLAB
Function

All create an mdlOutput method to calculate the value
of the outputs given the value of the inputs. You cannot
access any other S-function API methods using one of these
blocks and, therefore, cannot model state behavior.

M-file
S-function

Accesses a larger subset of the S-function APIs, including
the methods needed to model continuous and discrete
states. For a list of supported methods, see “Level-2 M-File
S-Function Callback Methods” in “Writing S-Functions”.

C MEX
S-function

Accesses the complete set of S-function APIs.
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Data Attribute Support
All custom block types support real scalar inputs and outputs with a data
type of double.

Custom
Block Type

Data Attribute Support

Subsystem Supports any data type supported by the Simulink
software, including fixed-point types. Also supports
complex, 2-D, n-D, and frame-based signals.

Fcn Supports only double or single data types. In addition, the
input and output cannot be complex and the output must
be a scalar signal. Does not support frame-based signals.

MATLAB Fcn Supports 2-D, n-D, and complex signals, but the signal
must have a data type of double. Does not support
frame-based signals.

Embedded
MATLAB
Function

Supports any data type supported by the Simulink
software, including fixed-point types. Also supports
complex, 2-D, n-D, and frame-based signals.

S-function
(M-file or C
MEX)

Supports any data type supported by the Simulink
software, including fixed-point types. Also supports
complex, 2-D, n-D, and frame-based signals.
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Speed and Code Generation Requirements

Updating the Simulink® Diagram
The Simulink software updates the diagram before every simulation and
whenever requested by the user. Every block introduces some overhead into
the “update diagram” process.

Custom
Block Type

Speed of Updating the Diagram

Subsystem The speed is proportional to the complexity of the
algorithm implemented in the subsystem. If the subsystem
is contained in a library, some cost is incurred when the
Simulink software loads any unloaded libraries the first
time the diagram is updated or readied for simulation.
If all referenced library blocks remain unchanged, the
Simulink software does not subsequently reload the library
and compiling the model becomes faster than if the model
did not use libraries.

Fcn, MATLAB
Fcn

Does not incur greater update cost than other Simulink
blocks.

Embedded
MATLAB
Function

Performs simulation through code generation, so these
blocks might take a significant amount of time when first
updated. However, because code generation is incremental,
if the block and the signals connected to it have not
changed, the Simulink software does not repeatedly update
the block.

S-function
(M-file or C
MEX)

Incurs greater costs than other Simulink blocks only
if it overrides methods executed when updating the
diagram. If these methods become complex, they can
contribute significantly to the time it takes to update the
diagram. For a list of methods executed when updating
the diagram, see the process view in “How the Simulink
Engine Interacts with C S-Functions”. When updating
the diagram, the Simulink software invokes all relevant
methods in the model initialization phase up to, but not
including, mdlStart.
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Simulation Overhead
For most applications, any of the custom block types provide acceptable
simulation performance. Use the Simulink profiler to obtain an indication
of the actual performance. See “Capturing Performance Data” on page 19-33
for more information.

You can break simulation performance into two categories. The interface
cost is the time it takes to move data from the Simulink engine into the
block. The algorithm cost is the time needed to perform the algorithm that
the block implements.

Custom
Block Type

Simulation Overhead

Subsystem If included in a library, introduces no interface or algorithm
costs beyond what would normally be incurred if the block
existed as a regular subsystem in the model.

Fcn Has the least simulation overhead. The block is tightly
integrated with the Simulink engine and implements
a rudimentary expression language that is efficiently
interpreted.

MATLAB Fcn Has a higher interface cost than most blocks and the same
algorithm cost as a MATLAB function.

When block data (such as inputs and outputs) is accessed
or returned from a MATLAB Fcn block, the Simulink
engine packages this data into MATLAB arrays. This
packaging takes additional time and causes a temporary
increase in memory during communication. If you pass
large amounts of data across this interface, such as, frames
or arrays, this overhead can be substantial.

Once the data has been converted, the MATLAB interpreter
executes the algorithm. As a result, the algorithm cost is
the same as for MATLAB function. Efficient code can be
competitive with C code if the MATLAB software is able
to optimize it, or if the code uses the highly optimized
MATLAB library functions.
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Custom
Block Type

Simulation Overhead

Embedded
MATLAB
Function

Performs simulation through code generation and so incurs
the same interface cost as standard blocks.

The algorithm cost of this block is harder to analyze
because of the block’s implementation. On average, an
Embedded MATLAB function and a MATLAB function run
at about the same speed. To further reduce the algorithm
cost, you can disable debugging for all the Embedded
MATLAB Function blocks in your model.

If the Embedded MATLAB function uses simulation-only
capabilities to call out to the MATLAB interpreter, it incurs
all the costs that an M-file S-function or MATLAB Fcn
block incur. Calling out to the MATLAB interpreter from
an Embedded MATLAB function produces a warning to
prevent you from doing so unintentionally.

M-file
S-function

Incurs the same algorithm costs as the MATLAB Fcn
block, but with a slightly higher interface cost. Because
M-file S-functions can handle multiple inputs and outputs,
the packaging is more complicated than for the MATLAB
Fcn block. In addition, the Simulink engine calls the
MATLAB interpreter for each block method you implement
whereas for the MATLAB Fcn block, it calls the MATLAB
interpreter only for the mdlOutput method.

C MEX
S-function

Simulates via the compiled code and so incurs the same
interface cost as standard blocks. The algorithm cost
depends on the complexity of the S-function.

21-15



21 Creating Custom Blocks

Code Generation
Not all custom block types support code generation.

Custom
Block Type

Code Generation Support

Subsystem Supports code generation.

Fcn Supports code generation.

MATLAB Fcn Does not support code generation.

Embedded
MATLAB
Function

Supports code generation. However, if your Embedded
MATLAB Function block calls out to the MATLAB
interpreter, it will build with the Real-Time Workshop®

product only if the calls to the MATLAB interpreter
do not affect the block’s outputs. Under this condition,
the Real-Time Workshop product omits these calls
from the generated C code. This feature allows you to
leave visualization code in place, even when generating
embedded code.

M-file
S-function

Generates code only if you implement the algorithm using
a Target Language Compiler (TLC) function. In accelerated
and external mode simulations, you can choose to execute
the S-function in interpretive mode by calling back to the
MATLAB interpreter without implementing the algorithm
in TLC. If the M-file S-function is a SimViewingDevice,
the Real-Time Workshop product automatically omits the
block during code generation.

C MEX
S-function

Supports code generation. For noninlined S-functions, the
Real-Time Workshop product uses the C MEX function
during code generation. However, you must write a
TLC-file for the S-function if you need to either inline
the S-function or create a wrapper for hand-written code.
See “Writing S-Functions for Real-Time Workshop Code
Generation” in the Real-Time Workshop User’s Guide for
more information.
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Expanding Custom Block Functionality
You can expand the functionality of any custom block using callbacks and
Handle Graphics.

Block callbacks perform user-defined actions at specific points in the
simulation. For example, the callback can load data into the MATLAB®

workspace before the simulation or generate a graph of simulation data at the
end of the simulation. You can assign block callbacks to any of the custom
block types. For a list of available callbacks and more information on how to
use them, see “Creating Block Callback Functions” on page 3-55.

GUIDE, the MATLAB graphical user interface development environment,
provides tools for easily creating custom user interfaces. See MATLAB
Creating Graphical User Interfaces for more information on using GUIDE.
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Tutorial: Creating a Custom Block

In this section...

“How to Design a Custom Block” on page 21-18

“Defining Custom Block Behavior” on page 21-20

“Deciding on a Custom Block Type” on page 21-21

“Placing Custom Blocks in a Library” on page 21-26

“Adding a Graphical User Interface to a Custom Block” on page 21-28

“Adding Block Functionality Using Block Callbacks” on page 21-37

How to Design a Custom Block
In general, you use the following process to design a custom block:

1 Define the behavior required by the custom block.

2 Decide which custom block type to use.

3 Determine if the block should reside in a library.

4 Add a graphical user interface to the block.

Suppose you want to create a customized saturation block that limits the
upper and lower bounds of a signal based on either a block parameter or
the value of an input signal. In a second version of the block, you want the
option to plot the saturation limits after the simulation is finished. The
following tutorial steps you through designing these blocks. The library
customsat_lib.mdl contains the two versions of the customized saturation
block.
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The example model sldemo_customsat.mdl uses the basic version of the
block.
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Defining Custom Block Behavior
Begin by defining the features and limitations of your custom block. In this
example, the block supports the following features:

• Turning on and off the upper or lower saturation limit.

• Setting the upper and/or lower limits via a block parameters.

• Setting the upper and/or lower limits using an input signal.

It also has the following restrictions:

• The input signal under saturation must be a scalar.
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• The input signal and saturation limits must all have a data type of double.

• Code generation is not required.

Deciding on a Custom Block Type
Based on the custom block’s features, the implementation needs to support
the following:

• Multiple input ports

• A relatively simple algorithm

• No continuous or discrete system states

Therefore, this tutorial implements the custom block using a Level-2
M-file S-function. M-file S-functions support multiple inputs and, because
the algorithm is simple, do not have significant overhead when updating
the diagram or simulating the model. See “Comparison of Custom Block
Functionality” on page 21-7 for a description of the different functionality
provided by M-file S-functions as compared to other types of custom blocks.

Parameterizing the M-File S-Function
Begin by defining the S-function parameters. This example requires four
parameters:

• The first parameter indicates how the upper saturation limit is set. The
limit can be off, set via a block parameter, or set via an input signal.

• The second parameter is the value of the upper saturation limit. This value
is used only if the upper saturation limit is set via a block parameter. In the
event this parameter is used, you should be able to change the parameter’s
value during the simulation, i.e., the parameter is tunable.

• The third parameter indicates how the lower saturation limit is set. The
limit can be off, set via a block parameter, or set via an input signal.

• The fourth parameter is the value of the lower saturation limit. This value
is used only if the lower saturation limit is set via a block parameter. As
with the upper saturation limit, this parameter is tunable when in use.
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The first and third S-function parameters represent modes that must be
translated into values the S-function can recognize. Therefore, define the
following values for the upper and lower saturation limit modes:

• 1 indicates that the saturation limit is off.

• 2 indicates that the saturation limit is set via a block parameter.

• 3 indicates that the saturation limit is set via an input signal.

Writing the M-File S-Function
Once the S-function parameters and functionality are defined, write the
S-function. The template msfuntmpl.m provides a starting point for writing
a Level-2 M-file S-function. You can find a completed version of the custom
saturation block in the file custom_sat.m. Save this file to your working
directory before continuing with this tutorial.

This S-function modifies the S-function template as follows:

• The setup function initializes the number of input ports based on the
values entered for the upper and lower saturation limit modes. If the limits
are set via input signals, the method adds input ports to the block. The
setup method then indicates there are four S-function parameters and
sets the parameter tunability. Finally, the method registers the S-function
methods used during simulation.

function setup(block)

% The Simulink engine passes an instance of the Simulink.MSFcnRunTimeBlock

% class to the setup method in the input argument "block". This is known as

% the S-function block's run-time object.

% Register original number of input ports based on the S-function

% parameter values

try % Wrap in a try/catch, in case no S-function parameters are entered

lowMode = block.DialogPrm(1).Data;

upMode = block.DialogPrm(3).Data;

numInPorts = 1 + isequal(lowMode,3) + isequal(upMode,3);

catch
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numInPorts=1;

end % try/catch

block.NumInputPorts = numInPorts;

block.NumOutputPorts = 1;

% Setup port properties to be inherited or dynamic

block.SetPreCompInpPortInfoToDynamic;

block.SetPreCompOutPortInfoToDynamic;

% Override input port properties

block.InputPort(1).DatatypeID = 0; % double

block.InputPort(1).Complexity = 'Real';

% Override output port properties

block.OutputPort(1).DatatypeID = 0; % double

block.OutputPort(1).Complexity = 'Real';

% Register parameters. In order:

% -- If the upper bound is off (1) or on and set via a block parameter (2)

% or input signal (3)

% -- The upper limit value. Should be empty if the upper limit is off or

% set via an input signal

% -- If the lower bound is off (1) or on and set via a block parameter (2)

% or input signal (3)

% -- The lower limit value. Should be empty if the lower limit is off or

% set via an input signal

block.NumDialogPrms = 4;

block.DialogPrmsTunable = {'Nontunable','Tunable','Nontunable', ...

'Tunable'};

% Register continuous sample times [0 offset]

block.SampleTimes = [0 0];

%% -----------------------------------------------------------------

%% Options

%% -----------------------------------------------------------------

% Specify if Accelerator should use TLC or call back into

% M-file

block.SetAccelRunOnTLC(false);
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%% -----------------------------------------------------------------

%% Register methods called during update diagram/compilation

%% -----------------------------------------------------------------

block.RegBlockMethod('CheckParameters', @CheckPrms);

block.RegBlockMethod('ProcessParameters', @ProcessPrms);

block.RegBlockMethod('PostPropagationSetup', @DoPostPropSetup);

block.RegBlockMethod('Outputs', @Outputs);

block.RegBlockMethod('Terminate', @Terminate);

%end setup function

• The CheckParameters method verifies the values entered into the Level-2
M-file S-function block.

function CheckPrms(block)

lowMode = block.DialogPrm(1).Data;

lowVal = block.DialogPrm(2).Data;

upMode = block.DialogPrm(3).Data;

upVal = block.DialogPrm(4).Data;

% The first and third dialog parameters must have values of 1-3

if ~any(upMode == [1 2 3]);

error('The first dialog parameter must be a value of 1, 2, or 3');

end

if ~any(lowMode == [1 2 3]);

error('The first dialog parameter must be a value of 1, 2, or 3');

end

% If the upper or lower bound is specified via a dialog, make sure there

% is a specified bound. Also, check that the value is of type double

if isequal(upMode,2),

if isempty(upVal),

error('Enter a value for the upper saturation limit.');

end

if ~strcmp(class(upVal), 'double')

error('The upper saturation limit must be of type double.');

end

end
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if isequal(lowMode,2),

if isempty(lowVal),

error('Enter a value for the lower saturation limit.');

end

if ~strcmp(class(lowVal), 'double')

error('The lower saturation limit must be of type double.');

end

end

% If a lower and upper limit are specified, make sure the specified

% limits are compatible.

if isequal(upMode,2) && isequal(lowMode,2),

if lowVal >= upVal,

error('The lower bound must be less than the upper bound.');

end

end

%end CheckPrms function

• The ProcessParameters and PostPropagationSetup methods handle
the S-function parameter tuning.

function ProcessPrms(block)

%% Update run time parameters

block.AutoUpdateRuntimePrms;

%end ProcessPrms function

function DoPostPropSetup(block)

%% Register all tunable parameters as runtime parameters.

block.AutoRegRuntimePrms;

%end DoPostPropSetup function

• The Outputs method calculates the block’s output based on the S-function
parameter settings and any input signals.
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function Outputs(block)

lowMode = block.DialogPrm(1).Data;

upMode = block.DialogPrm(3).Data;

sigVal = block.InputPort(1).Data;

lowPortNum = 2; % Initialize potential input number for lower saturation limit

% Check upper saturation limit

if isequal(upMode,2), % Set via a block parameter

upVal = block.RuntimePrm(2).Data;

elseif isequal(upMode,3), % Set via an input port

upVal = block.InputPort(2).Data;

lowPortNum = 3; % Move lower boundary down one port number

else

upVal = inf;

end

% Check lower saturation limit

if isequal(lowMode,2), % Set via a block parameter

lowVal = block.RuntimePrm(1).Data;

elseif isequal(lowMode,3), % Set via an input port

lowVal = block.InputPort(lowPortNum).Data;

else

lowVal = -inf;

end

% Assign new value to signal

if sigVal > upVal,

sigVal = upVal;

elseif sigVal < lowVal,

sigVal=lowVal;

end

block.OutputPort(1).Data = sigVal;

%end Outputs function

Placing Custom Blocks in a Library
Libraries allow you to share your custom blocks with other users, easily
update the functionality of copies of the custom block, and collect blocks for

21-26



Tutorial: Creating a Custom Block

a particular project into a single location. This example places the custom
saturation block into a library as follows:

1 Open a new Simulink® library (see ).

2 Add a new Level-2 M-file S-Function block from the Simulink User-Defined
Functions library into your new library.

3 Double-click the block to open its Block Parameters dialog box. Enter the
name of the S-function custom_sat into the M-file name field.

4 Enter the following default values into the Parameters field.

2,-1,2,1

5 Click OK on the Block Parameters dialog box.

6 Save the library to your working directory as saturation_lib.mdl. The
following figure shows the resulting custom saturation block library.

21-27



21 Creating Custom Blocks

At this point, you have created a custom saturation block that can be shared
with other users. You can make the block easier to use by adding a customized
graphical user interface.

Adding a Graphical User Interface to a Custom Block
You can create a simple block dialog for the custom saturation block using
the provided masking capabilities. Masking the block also allows you to add
port labels to indicate which port corresponds to the input signal and the
saturation limits.
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To mask the block:

1 Right-click the custom saturation block in saturation_lib.mdl and select
Mask M-file S-Function from the context menu. The Mask Editor opens.

2 On the Icon pane, enter the following into Drawing commands.

port_label('input',1,'uSig')

This command labels the default port as the input signal under saturation.

3 On the Parameters pane, add four parameters corresponding to the four
S-function parameters. From top to bottom, set up each parameter’s
properties as follows.

Prompt Variable Type Tunable Popups Action for Dialog
Callback

Upper
boundary:

upMode popup No No limit | Enter limit as
parameter | Limit using
input signal

'upperbound_callback'

Upper
limit:

upVal edit Yes N/A 'upperparam_callback'

Lower
boundary:

lowMode popup No No limit | Enter limit as
parameter | Limit using
input signal

'lowerbound_callback'

Lower
limit:

lowVal edit Yes N/A 'lowerparam_callback'

The dialog callback is invoked using the action string in the following
command:

customsat_callback(action,gcb)

The M-file customsat_callback.m contains the mask parameter callbacks.
If you are stepping through this tutorial, open this file and save it to your
working directory. This M-file, described in detail later, has two input
arguments. The first input argument is a string indicating which mask
parameter invoked the callback. The second input argument is the handle
to the associated Level-2 M-file S-Function block.
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The following figure shows the final Parameters pane in the Mask Editor.

4 On the Mask Editor’s Initialization pane, select Allow library block to
modify its contents. This setting allows the S-function to change the
number of ports on the block.
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5 On the Documentation pane:

• Enter Customized Saturation into the Mask type field.

• Enter the following into the Mask description field.

Limit the input signal to an upper and lower saturation value
set either through a block parameter or input signal.

6 Click OK on the Mask Editor to complete the mask parameters dialog.

7 To map the S-function parameters to the mask parameters, right-click the
Level-2 M-file S-Function block and select Look Under Mask. The Level-2
M-file S-Function Block Parameters dialog box opens.

8 Change the entry in the Parameters field as follows.

lowMode,lowVal,upMode,upVal

The following figure shows the new Block Parameters dialog.
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9 Click OK on the Level-2 M-file S-Function Block Parameters dialog box.
Double-clicking the new version of the customized saturation block opens
the mask parameter dialog box shown in the following figure.

To create a more complicated graphical user interface, place a Handle
Graphics user interface on top of the masked block. The block’s OpenFcn
would invoke the Handle Graphics user interface, which uses calls to
set_param to modify the S-function block’s parameters based on settings
in the user interface.
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Writing the Mask Callback
The function customsat_callback.m contains the mask callback code for the
custom saturation block’s mask parameter dialog box. This function invokes
subfunctions corresponding to each mask parameter through a call to feval.

The following subfunction controls the visibility of the upper saturation
limit’s field based on the selection for the upper saturation limit’s mode. The
callback begins by obtaining values for all mask parameters using a call to
get_param with the property name MaskValues. If the callback needed the
value of only one mask parameter, it could call get_param with the specific
mask parameter name, for example, get_param(block,'upMode'). Because
this example needs two of the mask parameter values, it uses the MaskValues
property to reduce the calls to get_param.

The callback then obtains the visibilities of the mask parameters using a call
to get_param with the property name MaskVisbilities. This call returns
a cell array of strings indicating the visibility of each mask parameter. The
callback alters the values for the mask visibilities based on the selection for
the upper saturation limit’s mode and then updates the port label string.

The callback finally uses the set_param command to update the block’s
MaskDisplay property to label the block’s input ports.

function customsat_callback(action,block)

% CUSTOMSAT_CALLBACK contains callbacks for custom saturation block

% Copyright 2003-2007 The MathWorks, Inc.

%% Use function handle to call appropriate callback

feval(action,block)

%% Upper bound callback

function upperbound_callback(block)

vals = get_param(block,'MaskValues');

vis = get_param(block,'MaskVisibilities');

portStr = {'port_label(''input'',1,''uSig'')'};

switch vals{1}

case 'No limit'

set_param(block,'MaskVisibilities',[vis(1);{'off'};vis(3:4)]);
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case 'Enter limit as parameter'

set_param(block,'MaskVisibilities',[vis(1);{'on'};vis(3:4)]);

case 'Limit using input signal'

set_param(block,'MaskVisibilities',[vis(1);{'off'};vis(3:4)]);

portStr = [portStr;{'port_label(''input'',2,''up'')'}];

end

if strcmp(vals{3},'Limit using input signal'),

portStr = [portStr;{['port_label(''input'',',num2str(length(portStr)+1), ...

',''low'')']}];

end

set_param(block,'MaskDisplay',char(portStr));

The final call to set_param invokes the setup function in the M-file S-function
custom_sat.m. Therefore, the setup function can be modified to set the
number of input ports based on the mask parameter values instead of on the
S-function parameter values. This change to the setup function keeps the
number of ports on the Level-2 M-File S-Function block consistent with the
values shown in the mask parameter dialog box.

The modified M-file S-function custom_sat_final.m contains the following
new setup function. If you are stepping through this tutorial, open the file
and save it to your working directory.

%% Function: setup ===================================================

function setup(block)

% Register original number of ports based on settings in Mask Dialog

ud = getPortVisibility(block);

numInPorts = 1 + isequal(ud(1),3) + isequal(ud(2),3);

block.NumInputPorts = numInPorts;

block.NumOutputPorts = 1;

% Setup port properties to be inherited or dynamic

block.SetPreCompInpPortInfoToDynamic;

block.SetPreCompOutPortInfoToDynamic;

% Override input port properties

block.InputPort(1).DatatypeID = 0; % double

block.InputPort(1).Complexity = 'Real';
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% Override output port properties

block.OutputPort(1).DatatypeID = 0; % double

block.OutputPort(1).Complexity = 'Real';

% Register parameters. In order:

% -- If the upper bound is off (1) or on and set via a block parameter (2)

% or input signal (3)

% -- The upper limit value. Should be empty if the upper limit is off or

% set via an input signal

% -- If the lower bound is off (1) or on and set via a block parameter (2)

% or input signal (3)

% -- The lower limit value. Should be empty if the lower limit is off or

% set via an input signal

block.NumDialogPrms = 4;

block.DialogPrmsTunable = {'Nontunable','Tunable','Nontunable','Tunable'};

% Register continuous sample times [0 offset]

block.SampleTimes = [0 0];

%% -----------------------------------------------------------------

%% Options

%% -----------------------------------------------------------------

% Specify if Accelerator should use TLC or call back into

% M-file

block.SetAccelRunOnTLC(false);

%% -----------------------------------------------------------------

%% Register methods called during update diagram/compilation

%% -----------------------------------------------------------------

block.RegBlockMethod('CheckParameters', @CheckPrms);

block.RegBlockMethod('ProcessParameters', @ProcessPrms);

block.RegBlockMethod('PostPropagationSetup', @DoPostPropSetup);

block.RegBlockMethod('Outputs', @Outputs);

block.RegBlockMethod('Terminate', @Terminate);

%endfunction

The getPortVisibility subfunction in custom_sat_final.m uses the
saturation limit modes to construct a flag that is passed back to the setup
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function. The setup function uses this flag to determine the necessary
number of input ports.

%% Function: Get Port Visibilities =======================================

function ud = getPortVisibility(block)

ud = [0 0];

vals = get_param(block.BlockHandle,'MaskValues');

switch vals{1}

case 'No limit'

ud(2) = 1;

case 'Enter limit as parameter'

ud(2) = 2;

case 'Limit using input signal'

ud(2) = 3;

end

switch vals{3}

case 'No limit'

ud(1) = 1;

case 'Enter limit as parameter'

ud(1) = 2;

case 'Limit using input signal'

ud(1) = 3;

end

Updating the Library
Update the library saturation_lib.mdl so that it calls custom_sat_final.m.

1 Right-click the Level-2 M-file S-Function block in saturation_lib.mdl
and select Look Under Mask. The Level-2 M-file S-Function Block
Parameters dialog box opens.

2 Enter custom_sat_final in the M-file name field, as shown in the
following figure.
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3 Click OK on the Block Parameters dialog box.

Adding Block Functionality Using Block Callbacks
The User-Defined Saturation with Plotting block in customsat_lib.mdl
uses block callbacks to add functionality to the original custom saturation
block. This block provides an option to plot the saturation limits when the
simulation ends. The following steps show how to modify the original custom
saturation block to create this new block.
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1 Add a check box to the mask parameter dialog box to toggle the plotting
option on and off, as shown in the following figure.

To add this check box:

a Right-click the Level-2 M-file S-Function block in saturation_lib.mdl
and select Edit Mask.

b On the Mask Editor’s Parameters pane, add a fifth mask parameter
with the following properties.

Property Value

Prompt Plot saturation limits

Variable plotcheck

Type checkbox
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Property Value

Tunable No

Dialog callback customsat_callback('plotsaturation',gcb);

c Click OK on the Mask Editor.

2 Write a callback for the new check box. The callback initializes a structure
to store the saturation limit values during simulation in the Level-2 M-File
S-Function block’s UserData. The M-file customsat_plotcallback.m
contains this new callback, as well as modified versions of the previous
callbacks to handle the new mask parameter. If you are following through
this example, open customsat_plotcallback.m and copy its subfunctions
over the previous subfunctions in customsat_callback.m.

%% Plotting checkbox callback

function plotsaturation(block)

% Reinitialize the block's userdata

vals = get_param(block,'MaskValues');

ud = struct('time',[],'upBound',[],'upVal',[],'lowBound',[],'lowVal',[]);

if strcmp(vals{1},'No limit'),

ud.upBound = 'off';

else

ud.upBound = 'on';

end

if strcmp(vals{3},'No limit'),

ud.lowBound = 'off';

else

ud.lowBound = 'on';

end

set_param(gcb,'UserData',ud);

3 Update the M-file S-function’s Outputs method to store the
saturation limits, if applicable, as done in the new M-file S-function
custom_sat_plot.m. If you are following through this example, copy the
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Outputs method in custom_sat_plot.m over the original Outputs method
in custom_sat_final.m

%% Function: Outputs ===================================================

function Outputs(block)

lowMode = block.DialogPrm(1).Data;

upMode = block.DialogPrm(3).Data;

sigVal = block.InputPort(1).Data;

vals = get_param(block.BlockHandle,'MaskValues');

plotFlag = vals{5};

lowPortNum = 2;

% Check upper saturation limit

if isequal(upMode,2)

upVal = block.RuntimePrm(2).Data;

elseif isequal(upMode,3)

upVal = block.InputPort(2).Data;

lowPortNum = 3; % Move lower boundary down one port number

else

upVal = inf;

end

% Check lower saturation limit

if isequal(lowMode,2),

lowVal = block.RuntimePrm(1).Data;

elseif isequal(lowMode,3)

lowVal = block.InputPort(lowPortNum).Data;

else

lowVal = -inf;

end

% Use userdata to store limits, if plotFlag is on

if strcmp(plotFlag,'on');

ud = get_param(block.BlockHandle,'UserData');

ud.lowVal = [ud.lowVal;lowVal];

ud.upVal = [ud.upVal;upVal];

ud.time = [ud.time;block.CurrentTime];

set_param(block.BlockHandle,'UserData',ud)

end
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% Assign new value to signal

if sigVal > upVal,

sigVal = upVal;

elseif sigVal < lowVal,

sigVal=lowVal;

end

block.OutputPort(1).Data = sigVal;

%endfunction

4 Write the function plotsat.m to plot the saturation limits. This function
takes the handle to the Level-2 M-File S-Function block and uses this
handle to retrieve the block’s UserData. If you are following through this
tutorial, save plotsat.m to your working directory.

function plotSat(block)

% PLOTSAT contains the plotting routine for custom_sat_plot

% This routine is called by the S-function block's StopFcn.

ud = get_param(block,'UserData');

fig=[];

if ~isempty(ud.time)

if strcmp(ud.upBound,'on')

fig = figure;

plot(ud.time,ud.upVal,'r');

hold on

end

if strcmp(ud.lowBound,'on')

if isempty(fig),

fig = figure;

end

plot(ud.time,ud.lowVal,'b');

end

if ~isempty(fig)

title('Upper bound in red. Lower bound in blue.')

end
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% Reinitialize userdata

ud.upVal=[];

ud.lowVal=[];

ud.time = [];

set_param(block,'UserData',ud);

end

5 Right-click the Level-2 M-file S-Function block and select Block
Properties. The Block Properties dialog box opens. On the Callbacks
pane, modify the StopFcn to call the plotting callback as shown in the
following figure, then click OK.
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Custom Block Examples

In this section...

“Creating Custom Blocks from Masked Library Blocks” on page 21-44

“Creating Custom Blocks from MATLAB® Functions” on page 21-44

“Creating Custom Blocks from S-Functions” on page 21-45

Creating Custom Blocks from Masked Library Blocks
The Additional Math and Discrete Simulink® library is a group of custom
blocks created by extending the functionality of built-in Simulink blocks. The
Additional Discrete library contains a number of masked blocks that extend
the functionality of the standard Unit Delay block. See Chapter 7, “Working
with Block Libraries” for more general information on Simulink libraries.

Creating Custom Blocks from MATLAB® Functions
The Simulink product provides a number of demonstrations that show how to
incorporate MATLAB® functions into a custom block.

• The Single Hydraulic Cylinder Simulation, sldemo_hydcyl.mdl, uses a
Fcn block to model the control valve flow. In addition, the Control Valve
Flow block is a library link to one of a number of custom blocks in the
library hydlib.mdl.

• The Radar Tracking Model, sldemo_radar.mdl, uses a MATLAB Fcn
block to model an extended Kalman filter. The M-file aero_extkalman.m
implements the Kalman filter found inside the Radar Kalman Filter
subsystem. In this example, the M-file requires three inputs, which are
bundled together using a Mux block in the Simulink model.

• The Spiral Galaxy Formation demonstration, sldemo_eml_galaxy.mdl,
uses several Embedded MATLAB™ Function blocks to construct two
galaxy and calculate the effects of gravity as these two galaxies nearly
collide. The demo also uses Embedded MATLAB Function blocks to plot
the simulation results using a subset of MATLAB functions not supported
for code generation. However, because these Embedded MATLAB Function
blocks have no outputs, the Real-Time Workshop® product optimizes them
away during code generation.
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Creating Custom Blocks from S-Functions
The Simulink model sfundemos.mdl contains various examples of M-file and
C MEX-file S-functions. For more information on writing M-file S-functions,
see “Writing S-Functions in M”. For more information on writing C MEX
S-functions, see “Writing S-Functions in C”. For a list of available S-function
demos, see “S-Function Examples” in Writing S-Functions.
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MATLAB™ Function Block

Introduction to Embedded
MATLAB™ Function Blocks
(p. 22-3)

Overview of the use of Embedded
MATLAB™ Function blocks

Creating an Example Embedded
MATLAB™ Function (p. 22-7)

How to create an example Simulink®

model with an Embedded MATLAB
Function block that you program.

Debugging an Embedded
MATLAB™ Function Block
(p. 22-21)

How to debug the Embedded
MATLAB function for the example
model you create in the previous
section.

The Embedded MATLAB™ Function
Editor (p. 22-36)

Reference of operations available in
the Embedded MATLAB Editor.

Typing Function Arguments
(p. 22-61)

How to specify argument types for
Embedded MATLAB functions.

Sizing Function Arguments
(p. 22-71)

How to specify argument sizes for
Embedded MATLAB functions.

Parameter Arguments in Embedded
MATLAB™ Functions (p. 22-74)
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and MATLAB® variables as
arguments to an Embedded
MATLAB Function block.

Resolving Signal Objects for Output
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Explains signal resolution for
Embedded MATLAB Function
blocks
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Working with Structures and Bus
Signals (p. 22-77)

Describes how to create and use
structures in Embedded MATLAB
blocks, based on Simulink bus
objects

Working with Frame-Based Signals
(p. 22-91)

Explains how Embedded MATLAB
Function blocks work with
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Using Traceability in Embedded
MATLAB™ Function Blocks
(p. 22-98)

Describes how to use traceability
in Embedded MATLAB Function
blocks
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Introduction to Embedded MATLAB™ Function Blocks

In this section...

“What Is an Embedded MATLAB™ Function Block?” on page 22-3

“Why Use Embedded MATLAB™ Function Blocks?” on page 22-5

What Is an Embedded MATLAB™ Function Block?
The Embedded MATLAB™ Function block allows you to add MATLAB®

functions to Simulink® models for deployment to embedded processors. This
capability is useful for coding algorithms that are better stated in the textual
language of the MATLAB software than in the graphical language of the
Simulink product. This block works with a subset of the MATLAB language
called the Embedded MATLAB subset, which provides optimizations for
generating efficient, production-quality C code for embedded applications. For
more information, see “Working with the Embedded MATLAB Subset” in the
MATLAB documentation. For more information on fixed-point support in
MATLAB, refer to“Fixed-Point Embedded MATLAB Subset Features” in the
Fixed-Point Toolbox™ documentation.
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Here is an example of a Simulink model that contains an Embedded MATLAB
Function block:

You will build this model in “Creating an Example Embedded MATLAB™
Function” on page 22-7 .

Note in this Embedded MATLAB function that you can declare local variables
implicitly through assignment, just as you would in MATLAB functions. The
variable takes its type and size from the context in which it is assigned. For
example, the following code line declares x to be a scalar variable of type
double.

x = 1.54;

Once you define a variable, you cannot redefine it to any other type or size in
the function body. For example, you cannot declare x and reassign it:

x = 2.65; % OK: x is a scalar double
x = [x 2*x]; % Error: x cannot be changed to a vector
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See “Creating Local Variables By Assignment” in the Embedded MATLAB
documentation for detailed descriptions and examples.

In addition to supporting a rich subset of the MATLAB language, Embedded
MATLAB Function blocks can call any of the following types of functions:

• Subfunctions

Subfunctions are defined in the body of the Embedded MATLAB block. In
the preceding example, avg is a subfunction. See “Calling Subfunctions” in
the Embedded MATLAB documentation.

• Embedded MATLAB runtime library functions

Embedded MATLAB runtime library functions are a subset of the
functions that you call in MATLAB. When you build your model with
Real-Time Workshop®, these functions generate C code that conforms to
the memory and variable type requirements of embedded environments.
In the preceding example, length, sqrt, and sum are Embedded MATLAB
runtime library functions. See “Calling Embedded MATLAB Library
Functions” in the Embedded MATLAB documentation.

• MATLAB functions

Function calls that cannot be resolved as subfunctions or Embedded
MATLAB runtime library functions are resolved in the MATLAB
workspace. These functions do not generate code; they execute only in
the MATLAB workspace during simulation of the model. See “Calling
MATLAB Functions” in the Embedded MATLAB documentation.

Why Use Embedded MATLAB™ Function Blocks?
Embedded MATLAB Function blocks provide the following capabilities:

• Allow you to build MATLAB functions into embeddable
applications — Embedded MATLAB Function blocks support a subset
of MATLAB commands that generate efficient C code (see “Embedded
MATLAB Function Library Reference” in the Embedded MATLAB
documentation). With this support, you can use Real-Time Workshop to
generate embeddable C code from Embedded MATLAB Function blocks
that implements a variety of sophisticated mathematical applications. In
this way, you can build executables that harness MATLAB functionality,
but run outside the MATLAB environment.
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• Inherit properties from Simulink input and output signals — By
default, both the size and type of input and output signals to an Embedded
MATLAB Function block are inherited from Simulink signals. You can also
choose to specify the size and type of inputs and outputs explicitly in the
Model Explorer or Ports and Data Manager (see “Ports and Data Manager”
on page 22-37).
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Creating an Example Embedded MATLAB™ Function

In this section...

“Adding an Embedded MATLAB™ Function Block to a Model” on page 22-7

“Programming the Embedded MATLAB™ Function” on page 22-9

“Checking the Function for Errors” on page 22-14

“Defining Inputs and Outputs” on page 22-17

Adding an Embedded MATLAB™ Function Block to
a Model
Start by creating an empty model and filling it with an Embedded MATLAB
Function block, and other blocks necessary to complete the model.

1 Create a new model with the Simulink® product and add an Embedded
MATLAB Function block to it from the User-Defined Function library.

An Embedded MATLAB Function block has two names. The name in the
middle of the block is the name of the function you build for the Embedded
MATLAB Function block. Its name defaults to fcn. The name at the
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bottom of the block is the name of the block itself. Its name defaults to
Embedded MATLAB Function.

The default Embedded MATLAB Function block has an input port and an
output port. The input port is associated with the input argument u, and
the output port is associated with the output argument y.

2 Add the following Source and Sink blocks to the model:

• From the Sources library, add a Constant block to the left of the
Embedded MATLAB Function block and set its value to the vector [2
3 4 5].

• From the Sinks library, add two Display blocks to the right of the
Embedded MATLAB Function block.

The model should now have the following appearance:

3 In the window displayed by the Simulink product, select File > Save As
and save the model as call_stats_block1.
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Programming the Embedded MATLAB™ Function
You create a model with an Embedded MATLAB Function block in “Creating
an Example Embedded MATLAB™ Function” on page 22-7. Now you want
to add code to the block to define it as a function that takes a vector set of
values and calculates the mean and standard deviation for those values. Use
the following steps to program the function stats:

1 Open the call_stats_block1 model that you save at the end of “Adding
an Embedded MATLAB™ Function Block to a Model” on page 22-7.
Double-click the Embedded MATLAB Function block fcn to open it for
editing.

The Embedded MATLAB™ Editor appears.

The Embedded MATLAB Editor window is titled with the syntax <model
name>/<Embedded MATLAB Function block name> in its header. In this
example, the model name is call_stats_block1, and the block name is
Embedded MATLAB Function, the name that appears at the bottom of the
Embedded MATLAB Function block.

Inside the Embedded MATLAB Editor is an edit window for editing the
function that specifies the Embedded MATLAB Function block. A function
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header with the function name fcn is at the top of the edit window. The
header specifies an argument to the function, u, and a return value, y.

2 Edit the function header line with the return values, function name, and
argument:

function [mean,stdev] = stats(vals)

The Embedded MATLAB function stats calculates a statistical mean and
standard deviation for the values in the vector vals. The function header
declares vals to be an argument to the stats function and mean and stdev
to be return values from the function.

3 In the Embedded MATLAB Editor, select File > Save Model As and save
the model as call_stats_block2.

Saving the model updates the model window, which now looks like this:

,�������	� /��������	��
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Changing the function header of the Embedded MATLAB Function block
makes the following changes to the Embedded MATLAB Function block in
the Simulink model:

• The function name in the middle of the block changes to stats.

• The argument vals appears as an input port to the block.

• The return values mean and stdev appear as output ports to the block.

4 Complete the connections to the Embedded MATLAB Function block as
shown.

5 In the Embedded MATLAB Editor, enter a line space after the function
header and replace the default comment line with the following comment
lines:

% calculates a statistical mean and a standard
% deviation for the values in vals.

You specify comments with a leading percent (%) character, just as you
do in MATLAB®.
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6 Enter a line space after the comments and replace the default function line
y = u; with the following:

len = length(vals);

The function length is an example of a built-in function supported by the
runtime function library for Embedded MATLAB Function blocks. This
length works just like the MATLAB function length. It returns the vector
length of its argument vals. However, when you simulate this model, C
code is generated for this function in the simulation application. Callable
functions supported for Embedded MATLAB Function blocks are listed
in the topic “Embedded MATLAB Function Library Reference” in the
Embedded MATLAB documentation.

The variable len is a local variable that is automatically typed as a scalar
double because the Embedded MATLAB runtime library function, length,
returns a scalar of type double. If you want, you can declare len to have a
different type and size by changing the way you declare it in the function.
See “Creating Local Variables By Assignment” in the Embedded MATLAB
documentation for details about implicitly declaring local variables in an
Embedded MATLAB Function block.

By default, implicitly declared local variables like len are temporary. They
come into existence only when the function is called and cease to exist when
the function is exited. To persist implicitly declared variables between
function calls, see “Declaring Persistent Variables” in the Embedded
MATLAB documentation.

7 Enter the following lines to calculate the value of mean and stdev:

mean = avg(vals,len);
stdev = sqrt(sum(((vals-avg(vals,len)).^2))/len);

stats stores the mean and standard deviation values for the values in vals
in the variable mean and stdev, which are output by port to the Display
blocks in the model. The line that calculates mean calls a subfunction, avg,
that has not been defined yet. The line that calculates stdev calls the
Embedded MATLAB runtime library functions sqrt and sum.

8 Enter the following line to plot the input values in vals.
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plot(vals,'-+');

This line calls the function plot to plot the input values sent to stats
against their vector indices. Because the Embedded MATLAB runtime
library has no plot function, the Embedded MATLAB function cannot
resolve this call with a subfunction or an Embedded MATLAB runtime
function. Instead, it replaces this call with a call to the MATLAB plot
function in the generated code for the simulation target.

See “Calling MATLAB Functions” in the Embedded MATLAB
documentation for more details on using this mechanism to call MATLAB
functions from Embedded MATLAB functions.

9 Enter a line space followed by the following lines for the subfunction avg,
which is called in an earlier line.

function mean = avg(array,size)
mean = sum(array)/size;

These two lines define the subfunction avg. You are free to use subfunctions
in Embedded MATLAB function code with single or multiple return values,
just as you do in regular MATLAB functions.

The Embedded MATLAB Editor should now have the following appearance:
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10 Save the model as call_stats_block2.

Checking the Function for Errors
Once you finish specifying an Embedded MATLAB Function block in its
Simulink model, use the built-in diagnostics of Embedded MATLAB Function
blocks to test for syntax errors with the following procedure:

1 Open the call_stats_block2 model that you save at the end of
“Programming the Embedded MATLAB™ Function” on page 22-9.
Double-click its Embedded MATLAB Function block stats to open it for
editing.

2 In the Embedded MATLAB Editor, click the Build icon to compile
and build the example model.

If errors are found, the Diagnostics Manager window lists them. If no
errors are found, the Diagnostics Manager window displays log messages
that depends on the contents of your Embedded MATLAB Function block.
The final log message is

Model Compilation for model_name successful.
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The following is an example of what happens when an error is found.

1 Change the subfunction avg to a fictitious subfunction aug and then compile
to see the following messages in the Diagnostics Manager window:

Each detected error appears with a red button.

2 Click the first error line to display its diagnostic message in the bottom half
of the error window.

3 In the diagnostic message for the selected error, click the blue link to find
the offending code:
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The offending line appears highlighted in the Embedded MATLAB Editor:
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4 Correct the error by changing aug back to avg and recompile. No errors are
found and the compile completes successfully.

Defining Inputs and Outputs
In the stats function header for the Embedded MATLAB Function block you
define in “Programming the Embedded MATLAB™ Function” on page 22-9,
the function argument vals is an input and mean and stdev are outputs. By
default, function inputs and outputs inherit their data type and size from the
signals attached to their ports. In this topic, you examine input and output
data for the Embedded MATLAB Function block to verify that it inherits the
correct type and size.

1 Open the call_stats_block2 model that you save at the end of
“Programming the Embedded MATLAB™ Function” on page 22-9.
Double-click the Embedded MATLAB Function block stats to open it for
editing.

2 In the Embedded MATLAB Editor, select Tools > Model Explorer.

22-17



22 Using the Embedded MATLAB™ Function Block

The Model Explorer window opens:

You can use the Model Explorer to define arguments for Embedded
MATLAB Function blocks. Notice that the Embedded MATLAB Function
block Embedded MATLAB is highlighted in the left Model Hierarchy pane.

The Contents pane displays the argument vals and the return values
mean and stdev that you have already created for the Embedded MATLAB
Function block. Notice that vals is assigned a Scope of Input, which is
short for Input from Simulink. mean and stdev are assigned the Scope
of Output, which is short for Output to Simulink.

You can also use the Ports and Data Manager to define arguments for
Embedded MATLAB Function blocks (see “Ports and Data Manager” on
page 22-37).
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3 In the Contents pane of the Model Explorer window, click anywhere in the
row for vals to highlight it:

,�!�	"�����"0� ,�!�	"��������
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The right pane displays the Data properties dialog box for vals. By
default, the type, size, and complexity of input and output arguments
are inherited from the signals attached to each input or output port.
Inheritance is specified by setting Size to -1, Complexity to Inherited,
and Type to Inherit: Same as Simulink.

The actual inherited values for size and type are set during compilation
of the model, and are reported in the Compiled Type and Compiled
Size columns of the Contents pane.

You can specify the type of an input or output argument by selecting a type
in the Type field of the Data properties dialog box, for example, double.
You can also specify the size of an input or output argument by entering
an expression in the Size field of the Data properties dialog box for the
argument. For example, you can enter [2 3] in the Size field to size vals
as a 2-by-3 matrix. See “Typing Function Arguments” on page 22-61 and
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“Sizing Function Arguments” on page 22-71 for more information on the
expressions that you can enter for type and size.

Note The default first index for any arrays that you add to an Embedded
MATLAB Function block function is 1, just as it would be in MATLAB.
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Debugging an Embedded MATLAB™ Function Block

In this section...

“How Debugging Affects Simulation Speed” on page 22-21

“Enabling and Disabling Debugging” on page 22-21

“Debugging the Function in Simulation” on page 22-22

“Watching Function Variables During Simulation” on page 22-30

“Checking for Data Range Violations” on page 22-33

“How Exiting Debug Mode Affects Simulation” on page 22-33

“Debugging Tools” on page 22-34

How Debugging Affects Simulation Speed
Debugging an Embedded MATLAB™ function slows simulation speed. If
your model has many Embedded MATLAB Function blocks and debugging
is enabled, the simulation speed is much slower than when debugging is
disabled. For maximum simulation speed, disable debugging as described in
“Enabling and Disabling Debugging” on page 22-21.

Enabling and Disabling Debugging
There are two levels of debugging available when using Embedded MATLAB
Function blocks, model level debugging and block level debugging.

Debugging is enabled for all Embedded MATLAB functions by default, except
for Embedded MATLAB functions in Stateflow®. Debugging for Embedded
MATLAB functions in Stateflow is controlled in the Simulation Target
dialog.

Disable debugging for an entire model by clearing the Enable
debugging/animation check box in the Simulation Target dialog. Disable
debugging for an individual Embedded MATLAB Function block by clicking
Enable Debugging in the Embedded MATLAB Editor Debug menu. If
Enable Debugging is unavailable, then the Simulation Target dialog is
controlling debugging.
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Debugging the Function in Simulation
In “Creating an Example Embedded MATLAB™ Function” on page 22-7, you
create and specify an example model with an Embedded MATLAB Function
block. You use this block to specify an Embedded MATLAB function stats
that calculates the mean and standard deviation for a set of input values. In
this section, you debug stats in the example model.

You can debug your Embedded MATLAB Function block just like you can
debug a function in MATLAB®. In simulation, you test your Embedded
MATLAB functions for runtime errors with tools similar to the MATLAB
debugging tools. See “Watching with the Command Line Debugger” on page
22-31 and “Debugging Tools” on page 22-34 for more information.

When you start simulation of your model, the Simulink® software checks to
see if the Embedded MATLAB Function block has been built since creation,
or since a change has been made to the block. If not, it performs the build
described in “Checking the Function for Errors” on page 22-14. If no diagnostic
errors are found, the simulation of your model begins.

Use the following procedure to debug the stats Embedded MATLAB function
during simulation of the model:

1 Open the call_stats_block2 model that you save at the end of
“Programming the Embedded MATLAB™ Function” on page 22-9.
Double-click its Embedded MATLAB Function block stats to open it for
editing in the Embedded MATLAB Editor.
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2 In the Embedded MATLAB Editor, in the left margin of line 6, click the
dash (-) character.

A small red ball appears in the margin of line 6, indicating that you have
set a breakpoint.
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3 Begin simulating the model:

If you get any errors or warnings, make corrections before you try to
simulate again. Otherwise, simulation pauses when execution reaches
the breakpoint you set. This is indicated by a small green arrow in the
left margin, as shown.

4 Click the Step icon to advance execution:

The execution arrow advances to line 7 of stats. Notice that line 7 calls the
subfunction avg. If you click Step here, execution advances to line 8, past
the execution of the subfunction avg. To track execution of the lines in the
subfunction avg, you need to click the Step In icon.
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5 Click the Step In icon .

Execution advances to enter the subfunction avg:

Once you are in a subfunction, you can use the Step or Step In icons to
advance execution. If the subfunction calls another subfunction, use the
Step In icon to enter it. If you want to execute the remaining lines of the

subfunction, click the Step Out icon .
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6 Click the Step icon to execute the only line in the subfunction avg.

The subfunction avg finishes its execution, and you see a green arrow
pointing down under its last line as shown.
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7 Click the Step icon to return to the function stats.

Execution advances to the line after to the call to the subfunction avg,
line 8.
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8 Click Step twice to execute line 8 and the plot function in line 9.

The plot function executes in MATLAB, and you see the following plot.
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In the Embedded MATLAB Editor, a green arrow points down under line 9,
indicating the completion of the function stats.

9 Click the Continue Debugging icon to continue execution of the
model.

At any point in a function, you can advance through the execution of the
remaining lines of the function with the Continue Debugging icon. If
you are at the end of the function, clicking the Step icon accomplishes
the same thing.
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The computed values of mean and stdev now appear in the Display blocks.

10 In the Embedded MATLAB Editor, click the Exit Debug Mode icon to
stop simulation.

For more information, see “How Exiting Debug Mode Affects Simulation”
on page 22-33.

Watching Function Variables During Simulation
While you are simulating the function of an Embedded MATLAB Function
block, you can use several tools to keep track of variable values in the function.
These tools are described in the topics that follow.
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Watching with the Interactive Display
To display the value of a variable in the function of an Embedded MATLAB
Function block during simulation, in the Embedded MATLAB Editor, place
the mouse cursor over the variable text and observe the pop-up display.

For example, to watch the variable len during simulation, place the mouse
cursor over the text len in line 6. The value of len appears adjacent to the
cursor, as shown:

You can display the value for any variable in the Embedded MATLAB function
in this way, no matter where it appears in the function.

Watching with the Command Line Debugger
You can report the values for an Embedded MATLAB function variable
with the Command Line Debugger utility in the MATLAB window during
simulation. When you reach a breakpoint, the Command Line Debugger
prompt, debug>>, appears. At this prompt, you can see the value of a variable
defined for the Embedded MATLAB Function block by entering its name:
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debug>> stdev

1.1180

debug>>

The Command Line Debugger also provides the following commands during
simulation:

Command Description

dbstep Advance to next program step after a breakpoint is
encountered.

dbcont Continue execution to next breakpoint.

dbquit Stop simulation of the model. Press Enter after this
command to return the MATLAB prompt.

help Display help for command line debugging.

print x Display the value of the variable x. If x is a vector or matrix,
you can also index into x. For example, x(1,2).

save Saves all variables to the specified file. Follows the syntax
of the MATLAB save command. To retrieve variables to
the MATLAB base workspace, use load command after
simulation has been ended.

whos Display the size and class (type) of all variables in the scope
of the halted Embedded MATLAB Function block.

You can issue any other MATLAB command at the debug>> prompt, but the
results are executed in the workspace of the Embedded MATLAB Function
block. To issue a command in the MATLAB base workspace at the debug>>
prompt, use the evalin command with the first argument 'base' followed by
the second argument command string, for example, evalin('base','whos').
To return to the MATLAB base workspace, use the dbquit command.
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Watching with MATLAB®

You can display the execution result of an Embedded MATLAB function line
by omitting the terminating semicolon. If you do, execution results for the line
are echoed to the MATLAB window during simulation.

Checking for Data Range Violations
When you enable debugging, Embedded MATLAB Function blocks
automatically check input and output data for data range violations when
the values enter or leave the blocks.

Specifying a Range
To specify a range for input and output data, follow these steps:

1 In the Model Explorer, select the input or output of interest in the
Embedded MATLAB Function block.

The data properties dialog box opens in the Dialog pane of the Model
Explorer.

2 In the data properties dialog box, select the Value Attributes tab and enter
a limit range, as described in “Setting Value Attributes Properties” on page
22-51 .

How Exiting Debug Mode Affects Simulation
The behavior of the Exit Debug Mode option depends on the run-time
context:

If You Exit Debug Mode What Happens

When the Embedded MATLAB
function is stopped at a breakpoint

Simulation stops immediately

From the Embedded MATLAB
Editor

Simulation stops when the
Embedded MATLAB Function block
finishes executing

From the Simulink Editor Simulation stops immediately

By typing Ctrl+C when the Simulink
Editor window has focus

Simulation stops immediately
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Debugging Tools
Use the following tools during an Embedded MATLAB function debugging
session:

Tool Button Description

Breakpoint Indicator
A breakpoint indicator. To set a
breakpoint for a line of function code,
click the hyphen character (-) in the
breakpoints column for the line. A
breakpoint indicator appears in place
of the hyphen. Click the breakpoint
indicator to clear the breakpoint.

Build

Check for errors and build a simulation
application (if no errors are found) for
the model containing this Embedded
MATLAB function.

Start Simulation

Start simulation of the model containing
the Embedded MATLAB function.
Alternatively, press F5, or, from the
Debug menu, select Start.

Stop Simulation

Stop simulation of the model containing
the Embedded MATLAB function. You
can also select Exit debug mode from
the Debug menu if execution is paused
at a breakpoint.

Set/Clear Breakpoint

Set a new breakpoint or clear an existing
breakpoint for the selected Embedded
MATLAB code line. The presence of the
text cursor or highlighted text selects the
line.

Clear All Breakpoints

Clear all existing breakpoints in the
Embedded MATLAB function.
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Tool Button Description

Step

Step through the execution of the next
Embedded MATLAB code line. This tool
steps past function calls and does not
enter called functions for line-by-line
execution. You can use this tool only after
execution has stopped at a breakpoint.
Alternatively, press F10, or, from the
Debug menu, select Step.

Step In

Step through the execution of the next
Embedded MATLAB code line. If the
line calls a subfunction, step into the
first line of the subfunction. You can use
this tool only after execution has stopped
at a breakpoint. Alternatively, press
Shift+F11.

Step Out

Step out of line-by-line execution of the
current function or subfunction. If in
a subfunction, the debugger continues
to the line following the call to this
subfunction. You can use this tool
only after execution has stopped at a
breakpoint. Alternatively, press F10.

Continue Debugging

Continue debugging after a pause, such
as stopping at a breakpoint. You can use
this tool only after execution has stopped
at a breakpoint. Alternatively, press F10.
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The Embedded MATLAB™ Function Editor
• “Customizing the Embedded MATLAB™ Editor” on page 22-36

• “Embedded MATLAB™ Editor Tools” on page 22-36

• “Ports and Data Manager” on page 22-37

Customizing the Embedded MATLAB™ Editor
Use the toolbar icons to customize the appearance of the Embedded
MATLAB™ Editor in the same manner as the MATLAB® editor. See
“Arranging the Desktop” in the MATLAB documentation.

Embedded MATLAB™ Editor Tools
The following tools are specific to Embedded MATLAB:

Tool Button Description

Edit Data/Ports

Opens the Ports and Data Manager dialog to add or
modify arguments for the current Embedded MATLAB
Function block (see “Ports and Data Manager” on page
22-37). You can also open this dialog by selecting Edit
Data/Ports from the Tools menu.

To define and modify input and output arguments for
any Embedded MATLAB Function block in the model
hierarchy, use the Model Explorer, which you can open
from the Tools menu.

Simulation
Target

Opens the Simulation Target dialog to enable debugging
or include custom code. See “Enabling and Disabling
Debugging” on page 22-21 for more information on
debugging, and “Including C Functions in Simulation
Targets” in the Embedded MATLAB documentation for
more information on including custom code.
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Tool Button Description

Go To Diagram

Displays the Embedded MATLAB function in its native
diagram without closing the Embedded MATLABB
Editor.

Update Ports

Updates the ports of the Embedded MATLAB Function
block with the latest changes made to the function
argument and return values without closing the
Embedded MATLAB Editor.

See “Defining Inputs and Outputs” on page 22-17 for an example of defining
an input argument for an Embedded MATLAB Function block.

Ports and Data Manager
The Ports and Data Manager provides a convenient method for defining
objects and modifying their properties for an Embedded MATLAB Function
block that is open and has focus.

The Ports and Data Manager provides the same data definition capabilities as
the Model Explorer, but restricted to individual Embedded MATLAB Function
blocks. To modify objects and properties for blocks across the model hierarchy,
use the Model Explorer, as described in “The Model Explorer” on page 13-2.

The Ports and Data Manager Dialog
The Ports and Data Manager dialog allows you to add and define data
arguments, input triggers, and function call outputs for Embedded MATLAB
Function blocks. Using this dialog, you can also modify properties for the
Embedded MATLAB Function block and the objects it contains.

The dialog consists of two panes:

• Contents pane lists the objects that have been defined for the Embedded
MATLAB Function block

• Dialog pane displays fields for modifying the properties of the selected
object
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Properties vary according to the scope and type of the object. Therefore, the
Ports and Data Manager properties dialogs are dynamic, displaying only the
property fields that are relevant for the object you add or modify.

When you first open the dialog, it displays the properties of the Embedded
MATLAB Function block.

Opening the Ports and Data Manager
To open the Ports and Data Manger from the Embedded MATLAB Editor,

select Tools > Edit Data/Ports or click the Edit Data/Ports icon .

The Ports and Data Manager appears for the Embedded MATLAB Function
block that is open and has focus.

Setting Embedded MATLAB™ Function Block Properties
The Dialog pane for an Embedded MATLAB Function block looks like this:
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This section describes each property of an Embedded MATLAB Function
block.

Name. Name of the Embedded MATLAB Function block, following the
same naming conventions as for Simulink® blocks (see “Manipulating Block
Names” on page 6-30).

Update method. Method for activating the Embedded MATLAB Function
block. You can choose from the following update methods:

22-39



22 Using the Embedded MATLAB™ Function Block

Update
method

Description

Inherited
(default)

Input from the Simulink model activates the Embedded
MATLAB Function block.

If you define an input trigger, the Embedded MATLAB
Function block executes in response to a Simulink signal or
function-call event on the trigger port. If you do not define
an input trigger, the Embedded MATLAB Function block
implicitly inherits triggers from the model. These implicit
events are the sample times (discrete or continuous) of the
signals that provide inputs to the chart.

If you define data inputs, the Embedded MATLAB Function
block samples at the rate of the fastest data input. If you do
not define data inputs, the Embedded MATLAB Function
block samples as defined by its parent subsystem’s execution
behavior.

Discrete The Embedded MATLAB Function block is sampled at the
rate you specify as the block’s Sample Time property.
An implicit event is generated at regular time intervals
corresponding to the specified rate. The sample time is in the
same units as the Simulink simulation time. Note that other
blocks in the model can have different sample times.

Continuous The Simulink software wakes up (samples) the Embedded
MATLAB Function block at each step in the simulation, as
well as at intermediate time points that can be requested by
the solver. This method is consistent with the continuous
method.

Lock Editor. Option for locking the Embedded MATLAB Editor. When
enabled, this option prevents users from making changes to the Embedded
MATLAB Function block.

Saturate on integer overflow. Option that determines how the Embedded
MATLAB Function block handles overflow conditions during integer
operations:
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Setting Action When Overflow Occurs

Enabled
(default)

Saturates an integer by setting it to the maximum positive or
negative value allowed by the word size. Matches MATLAB
behavior.

Disabled In simulation mode, generates a runtime error. For Real-Time
Workshop® code generation, the behavior depends on your C
language compiler.

Note The Saturate on Integer Overflow option is relevant only for integer
arithmetic. It has no effect on fixed point or double-precision arithmetic.

When you enable Saturate on Integer Overflow, the Embedded MATLAB
Function block adds additional checks in the generated code to detect integer
overflow or underflow. Therefore, it is more efficient to disable this option
if you are sure that integer overflow and underflow will not occur in your
Embedded MATLAB function code.

Even when you disable this option, the code for a simulation target checks
for integer overflow and underflow. If either condition occurs, simulation
stops and an error is generated. If you enabled debugging for the Embedded
MATLAB Function block, the debugger displays the error and lets you
examine the data.

If you have not enabled debugging for the Embedded MATLAB Function
block, the block generates a runtime error, as in this example:
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It is important to note that the code for an Real-Time Workshop target does
not check for integer overflow or underflow and, therefore, may produce
unpredictable results when Saturate on Integer Overflow is disabled. In
this situation, it is recommended that you simulate first to test for overflow
and underflow before generating the Real-Time Workshop target.

Simulink input signal properties. Parameters that apply to Embedded
MATLAB Function blocks in models that use fixed-point or integer data types.
You can specify the following properties for input signals:
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Property Description

FIMATH for
fixed-point input
signals

Defines the fimath object to be associated with fixed-point or integer
signals that enter the Embedded MATLAB Function block as inputs. Enter
an expression that evaluates to a fimath object, as in these examples:

• Fully define the fimath object using the Fixed-Point Toolbox™ fimath
function.

• Enter the variable name of a fimath object that is defined in the
MATLABworkspace.

The default fimath object defined for this parameter emulates C-style
math for a standard 32-bit processor:

Note This property applies to all input signals in the Embedded MATLAB
Function block, not to each input individually, because signals with
different fimath properties cannot interact.

You can change the fimath properties of an input by casting it to a variable
with the desired fimath properties:

x = fi(u, F);

In this example, u is the input, x is the variable, and F is the desired
fimath object.

For more information, see “Working with fimath Objects”.

Treat these
inherited signal
types as fi
objects

Specifies whether to treat inherited integer signals as MATLAB integers
or Fixed-Point Toolbox fi objects.
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Description. Description of the Embedded MATLAB Function block.

Document Link. Link to documentation for the Embedded MATLAB
Function block. To document an Embedded MATLAB Function block, set the
Document Link property to a Web URL address or MATLAB expression that
displays documentation in a suitable format (for example, an HTML file or
text in the MATLAB Command Window). The Embedded MATLAB Function
block evaluates the expression when you click the blue Document Link text.

Adding Data to an Embedded MATLAB™ Function Block
You can define input and output data arguments for an Embedded MATLAB
Function block directly in the script, or by using the Ports and Data Manager
or Model Explorer. You can use the Ports and Data Manager to add data
arguments to an Embedded MATLAB Function block that is open and has
focus. You can also modify the properties of data arguments in the block.

You can define data arguments for Embedded MATLAB Function blocks in
the following methods:

Method For Defining Reference

Define data directly
in the Embedded
MATLAB function
script

Input and output data See “Defining Inputs
and Outputs” on page
22-17.

Use the Ports and Data
Manager

Input, output, and
parameter data in the
Embedded MATLAB
Function block that is
open and has focus

See “Defining Data in
the Ports and Data
Manager” on page
22-45.

Use the Model Explorer Input, output, and
parameter data in
Embedded MATLAB
Function blocks at all
levels of the model
hierarchy

See “Defining Data in
the Model Explorer” on
page 22-46
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Defining Data in the Ports and Data Manager. To add a data argument
and modify its properties, follow these steps:

1 In the Ports and Data Manager, click the Add Data icon .

The Ports and Data Manager adds a default definition of the data to the
Embedded MATLAB Function block and displays the new data argument.

2 Select the row containing the new data argument.

3 Select the data property you want to modify, and specify a new value, as
in this example:
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4 Repeat step 3 to specify values for other data properties.

Defining Data in the Model Explorer. The Data properties dialog in the
Model Explorer allows you to set and modify the properties of data arguments
in Embedded MATLAB Function blocks. Properties vary according to the
scope and type of the data object. Therefore, the Data properties dialog is
dynamic, displaying only the property fields that are relevant for the data
argument you are defining.

Open the Data properties dialog by selecting a data argument in the Contents
pane.

The Data properties dialog provides a set of tabbed panes, as in this example:
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Each tab lets you define different features of your data argument:

• The General tab lets you define the scope, size, complexity, and type of the
data argument. See “Setting General Properties” on page 22-47.

• The Value Attributes tab lets you set a limit range and save data
argument values. See “Setting Value Attributes Properties” on page 22-51.

• The Description tab lets you enter a description and link to documentation
about the data argument. See “Setting Description Properties” on page
22-53.

Setting General Properties. The General tab of the Data properties dialog
looks like this:
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You can set the following properties in the General tab:

Property Description

Name Name of the data argument, following the same naming conventions used in
MATLAB (see “Naming Variables” in the MATLAB documentation.
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Property Description

Scope Where data resides in memory, relative to its parent. Scope determines the
range of functionality of the data argument. You can set scope to one of the
following values:

• Parameter— Specifies that the source for this data is a variable of the
same name in the MATLAB or model workspace or in the workspace of a
masked subsystem containing this block. If a variable of the same name
exists in more than one of the workspaces visible to the block, the variable
closest to the block in the in the workspace hierarchy is used (see “Using
Model Workspaces” on page 3-61).

• Input— Data provided by the model via an input port to the Embedded
MATLAB Function block.

• Output— Data provided by the Embedded MATLAB Function block via
an output port to the model.

For more information, see “Defining Inputs and Outputs” on page 22-17 and
“Parameter Arguments in Embedded MATLAB™ Functions” on page 22-74.

Port Index of the port associated with the data argument. This property applies
only to input and output data.

Tunable Indicates whether the parameter used as the source of this data item is
tunable (see “Tunable Parameters” on page 2-9). This property applies only to
parameter data. You must clear this option if you want to use the parameter
where Embedded MATLAB requires a constant expression, such as zeros (see
entry for zeros in “Embedded MATLAB Function Library — Alphabetical
List” in the Embedded MATLAB documentation).

Data must
resolve to
Simulink
signal object

Specifies that the data argument must resolve to a Simulink signal object.
This property applies only to output data. See “Resolving Symbols” on page
3-69 for more information.

Size Size of the data argument. Size can be a scalar value or a MATLAB vector of
values. Size defaults to –1, which means that it is inherited, as described in
“Inheriting Argument Sizes from Simulink®” on page 22-71.For more details,
see “Sizing Function Arguments” on page 22-71.
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Property Description

Complexity Indicates real or complex data arguments. You can set complexity to one of
the following values:

• Off— Data argument is a real number

• On— Data argument is a complex number

• Inherited— Data argument inherits complexity based on its scope. Input
and output data inherit complexity from the Simulink signals connected
to them; parameter data inherits complexity from the parameter to which
it is bound.

Sampling
mode

Specifies how an output signal propagates through a model. This property
applies only to data with scope equal to Output. You can set sampling mode to
one of the following values:

• Sample based: Propagate the signal sample by sample (default)

• Frame based: Propagate the signal in batches of samples

Type Type of data object. You can specify the data type by:
• Selecting a built-in type from the Type drop down list.

• Entering an expression in the Type field that evaluates to a data type (see
“Working with Data Types” on page 10-2 in Using Simulink® on page 1).

• Using the Data Type Assistant to specify a data Mode, then specifying
the data type based on that mode.

Note Click the Show data type assistant button to display
the Data Type Assistant.

For more information, see “Specifying Argument Types” on page 22-61.
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Setting Value Attributes Properties. The Value Attributes tab of the
Data properties dialog looks like this:

You can set the following properties on the Value Attributes tab:
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Property Description

Save final
value
to base
workspace

The Embedded MATLAB Function block assigns the value
of the data argument to a variable of the same name in the
MATLAB base workspace at the end of simulation.

Limit
range
properties

Specify the range of acceptable values for input or output
data. The Embedded MATLAB Function block uses this
range to validate the input or output as it enters or leaves
the block. You can enter an expression or parameter that
evaluates to a numeric scalar value.

• Minimum — The smallest value allowed for the data
item during simulation. The default value is -inf.

• Maximum — The largest value allowed for the data item
during simulation. The default value is inf.
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Setting Description Properties. The Description tab of the Data
properties dialog looks like this:

You can set the following properties on the Description tab:

Property Description

Description Description of the data argument.

Document
link

Link to documentation for the data argument. You can enter
a Web URL address or a MATLAB command that displays
documentation in a suitable format, such as an HTML file or
text in the MATLAB Command Window. When you click the
blue text, Document link, displayed at the bottom of the
Data properties dialog, the Embedded MATLAB Function
block evaluates the link and displays the documentation.
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Adding Input Triggers to an Embedded MATLAB™ Function
Block
You can use the Ports and Data Manager to add input triggers to an
Embedded MATLAB Function block that is open and has focus. You can also
modify the properties of input triggers in the block.

To add an input trigger and modify its properties, follow these steps:

1 In the Ports and Data Manager, click the Add Input Trigger icon .

The Ports and Data Manager adds a default definition of the new input
trigger to the Embedded MATLAB Function block and displays the Trigger
properties dialog.

2 Modify properties for the new input trigger, using one of the following
methods:

• In the Contents pane, select the row that contains the input trigger you
want to modify and then edit the property of interest, as in this example:
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• Modify fields in the Trigger properties dialog, as described in “The
Trigger Properties Dialog” on page 22-55.

The Trigger Properties Dialog. The Trigger properties dialog in the Ports
and Data Manager allows you to set and modify the properties of input
triggers in Embedded MATLAB Function blocks.

You can open the Trigger properties dialog using one of these methods:

• Select an input trigger in the Contents pane of the Ports and Data Manager
to open the Trigger properties dialog in the Dialog pane.

• Right-click an input trigger in the Contents pane and select Properties
from the submenu to open the Trigger properties dialog outside the Ports
and Data Manager.
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The Trigger properties dialog looks like this:

Setting Input Trigger Properties. You can set the following properties in
the Trigger properties dialog:

Property Description

Name Name of the input trigger, following the same naming
conventions used in MATLAB (see “Naming Variables” in the
MATLAB documentation.

Port Index of the port associated with the input trigger. The default
value is 1.
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Property Description

Trigger Type of event that triggers execution of the Embedded
MATLAB Function block. You can select one of the following
types of triggers:

• Rising (default) — Triggers execution of the Embedded
MATLAB Function block when the control signal rises from
a negative or zero value to a positive value (or zero if the
initial value is negative).

• Falling— Triggers execution of the Embedded MATLAB
Function block when the control signal falls from a positive
or zero value to a negative value (or zero if the initial value
is positive).

• Either— Triggers execution of the Embedded MATLAB
Function block when the control signal is either rising or
falling.

• Function call— Triggers execution of the Embedded
MATLAB Function block from a block that outputs
function-call events, or from an S-function

DescriptionDescription of the input trigger.

Document
link

Link to documentation for the input trigger. You can enter
a Web URL address or a MATLAB command that displays
documentation in a suitable format, such as an HTML file
or text in the MATLAB Command Window. When you click
the blue text that reads Document link displayed at the
bottom of the Trigger properties dialog, the Embedded
MATLAB Function block evaluates the link and displays the
documentation.

Adding Function Call Outputs to an Embedded MATLAB™
Function Block
You can use the Ports and Data Manager to add and modify function call
outputs to an Embedded MATLAB Function block that is open and has focus.
You can also modify the properties of function call outputs in the block.

To add a function call output and modify its properties, follow these steps:
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1 In the Ports and Data Manager, click the Add Function Call Output

icon .

The Ports and Data Manager adds a default definition of the new function
call output to the Embedded MATLAB Function block and displays the
Function Call properties dialog.

2 Modify properties for the new function call output, using one of the
following methods:

22-58



The Embedded MATLAB™ Function Editor

• In the Contents pane, select the row that contains the function call
output you want to modify and then edit the property of interest, as
in this example:

• Modify fields in the Function Call properties dialog, as described in “The
Function Call Properties Dialog” on page 22-59.

The Function Call Properties Dialog. The Function Call properties dialog
in the Ports and Data Manager allows you to edit the properties of function
call outputs in Embedded MATLAB Function blocks.

You can open the Function Call properties dialog using one of these methods:

• Select a function call output in the Contents pane of the Ports and Data
Manager to open the Function Call properties dialog in the Dialog pane.

• Right-click a function call output in the Contents pane and select
Properties from the submenu to open the Function Call properties dialog
outside the Ports and Data Manager.
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The Function Call properties dialog looks like this:

Setting Function Call Output Properties. You can set the following
properties in the Function Call properties dialog:

Property Description

Name Name of the function call output, following the same naming
conventions used in MATLAB (see “Naming Variables” in the
MATLAB documentation.

Port Index of the port associated with the function call output. The
default value is 3.

DescriptionDescription of the function call output.

Document
link

Link to documentation for the function call output. You can
enter a Web URL address or a MATLAB command that
displays documentation in a suitable format, such as an HTML
file or text in the MATLAB Command Window. When you click
Document link displayed at the bottom of the Function
Call properties dialog, the Embedded MATLAB Function
block evaluates the link and displays the documentation.
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Typing Function Arguments

In this section...

“About Function Arguments” on page 22-61

“Specifying Argument Types” on page 22-61

“Inheriting Argument Data Types” on page 22-64

“Built-In Data Types for Arguments” on page 22-66

“Specifying Argument Types with Expressions” on page 22-66

“Specifying Simulink® Fixed Point™ Data Properties” on page 22-67

About Function Arguments
You create function arguments for an Embedded MATLAB Function block by
entering them in its function header in the Embedded MATLAB™ Editor.
When you define arguments, the Simulink® software creates corresponding
ports on the Embedded MATLAB Function block that you can attach to
signals. You can select a data type mode for each argument that you define
for an Embedded MATLAB Function block. Each data type mode presents its
own set of options for selecting a data type.

By default, the data type mode for Embedded MATLAB function arguments
is Inherited. This means that the function argument inherits its data type
from the incoming or outgoing signal. To override the default type, you first
choose a data type mode and then select a data type based on the mode. The
following procedure describes how to use the Model Explorer to set data types
for function arguments. You can also use the Ports and Data Manager tool
(see “Ports and Data Manager” on page 22-37).

Specifying Argument Types
To specify the type of an Embedded MATLAB function argument:

1 From the Embedded MATLAB Editor, select Tools > Model Explorer.
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Model Explorer appears with the Embedded MATLAB Function block
highlighted in the Model Hierarchy pane.
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2 In the Contents pane (in the middle), click the row containing the
argument of interest.

3 In the Data properties dialog (on the right), click the Show data type

assistant button to display the Data Type Assistant. Then,
choose an option from the Mode drop-down menu, as shown:

The Data properties dialog changes dynamically to display additional
fields for specifying the data type associated with the mode.

4 Based on the mode you select, specify a desired data type:
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Mode What to Specify

Inherit (default) You cannot specify a value. The data type is inherited from previously-defined
data, based on the scope you selected for the Embedded MATLAB function
argument:

• If scope is Input, data type is inherited from the input signal on the
designated port.

• If scope is Output, data type is inherited from the output signal on the
designated port.

• If scope is Parameter, data type is inherited from the associated
parameter, which can be defined in the Simulink masked subsystem or
the MATLAB® workspace.

See “Inheriting Argument Data Types” on page 22-64.

Built in In the Data type field, select from the drop-down list of supported data
types, as described in “Built-In Data Types for Arguments” on page 22-66.

Fixed point Specify the fixed-point data properties as described in “Specifying Simulink®

Fixed Point™ Data Properties” on page 22-67.

Expression Enter an expression that evaluates to a data type, as described in “Specifying
Argument Types with Expressions” on page 22-66.

Bus Object In the Bus object field, enter the name of a Simulink.Bus object to define
the properties of an Embedded MATLAB structure. You must define the
bus object in the base workspace. See “Working with Structures and Bus
Signals” on page 22-77.

Note You can click the Edit button to create or modify Simulink.Bus objects
using the Simulink Bus Types Editor (see in the Simulink User’s Guide).

Inheriting Argument Data Types
Embedded MATLAB function arguments can inherit their data types,
including fixed point types, from the signals to which they are connected.
Select the argument of interest in the Contents pane of the Model Explorer or
Ports and Data Manager, and set data type mode using one of these methods:
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• In the Data properties dialog, select Inherit: Same as Simulink from
the Type drop-down menu.

• In the Contents pane, set the Data Type column to Inherit: Same as
Simulink.

See “Built-In Data Types for Arguments” on page 22-66 for a list of supported
data types.

Note An argument can also inherit its complexity (whether its value is a
real or complex number) from the signal that is connected to it. To inherit
complexity, set the Complexity field on the Data properties dialog to
Inherited.

Once you build the model, the Compiled Type column of the Model Explorer
or Ports and Data Manager gives the actual type used in the compiled
simulation application.

In the following figure, an Embedded MATLAB Function block argument
inherits its data type from an input signal of type double:
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The inherited type of output data is inferred from diagram actions that store
values in the specified output. In the preceding example, the variables
mean and stdev are computed from operations with double operands, which
yield results of type double. If the expected type matches the inferred type,
inheritance is successful. In all other cases, a mismatch occurs during build
time.
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Note Library Embedded MATLAB Function blocks can have inherited data
types, sizes, and complexities like ordinary Embedded MATLAB Function
blocks. However, all instances of the library block in a given model must
have inputs with the same properties.

Built-In Data Types for Arguments
When you select Built-in for Data type mode, the Data properties dialog
displays a Data type field that provides a drop-down list of supported data
types. You can also choose a data type from the Data Type column in the
Contents pane of the Model Explorer or Ports and Data Manager. The
supported data types are:

Data Type Description

double 64-bit double-precision floating point

single 32-bit single-precision floating point

int32 32-bit signed integer

int16 16-bit signed integer

int8 8-bit signed integer

uint32 32-bit unsigned integer

uint16 16-bit unsigned integer

uint8 8-bit unsigned integer

boolean Boolean (1 = true; 0 = false)

Specifying Argument Types with Expressions
You can specify the types of Embedded MATLAB function arguments as
expressions in the Model Explorer or Ports and Data Manager. Follow these
steps:

1 Select <data type expression> from the Type drop-down menu of the
Data properties dialog.
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2 In the Type field, replace “<data type expression>” with an expression
that evaluates to a data type. The following expressions are allowed:

• Alias type from the MATLAB workspace, as described in “Creating a
Data Type Alias” in the Simulink reference documentation.

• fixdt function to create a Simulink.NumericType object describing a
fixed-point or floating-point data type

• type operator, to base the type on previously defined data

In the following figure, the data type of input argument data1 is int32.
The data type of input argument data2 is based on data1 using the
expression type(data1).

When the model is compiled, the actual type of data2 appears in the
Compiled Type column in the Contents pane:
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Specifying Simulink® Fixed Point™ Data Properties
Embedded MATLAB Function blocks can represent signals and parameter
values as fixed-point numbers. To simulate models that use fixed-point data
in Embedded MATLAB Function blocks, you must install the Simulink® Fixed
Point™ product on your system (see “Product Overview” in the Simulink
Fixed Point documentation).
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When you select the Fixed point data type Mode, the Data Type Assistant
displays fields for additional information about your fixed-point data, as in
this example:

You can set the following fixed-point properties:

Sign. Select whether you want the fixed-point data to be Signed or Unsigned.
Signed data can represent positive and negative quantities. Unsigned data
represents positive values only. The default is Signed.

Word length. Specify the size (in bits) of the word that will hold the
quantized integer. Large word sizes represent large quantities with greater
precision than small word sizes. Word length can be any integer between
0 and 32. The default is 16.

Scaling. Specify the method for scaling your fixed point data to avoid
overflow conditions and minimize quantization errors. You can select the
following scaling modes:
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Scaling
Mode

Description

Binary
point
(default)

If you select this mode, the Data Type Assistant displays the Fraction Length
field, specifying the binary point location.

Binary points can be positive or negative integers. A positive integer moves the
binary point left of the rightmost bit by that amount. For example, an entry of 2
sets the binary point in front of the second bit from the right. A negative integer
moves the binary point further right of the rightmost bit by that amount, as
in this example:

The default is 0.

Slope and
bias

If you select this mode, the Data Type Assistant displays fields for entering
the Slope and Bias.

• Slope can be any positive real number. The default is 1.0.

• Bias can be any real number. The default value is 0.0.

You can enter slope and bias as expressions that contain parameters defined
in the MATLAB workspace.

Note You should use binary-point scaling whenever possible to simplify
the implementation of fixed-point data in generated code. Operations with
fixed-point data using binary-point scaling are performed with simple bit
shifts and eliminate the expensive code implementations required for separate
slope and bias values.
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Calculate Best-Precision Scaling. The Simulink software can automatically
calculate “best-precision” values for both Binary point and Slope and
bias scaling, based on the Limit range properties you specify on the Value
Attributes tab.

To automatically calculate best precision scaling values:

1 Select the Value Attributes tab.

2 Specify Minimum, Maximum, or both Limit range properties.

3 Select the General tab.

4 Click Calculate Best-Precision Scaling.

The Simulink software calculates the scaling values, then displays them in
either the Fraction Length, or Slope and Bias fields.

Note The Limit range properties do not apply to Constant or Parameter
scopes. Therefore, the Simulink software cannot calculate best-precision
scaling for these scopes.

Lock output scaling against changes by the autoscaling tool. Specify
whether you want to prevent the Simulink software from replacing the
current fixed-point type with a type chosen by the autoscaling tool. The
default allows replacement. See “Automatic Scaling” in the Simulink Fixed
Point documentation for instructions on autoscaling fixed-point data.
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Sizing Function Arguments

In this section...

“Specifying Argument Size” on page 22-71

“Inheriting Argument Sizes from Simulink®” on page 22-71

“Specifying Argument Sizes with Expressions” on page 22-73

Specifying Argument Size
To examine or specify the size of an argument, follow these steps:

1 From the Embedded MATLAB™ Editor, select Model Explorer or Tools
> Edit Data/Ports.

2 In the Contents pane, click the row that contains the data argument.

3 Enter the size of the argument in one of two places:

• Size field of the Data properties dialog, located in the Dialog pane

• Size column in the row that contains the data argument, located in the
Contents pane

Note The default value is -1, indicating that size is inherited, as described
in “Inheriting Argument Sizes from Simulink®” on page 22-71.

Inheriting Argument Sizes from Simulink®

Size defaults to -1, which means that the data argument inherits its size
from Simulink® based on its scope:

For Scope Inherits Size

Input From the Simulink input signal connected to the argument.
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For Scope Inherits Size

Output From the Simulink output signal connected to the argument.

Parameter From the Simulink or MATLAB® parameter to which it is
bound. See “Parameter Arguments in Embedded MATLAB™
Functions” on page 22-74.

After you compile the model, the Compiled Size column in the Contents
pane displays the actual size used in the compiled simulation application:

The size of an output argument is the size of the value that is assigned to it. If
the expected size in the Simulink model does not match, a mismatch error
occurs during compilation of the model.

Note No arguments with inherited sizes are allowed for Embedded MATLAB
Function blocks in a library.
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Specifying Argument Sizes with Expressions
The size of a data argument can be a scalar value or a MATLAB vector of
values.

To specify size as a scalar, set the Size field to 1 or leave it blank. To specify
Size as a vector, enter an array of up to two dimensions in [row column]
format where

• The number of dimensions equals the length of the vector.

• The size of each dimension corresponds to the value of each element of
the vector.

For example, a value of [2 4] defines a 2-by-4 matrix. To define a row vector
of size 5, set the Size field to [1 5]. To define a column vector of size 6, set
the Size field to [6 1] or just 6. You can enter a MATLAB expression for
each [row column] element in the Size field. Each expression can use one
or more of the following elements:

• Numeric constants

• Arithmetic operators, restricted to +, -, *, and /

• Parameters defined in the MATLAB Workspace or the parent Simulink
masked subsystem

• Calls to the MATLAB functions min, max, and size

The following examples are valid expressions for Size:

k+1
size(x)
min(size(y),k)

In these examples, k, x, and y are variables of scope Parameter.

Once you build the model, the Compiled Size column in the Contents pane
displays the actual size used in the compiled simulation application.
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Parameter Arguments in Embedded MATLAB™ Functions
Parameter arguments for Embedded MATLAB Function blocks do not take
their values from signals in the Simulink® model. Instead, their values come
from parameters defined in a parent Simulink masked subsystem or variables
defined in the MATLAB® base workspace. Using parameters allows you to
pass read-only constants in the Simulink model to the Embedded MATLAB
Function block.

Use the following procedure to add a parameter argument to a function for an
Embedded MATLAB Function block.

1 In the Embedded MATLAB™ Editor, add an argument to the function
header of the Embedded MATLAB Function block.

The name of the argument must be identical to the name of the masked
subsystem parameter or MATLAB variable that you want to pass to
the Embedded MATLAB Function block. For information on declaring
parameters for masked subsystems, see “Mask Editor” on page 17-17.

2 Bring focus to the Embedded MATLAB Function block.

The new argument appears as an input port in the Simulink diagram.

3 In the Embedded MATLAB Editor, select Model Explorer or Tools > Edit
Data/Ports.

4 In the Contents pane, click the row that contains the new argument.

5 Set Scope to Parameter.

6 Examine the Embedded MATLAB Function block.

The input port no longer appears for the parameter argument.

Note Parameter arguments appear as arguments in the function header of
the Embedded MATLAB Function block to maintain MATLAB consistency.
This lets you test functions in an Embedded MATLAB Function block by
copying and pasting them to MATLAB.
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Resolving Signal Objects for Output Data

In this section...

“Implicit Signal Resolution” on page 22-75

“Eliminating Warnings for Implicit Signal Resolution in the Model” on
page 22-75

“Disabling Implicit Signal Resolution for an Embedded MATLAB™
Function Block” on page 22-76

“Forcing Explicit Signal Resolution for an Output Data Signal” on page
22-76

Implicit Signal Resolution
Embedded MATLAB™ Function blocks participate in signal resolution with
Simulink® signal objects. By default, output data from Embedded MATLAB
Function blocks become associated with Simulink signal objects of the same
name during a process called implicit signal resolution, as described in
Simulink.Signal in the Reference documentation.

By default, implicit signal resolution generates a warning when you update
the chart in the Simulink model. The following sections show you how to
manage implicit signal resolution at various levels of the model hierarchy.
See “Resolving Symbols” on page 3-69 and “Explicit and Implicit Resolution”
on page 3-72 for more information.

Eliminating Warnings for Implicit Signal Resolution
in the Model
To enable implicit signal resolution for all signals in a model, but eliminate
the attendant warnings, follow these steps:

1 In the Simulink Model Editor, select Simulation > Configuration
Parameters.

The Configuration Parameters dialog appears.
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2 In the left pane of the Configuration Parameters dialog, under Diagnostics,
select Data Validity.

Data Validity configuration parameters appear in the right pane.

3 In the Signal resolution field, select Explicit and implicit.

Disabling Implicit Signal Resolution for an Embedded
MATLAB™ Function Block
To disable implicit signal resolution for an Embedded MATLAB Function
block in your model, follow these steps:

1 Right-click the Embedded MATLAB Function block and select Subsystem
Parameters in the context menu.

The Block Parameters dialog opens.

2 In the Permit hierarchical resolution field, select ExplicitOnly or None,
and click OK.

Forcing Explicit Signal Resolution for an Output Data
Signal
To force signal resolution for an output signal in an Embedded MATLAB
Function block, follow these steps:

1 In the Simulink model, right-click the signal line connected to the output
that you want to resolve and select Signal Properties from the context
menu.

2 In the Signal Properties dialog, enter a name for the signal that corresponds
to the signal object.

3 Select the Signal name must resolve to Simulink signal object check
box and click OK.

22-76



Working with Structures and Bus Signals

Working with Structures and Bus Signals

In this section...

“About Structures in Embedded MATLAB™ Function Blocks” on page 22-77

“Example of Structures in an Embedded MATLAB™ Function Block” on
page 22-78

“How Structure Inputs and Outputs Interface with Bus Signals” on page
22-82

“Rules for Defining Structures in Embedded MATLAB™ Function Blocks”
on page 22-82

“Workflow for Creating Structures in Embedded MATLAB™ Function
Blocks” on page 22-83

“Indexing Substructures and Fields” on page 22-84

“Assigning Values to Structures and Fields” on page 22-85

“Working with Non-Tunable Structure Parameters in Embedded
MATLAB™ Function Blocks” on page 22-87

“Limitations of Structures in Embedded MATLAB™ Function Blocks” on
page 22-90

About Structures in Embedded MATLAB™ Function
Blocks
Embedded MATLAB™ Function blocks support MATLAB® structures (see
“Structures” in the MATLAB Programming Fundamentals documentation). In
Embedded MATLAB Function blocks, you can define structure data as inputs
or outputs that interact with bus signals. You can also define structures
inside Embedded MATLAB functions that are not part of Embedded
MATLAB Function blocks (see “Using Structures” in the Embedded MATLAB
documentation).

The following table summarizes how to create different types of structures in
Embedded MATLAB Function blocks:
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Scope How to Create Details

Input Create structure data with scope of
Input.

Output Create structure data with scope of
Output.

You can create structure
data as inputs or outputs
in the top-level Embedded
MATLAB function for
interfacing to other
environments. See
“Workflow for Creating
Structures in Embedded
MATLAB™ Function
Blocks” on page 22-83.

Local Create a local variable implicitly in
an Embedded MATLAB function.

See “Defining Local
Structure Variables” in
the Embedded MATLAB
documentation.

Persistent Declare a variable to be persistent
in an Embedded MATLAB function.

See “Making Structures
Persistent” in the
Embedded MATLAB
documentation.

Parameter Create structure data with scope of
Parameter

See “Working with
Non-Tunable Structure
Parameters in Embedded
MATLAB™ Function
Blocks” on page 22-87.

Structures in Embedded MATLAB Function blocks can contain fields of any
type and size, including composite data (such as muxed signals or buses) and
arrays of structures, as described in “Elements of Structures in the Embedded
MATLAB Subset” in the Embedded MATLAB documentation.

Example of Structures in an Embedded MATLAB™
Function Block

The following example shows how to use structures in an Embedded MATLAB
Function block:
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In this model, an Embedded MATLAB Function block receives a bus signal
using the structure inbus at input port 1 and outputs two bus signals from
the structures outbus at output port 1 and outbus1 at output port 2. The
input signal comes from the Bus Creator block MainBusCreator, which
bundles signals ele1, ele2, and ele3. The signal ele3 is the output of
another Bus Creator block SubBusCreator, which bundles the signals a1 and
a2. The structure outbus connects to a Bus Selector block BusSelector1; the
structure outbus1 connects to another Bus Selector block BusSelector3.

Like other outputs in the Embedded MATLAB subset, structure outputs must
be initialized. The Embedded MATLAB function in this example implicitly
defines a local structure variable mystruct using the struct function, and
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uses this local structure variable to initialize the value of the first output
outbus. It initializes the second output outbus1 to the value of field ele3 of
structure inbus.

Structure Definitions in Example
Here are the definitions of the structures in the Embedded MATLAB Function
block in the example, as they appear in the Ports and Data Manager:

Bus Objects Define Structure Inputs and Outputs
Each structure input and output must be defined by a Simulink.Bus object
in the base workspace (see “Workflow for Creating Structures in Embedded
MATLAB™ Function Blocks” on page 22-83). This means that the structure
shares the same properties as the bus object, including number, name, and
type of fields. In this example, the following bus objects define the structure
inputs and outputs:
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The Simulink.Bus object MainBus defines structure input inbus and
structure output outbus. The Simulink.Bus object SubBus defines structure
output outbus1. Based on these definitions, inbus and outbus have the same
properties as MainBus and, therefore, reference their fields by the same names
as the fields in MainBus, using dot notation (see “Indexing Substructures and
Fields” on page 22-84). Similarly, outbus1 references its fields by the same
names as the fields in SubBus. Here are the field references for each structure
in this example:

Structure First Field Second Field Third Field

inbus inbus.ele1 inbus.ele2 inbus.ele3

outbus outbus.ele1 outbus.ele2 outbus.ele3

outbus1 outbus1.a1 outbus1.a2 —

To learn how to define structures in Embedded MATLAB, see “Workflow for
Creating Structures in Embedded MATLAB™ Function Blocks” on page 22-83.

22-81



22 Using the Embedded MATLAB™ Function Block

How Structure Inputs and Outputs Interface with
Bus Signals
Buses in a Simulink® model appear inside the Embedded MATLAB Function
block as structures; structure outputs from the Embedded MATLAB Function
block appear as buses in Simulink models. When you create structure inputs,
the Embedded MATLAB Function block determines the type, size, and
complexity of the structure from the input signal. When you create structure
outputs, you must define their type, size, and complexity in the Embedded
MATLAB function.

You connect structure inputs and outputs from Embedded MATLAB Function
blocks to any bus signal, including:

• Blocks that output bus signals — such as Bus Creator blocks

• Blocks that accept bus signals as input — such as Bus Selector and Gain
blocks

• S-Function blocks

• Other Embedded MATLAB Function blocks

Working with Virtual and Nonvirtual Buses
Embedded MATLAB Function blocks supports nonvirtual buses only (see
“Virtual and Nonvirtual Buses” on page 9-30 in the Simulink User’s Guide).
When models that contain Embedded MATLAB function inputs and outputs
are built, hidden converter blocks are used to convert bus signals for use
with Embedded MATLAB, as follows:

• Converts incoming virtual bus signals to nonvirtual buses for Embedded
MATLAB structure inputs

• Converts outgoing nonvirtual bus signals from Embedded MATLAB to
virtual bus signals

Rules for Defining Structures in Embedded MATLAB™
Function Blocks
Follow these rules when defining structures in Embedded MATLAB Function
blocks:
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• For each structure input or output in an Embedded MATLAB Function
block, you must define a Simulink.Bus object in the base workspace to
specify its type. For more information, see Simulink.Bus.

• Embedded MATLAB Function blocks support nonvirtual buses only (see
“Working with Virtual and Nonvirtual Buses” on page 22-82).

Workflow for Creating Structures in Embedded
MATLAB™ Function Blocks
Here is the workflow for creating a structure in Embedded MATLAB:

1 Decide on the type (or scope) of the structure (see “About Structures in
Embedded MATLAB™ Function Blocks” on page 22-77).

2 Based on the scope, follow these guidelines for creating the structure:

For Structure
Scope:

Follow These Steps:

Input 1 Create a Simulink.Bus object in the base workspace to define the structure
input.

2 Add data to the Embedded MATLAB Function block, as described in “Adding
Data to an Embedded MATLAB™ Function Block” on page 22-44. The data
should have the following properties

• Scope = Input

• Mode = Bus Object

• Bus object = name of the Simulink.Bus object that defines the structure
input

See “Rules for Defining Structures in Embedded MATLAB™ Function Blocks”
on page 22-82.
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For Structure
Scope:

Follow These Steps:

Output 1 Create a Simulink.Bus object in the base workspace to define the structure
output.

2 Add data to the Embedded MATLAB Function block with the following
properties:

• Scope = Output

• Mode = Bus Object

• Bus object = name of the Simulink.Bus object that defines the structure
input

3 Define and initialize the output structure implicitly as a variable in
the Embedded MATLAB function, as described in “Defining Outputs as
Structures” in the Embedded MATLAB documentation.

4 Make sure the number, type, and size of fields in the output structure
variable definition match the properties of the Simulink.Bus object.

Local Define the structure implicitly as a local variable in the Embedded MATLAB
function, as described in “Defining Local Structure Variables” in the Embedded
MATLAB documentation. By default, local variables in Embedded MATLAB
are temporary.

Persistent Define the structure implicitly as a persistent variable in the Embedded
MATLAB function, as described in “Making Structures Persistent” in the
Embedded MATLAB documentation.

Parameter 1 Create a structure variable in the base workspace.
2 Add data to the Embedded MATLAB Function block with the following

properties:

• Name = same name as the structure variable you created in step 1.

• Scope = Parameter
3 Make sure the Tunable property is unchecked.

See “Working with Non-Tunable Structure Parameters in Embedded
MATLAB™ Function Blocks” on page 22-87.

Indexing Substructures and Fields
As in MATLAB, you index substructures and fields of Embedded MATLAB
structures by using dot notation. Unlike MATLAB, you must reference field
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values individually (see “Limitations with Structures” in the Embedded
MATLAB documentation).

For example, in the model described in “Example of Structures in an
Embedded MATLAB™ Function Block” on page 22-78, the Embedded
MATLAB function uses dot notation to index fields and substructures:

function [outbus, outbus1] = fcn(inbus)

substruct.a1 = inbus.ele3.a1;
substruct.a2 = int8([1 2;3 4]);

mystruct = struct('ele1',20.5,'ele2',single(100),
'ele3',substruct);

outbus = mystruct;
outbus.ele3.a2 = 2*(substruct.a2);

outbus1 = inbus.ele3;

The following table shows how Embedded MATLAB resolves symbols in dot
notation for indexing elements of the structures in this example:

Dot Notation Symbol Resolution

substruct.a1 Field a1 of local structure substruct

inbus.ele3.a1 Value of field a1 of field ele3, a substructure of
structure inputinbus

inbus.ele3.a2(1,1) Value in row 1, column 1 of field a2 of field ele3,
a substructure of structure input inbus

Assigning Values to Structures and Fields
You can assign values to any Embedded MATLAB structure, substructure, or
field. Here are the guidelines:

22-85



22 Using the Embedded MATLAB™ Function Block

Operation Conditions

Assign one structure to another
structure

You must define each structure with
the same number, type, and size
of fields, either as Simulink.Bus
objects in the base workspace
or locally as implicit structure
declarations (see “Workflow for
Creating Structures in Embedded
MATLAB™ Function Blocks” on
page 22-83).

Assign one structure to a
substructure of a different structure
and vice versa

You must define the structure with
the same number, type, and size of
fields as the substructure, either as
Simulink.Bus objects in the base
workspace or locally as implicit
structure declarations.

Assign an element of one structure
to an element of another structure

The elements must have the same
type and size.

For example, the following table presents valid and invalid structure
assignments based on the specifications for the model described in “Example
of Structures in an Embedded MATLAB™ Function Block” on page 22-78:

Assignment Valid or
Invalid?

Rationale

outbus = mystruct; Valid Both outbus and mystruct have the same number,
type, and size of fields. The structure outbus
is defined by the Simulink.Bus object MainBus
and mystruct is defined locally to match the field
properties of MainBus.

outbus = inbus; Valid Both outbus and inbus are defined by the same
Simulink.Bus object, MainBus.
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Assignment Valid or
Invalid?

Rationale

outbus1 = inbus.ele3; Valid Both outbus1 and inbus.ele3 have the same type
and size because each is defined by the Simulink.Bus
object SubBus.

outbus1 = inbus; Invalid The structure outbus1 is defined by a different
Simulink.Bus object than the structure inbus.

Working with Non-Tunable Structure Parameters in
Embedded MATLAB™ Function Blocks
You can define non-tunable structure parameters in Embedded MATLAB
Function blocks. Models that contain non-tunable structure parameters will
compile both for simulation and code generation with Real-Time Workshop®.

Defining Non-Tunable Structure Parameters
To define non-tunable structure parameters in Embedded MATLAB Function
blocks, follow these steps:

1 Define and initialize a structure variable

A common method is to create a structure in the base workspace. For other
methods, see “Working with Block Parameters” on page 6-8.

2 In the Ports and Data Manager or Model Explorer, add data in the
Embedded MATLAB Function block with the following properties:

Property What to Specify

Name Enter same name as the structure variable you defined
in the base workspace

Scope Select Parameter

Tunable Uncheck this check box

Type Select Inherit: Same as Simulink

For example, the data dialog box fields should look something like this:
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Caution Embedded MATLAB Function blocks do not support tunable
structure parameters. If you define a structure parameter as tunable, you
receive a run-time error:

Parameter is a tunable structure parameter
which is not supported. Set the parameter
to be non-tunable, or do not use a structure value.

3 Click Apply.

FIMATH Properties of Non-Tunable Structure Parameters
FIMATH properties for non-tunable structure parameters containing
fixed-point values are based on the initial values of the structure. They do not
come from the FIMATH properties specified for fixed-point input signals to
the parent Embedded MATLAB Function block. (These FIMATH properties
appear in the properties dialog box for Embedded MATLAB Function blocks.)

Rules for Defining Non-Tunable Structure Parameters
Non-tunable structure parameters in Embedded MATLAB Function blocks
have the same limitations as structures in Embedded MATLAB functions. See
“Limitations with Structures” in the Embedded MATLAB documentation.
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Example: Using a Non-Tunable Structure Parameter to
Initialize a Matrix
The following simple example uses a non-tunable structure parameter input
to initialize a matrix output. The model looks like this:

This model defines a structure variable p in its pre-load callback function, as
follows:
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The structure p has two fields, rows and cols, which specify the dimensions
of a matrix. The Embedded MATLAB Function block uses a constant input u
to initialize the matrix output y. Here is the code:

function y = fcn(u, p)
y = zeros(p.rows,p.cols) + u;

Running the model initializes each element of the 2-by-3 matrix y to 99, the
value of u:

Limitations of Structures in Embedded MATLAB™
Function Blocks
Structures in Embedded MATLAB Function blocks support a subset of
the operations available for MATLAB structures (see “Limitations with
Structures” in the Embedded MATLAB documentation).
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Working with Frame-Based Signals

In this section...

“About Frame Based Signals” on page 22-91

“Supported Types for Frame-Based Data” on page 22-92

“Adding Frame-Based Data in Embedded MATLAB™ Function Blocks” on
page 22-92

“Examples of Frame-Based Signals in Embedded MATLAB™ Function
Blocks” on page 22-93

About Frame Based Signals
Embedded MATLAB Function blocks can input and output frame-based
signals in Simulink® models. A frame of data is a collection of sequential
samples from a single channel or multiple channels. To generate frame-based
signals, you must install Signal Processing Blockset. For more information
about using frame-based signals, see “Frame-Based Signals” in the Signal
Processing Blockset documentation.

Embedded MATLAB Function blocks automatically convert incoming
frame-based signals as follows:

• Converts single-channel frame-based signals to MATLAB® column vectors

• Converts multichannel frame-based signals to two-dimensional MATLAB
matrices

An M-by-N frame-based signal represents M consecutive samples from each of
N independent channels. N-Dimensional signals are not supported for frames.

To convert matrix or vector data to a frame-based output, Embedded
MATLAB™ provides a data property called Sampling mode that lets you
specify whether your output is a frame-based or sample-based signal for
downstream processing.
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Supported Types for Frame-Based Data
Embedded MATLAB Function blocks accept frame-based signals of any data
type except bus objects. For a list of supported types, see “Supported Variable
Types” in the Embedded MATLAB documentation.

Adding Frame-Based Data in Embedded MATLAB™
Function Blocks
To add frame-based data to an Embedded MATLAB Function block, follow
these steps:

1 Add an input or output, as described in “Adding Data to an Embedded
MATLAB™ Function Block” on page 22-44.

2 If your data is an output, set Sampling mode to Frame based.

Note If your data is an input, Sampling mode is not an option.
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Note For more information on how to set data properties, see “Defining
Data in the Model Explorer” on page 22-46.

Examples of Frame-Based Signals in Embedded
MATLAB™ Function Blocks
This topic presents examples of how to work with frame-based signals in
Embedded MATLAB Function blocks.

• “Multiplying a Frame-Based Signal by a Constant Value” on page 22-93

• “Adding a Channel to a Frame-Based Signal” on page 22-95

Multiplying a Frame-Based Signal by a Constant Value
In the following example, an Embedded MATLAB Function block multiplies
all the signal values in a frame-based single-channel input by a constant
value and outputs the result as a frame. The input signal is a sine wave that
contains 5 samples per frame. Here is the model:
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In the Embedded MATLAB Function block, input u and output y inherit
size, complexity, and data type from the input sine wave signal, a 5-by-1
vector of signed, generalized fixed-point values. For y to output a frame of
data, you must explicitly set Sampling mode to Frame based (see “Adding
Frame-Based Data in Embedded MATLAB™ Function Blocks” on page 22-92).
When you simulate this model, the Embedded MATLAB Function block
multiplies each input signal by 3 and outputs the result as a frame.

Adding a Channel to a Frame-Based Signal
In the following example, an Embedded MATLAB Function block adds a
channel to a frame-based single-channel input and outputs the multichannel
result. The input signal is a sine wave that contains 8 samples per frame.
Here is the model:
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In the Embedded MATLAB Function block, input u and output y inherit
size, complexity, and data type from the input sine wave signal, an 8-by-1
vector of signed, generalized fixed-point values. For y to output a frame of
data, you must explicitly set Sampling mode to Frame based(see “Adding
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Frame-Based Data in Embedded MATLAB™ Function Blocks” on page 22-92).
Local variable a defines a second column on the matrix which will be output
as a frame and interpreted as a second channel by downstream blocks. When
you simulate this model, the Embedded MATLAB Function block outputs
the new multichannel signal.
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Using Traceability in Embedded MATLAB™ Function Blocks

In this section...

“Extent of Traceability in Embedded MATLAB™ Function Blocks” on page
22-98

“Traceability Requirements” on page 22-98

“Basic Workflow for Using Traceability” on page 22-99

“Tutorial: Using Traceability in an Embedded MATLAB™ Function Block”
on page 22-100

Extent of Traceability in Embedded MATLAB™
Function Blocks
Like other Simulink® blocks, Embedded MATLAB™ Function blocks support
bidirectional traceability, but extend navigation to lines of source code. That
is, you can navigate between a line of generated code and its corresponding
line of source code. In other Simulink blocks, you can navigate between a line
of generated code and its corresponding object.

For information about how traceability works in Simulink blocks, see “Tracing
Generated Code Back to Your Simulink Model” in the Real-Time Workshop®

User’s Guide.

Traceability Requirements
To enable traceability comments in your code, you must have a license for
Real-Time Workshop® Embedded Coder™ software. These comments appear
only in code that you generate for an embedded real-time (ert) based target.

Note Traceability is not supported for M-files that you call from an
Embedded MATLAB Function block.
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Basic Workflow for Using Traceability
The workflow for using traceability is described in “Creating and Using a
Code Generation Report” in the Real-Time Workshop Embedded Coder User’s
Guide.

Here are the basic steps:

1 Open the Embedded MATLAB Function block in your Simulink model.

2 Define your system target file to be an embedded real-time (ert) target.

How?

a In the model, open Simulation > Configuration Parameters.

b In the Real-Time Workshop pane, enter ert.tlc for the system target
file.

3 Enable traceability options.

How?

In the Real-Time Workshop Report pane, enable options, as shown:

4 Generate the source code and header files for your model.
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5 Trace a line of code:

To Trace: Do This:

Line of source code to line of
generated code

Right-click in a line in your
source code and select Real-Time
Workshop > Navigate to Code
from the context menu

Line of generated code to line of
source code

Click a hyperlink in the traceability
comment in your generated code

To learn how to complete each step in this workflow, see “Tutorial: Using
Traceability in an Embedded MATLAB™ Function Block” on page 22-100

Tutorial: Using Traceability in an Embedded
MATLAB™ Function Block
This example shows how to trace between source code and generated code in
an Embedded MATLAB Function block in the eml_fire demo model. Follow
these steps:

1 Type eml_fire at the MATLAB® prompt.

2 In the Simulink model window, double-click the flame block to open the
Embedded MATLAB Editor.

3 In the Simulink model window, select Simulation > Configuration
Parameters.

4 In the Real-Time Workshop pane, go to the Target selection section and
enter ert.tlc for the system target file. Then click Apply.

Note Traceability comments appear hyperlinked in generated code only
for embedded real-time (ert) targets.

5 In the Real-Time Workshop > Report pane, select the Create code
generation report option.
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This action automatically selects the Launch report automatically and
Code-to-model options.

6 Select the Model-to-code option in the Navigation section. Then click
Apply.

This action automatically selects all options in the Traceability Report
Contents section.

Note For large models that contain over 1000 blocks, disable the
Model-to-code option to speed up code generation.

7 Go to the Real-Time Workshop > Interface pane. In the Software
environment section, select the continuous time option. Then click
Apply.

Note Because this demo model contains a block with a continuous sample
time, you must perform this step before generating code.

8 In the Real-Time Workshop pane, click Build in the lower right corner.

This action generates source code and header files for the eml_fire
model that contains the flame block. After the code generation process is
complete, the code generation report appears automatically.
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9 Click the eml_fire.c hyperlink in the report.

10 Scroll down through the code to see the traceability comments.
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Note The line numbers shown above may differ from the numbers that
appear in your code generation report.

11 Click the <S2>:1:19 hyperlink in this traceability comment:

/* '<S2>:1:19' */
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Line 19 of the Embedded MATLAB function appears highlighted in the
Embedded MATLAB Editor.

."'!�"'!���
�"���� � ����"��

12 You can also trace a line in an Embedded MATLAB function to a line of
generated code. For example, right-click in line 21 of your function and
select Real-Time Workshop > Navigate to Code from the context menu.

The code location for line 21 appears highlighted in eml_fire.c.
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PrintFrame Editor

PrintFrame Editor Overview
(p. 23-2)

Overview of the PrintFrame Editor.

Designing the Print Frame (p. 23-8) How to design a print frame.

Specifying the Print Frame Page
Setup (p. 23-9)

How to set up the print frame page.

Creating Borders (Rows and Cells)
(p. 23-11)

How to create borders for the print
frame.

Adding Information to Cells
(p. 23-14)

How to add content to the print
frame cells.

Changing Information in Cells
(p. 23-18)

How to change the content of print
frame cells.

Saving and Opening Print Frames
(p. 23-22)

How to save and open print frames.

Printing Block Diagrams with Print
Frames (p. 23-23)

How to print block diagrams with
print frames.

Example (p. 23-26) Step-by-step example of print frame
creation.
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PrintFrame Editor Overview

In this section...

“About the Print Frame Editor” on page 23-2

“What PrintFrames Are” on page 23-3

“Starting the PrintFrame Editor” on page 23-6

“Getting Help for the PrintFrame Editor” on page 23-7

“Closing the PrintFrame Editor” on page 23-7

“Print Frame Process” on page 23-7

About the Print Frame Editor
The PrintFrame Editor is a graphical user interface you use to create and edit
print frames for block diagrams created with the Simulink® software and the
Stateflow® product. This chapter outlines the PrintFrame Editor, accessible
with the frameedit command.

The following figure describes the general layout of the PrintFrame Editor.
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What PrintFrames Are
Print frames are borders containing information relevant to the block
diagram, for example, the name of the block diagram. After creating a print
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frame, you can use the Simulink software or the Stateflow product to print
a block diagram with a print frame.

This illustration shows an example of a print frame with the major elements
labeled.
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See the “Example” on page 23-26 for specific instructions to create this print
frame.
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Starting the PrintFrame Editor
Type frameedit at the MATLAB® prompt. The PrintFrame Editor window
appears. The PrintFrame Editor window opens with the default print frame.

You can use frameedit filename to open the PrintFrame Editor window
with the specified filename, where filename is a figure file you previously
created and saved using frameedit.

Default Print Frame
The default print frame has two rows. The top row consists of one cell and
the bottom row has two cells.

���	�+

�������	�+

You can add information entries to these cells. You can also add new rows and
cells and add information in them, or change entries to different ones.

Zooming In and Out
While using the PrintFrame Editor, you might need to zoom in on an area
to better see the information or cell.

1 Click in the area you want to zoom in on.

This selects a cell.

2 Click the zoom in button.

23-6



PrintFrame Editor Overview

The area is magnified.

3 Click the zoom in button repeatedly to continue zooming in.

To zoom out, reducing magnification in an area, click the zoom out button.
Click the zoom out button repeatedly to continue zooming out.

Getting Help for the PrintFrame Editor
Select PrintFrame Editor Help from the Help menu in the PrintFrame
Editor window to access this online help.

Closing the PrintFrame Editor
To close the PrintFrame Editor window, click the close box in the upper
right corner, or select Close from the File menu.

Print Frame Process
These are the basic steps for creating and using print frames:

• “Designing the Print Frame” on page 23-8

• “Specifying the Print Frame Page Setup” on page 23-9

• “Creating Borders (Rows and Cells)” on page 23-11

• “Adding Information to Cells” on page 23-14

• “Changing Information in Cells” on page 23-18

• “Saving and Opening Print Frames” on page 23-22

• “Printing Block Diagrams with Print Frames” on page 23-23

See also the “Example” on page 23-26.
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Designing the Print Frame

In this section...

“Before you Begin” on page 23-8

“Variable and Static Information” on page 23-8

“Single Use or Multiple Use Print Frames” on page 23-8

Before you Begin
Before you create a print frame using the PrintFrame Editor, consider the type
of information you want to include in it and how you want the information to
appear. You might want to make a sketch of how you want the print frame to
look, and note the wording you want to use.

Variable and Static Information
In a print frame, you can include variable and static information. Variable
information is automatically supplied at the time of printing, for example,
the date the block diagram is being printed. Static information always
prints exactly as you entered it, for example, the name and address of your
organization.

Single Use or Multiple Use Print Frames
You can design a print frame for one particular block diagram, or you can
design a more generic print frame for printing with different block diagrams.
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Specifying the Print Frame Page Setup
After you have an idea of the design of your print frame, specify the page
setup for the print frame.

Note Always begin creating a new print frame with PrintFrame Page
Setup. If, instead, you begin by creating borders and adding information, and
then later change the page setup, you might have to correct the borders and
placement of the information. For example, if you add information to cells and
then change the page setup paper orientation from landscape to portrait, the
information you added might not fit in the cells, given the new orientation.

1 In the PrintFrame Editor window, select Page Setup from the File
menu.

The PrintFrame Page Setup dialog box appears.

2 In the dialog box, specify:
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• Paper Type – for example, usletter

• Paper Orientation – portrait or landscape

• Margins for the print frame and the Units in which to specify the
margins

3 Click Apply to see the effects of the changes you made. Then click OK to
close the dialog box.
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Creating Borders (Rows and Cells)

In this section...

“First Steps” on page 23-11

“Adding and Removing Rows” on page 23-11

“Adding and Removing Cells” on page 23-12

“Resizing Rows and Cells” on page 23-12

“Print Frame Size” on page 23-12

First Steps
Once you have set up the page, use the PrintFrame Editor to specify borders
(cells) in which the block diagram and information will be placed.

Important Always specify the PrintFrame page setup before creating borders
and adding information (see “Specifying the Print Frame Page Setup” on page
23-9). Otherwise, you might have to correct the borders and placement of the
information. For example, if you add information to cells and then change
the paper orientation from landscape to portrait, the information you added
might not fit in the cells, given the new orientation.

Adding and Removing Rows
You can add and remove rows in a print frame.

1 Click within an existing row to select it. If a row consists of multiple cells,
click in any of the cells in the row to select that row.

When a row is selected, handles appear on all four corners. If handles
appear on only two corners, you clicked on and only selected the line, not
the row.
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2 Click the add row button to create a new row.

The new row appears above the row you selected.

3 To remove a row, select the row and click the delete row button.

Adding and Removing Cells
You can create multiple cells within a row.

1 Select the row in which you want multiple cells.

2 Click the split cell button.

The row splits into two cells. If the row already consists of more than one
cell, the selected cell splits into two cells.

3 To remove a cell, select the cell and click the delete cell button.

Resizing Rows and Cells
You can change the dimensions of a row or cell.

1 Click on the line you want to move.

A handle appears on both ends of the line.

2 Drag the line to the new location.

For example, to make a row taller, click on the top line that forms the row.
Then drag the line up and the height of the row increases.

Print Frame Size
Note that the overall size of the print frame is based on the options you specify
using the page setup feature. Therefore, when you change the dimensions
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of one row or cell, the dimensions of the row or cell next to it change in an
inverse direction. For example, if you drag the top line of a row to make it
taller, the row above it becomes shorter by the same amount.

To change the overall dimensions of the print frame, use the page setup
feature. See “Specifying the Print Frame Page Setup” on page 23-9.
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Adding Information to Cells

In this section...

“Procedure for Adding Information to Cells” on page 23-14

“Text Information” on page 23-15

“Variable Information” on page 23-15

“Multiple Entries in a Cell” on page 23-16

Procedure for Adding Information to Cells
Use the following steps to add information to cells.

1 Select the cell where you want to add information.

2 From the list box, select the type of information you want to add.

3 Click the Add button.

An edit box containing that information appears in the cell. (The edit boxes
for your platform might look slightly different from those in the figure
below.)

4 Click outside of the edit box to end editing mode.
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Note If you click the Add button and nothing happens, it might be because
you did not select a cell first.

Text Information
For Text, type the text you want to include in that cell, for example, the name
of your organization. Press the Enter key if you want to type additional
text on a new line. Note that you can type special characters, for example,
superscripts and subscripts, Greek letters, and mathematical symbols. For
special characters, use embedded TeX sequences (see the text command
String property (in Text Properties of the online documentation) for a list of
allowable sequences). Click outside of the edit box when you are finished
to end editing mode.

Variable Information
All of the items in the information list box, except for the Text item, are
for adding variable information, which is supplied at the time of printing.
When you print a block diagram with a print frame that contains variable
information, the information for that particular block diagram prints in
those fields.

Types of Variable Information
The variable entries you can include are:

• Block Diagram — This entry indicates where the block diagram is to be
printed. Block Diagram is a mandatory entry. If Block Diagram is not
in one of the cells, you cannot save the print frame and therefore cannot
print a block diagram with it.

• Date — The date that the block diagram and print frame are printed, in
dd-mmm-yyyy format, for example, 05-Dec.-1997.

• Time — The time that the block diagram and print frame are printed, in
hh:mm format, for example, 14:22.

• Page Number — The page of the block diagram being printed.

• Total Pages — The total number of pages being printed for the block
diagram, which depends on the printing options specified.
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• System Name — The name of the block diagram being printed.

• Full System Name — The name of the block diagram being printed,
including its position from the root system through the current system, for
example, engine/Throttle & Manifold.

• File Name — The filename of the block diagram, for example,
sldemo_engine.mdl.

• Full File Name — The full path and
filename for the block diagram, for example,
\\matlab\toolbox\simulink\simdemos\automotive\sldemo_engine.mdl.

Note: Adding the system name or filename does not mean that you can then
specify a filename for the Simulink® software or the StateFlow product in
the PrintFrame Editor. It means that when you print a block diagram and
specify that it print with a print frame, the system name or filename of the
Simulink software or the Stateflow® product block diagram is printed in the
specified cell of the print frame.

Format for Variable Information
When you add a variable entry, a percent sign, %, is automatically included
to identify the entry as variable information rather than a text string. In
addition, the type of entry, for example, page, appears in angle brackets,
< >. The entry consists of the entire string, for example, %<page>, for Page
Number.

Multiple Entries in a Cell
You can include multiple entries in one cell.

1 Select the cell.

2 Add another item from the list box.

The new entry is added after the last entry in that cell.

You can also type descriptive text to any of the variable entries without using
the Text item in the information list box.
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1 Double-click in the cell.

An edit box appears around the entry.

2 Type text in the edit box before or after the entry.

3 Click anywhere outside of the edit box to end editing mode.

Note You cannot include multiple entries or text in the cell that contains the
block diagram entry. %<blockdiagram> must be the only information in that
cell. If there is any other information in that cell, you cannot save the print
frame and therefore cannot print it with a block diagram.
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Changing Information in Cells

In this section...

“Aligning the Information in a Cell” on page 23-18

“Editing Text Strings” on page 23-18

“Removing and Copying Entries” on page 23-19

“Changing the Font Characteristics” on page 23-20

Aligning the Information in a Cell
To align the information within a cell:

1 Click within the cell to select it.

2 Click on one of the Align buttons for left, center, or right alignment.

The information aligns within the cell.

Alignment does not apply to the cell that contains the %<blockdiagram>
entry. The block diagram is automatically scaled and centered to fit in that
cell at the time of printing.

Editing Text Strings
You can change text you typed in a cell:

1 Double-click the information you want to edit.

An edit box appears around all of the information in that cell.

2 Click at the start of the text you want to change and drag to the end of
the text to be changed.

This highlights the text.

3 Type the replacement text.
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It automatically replaces the highlighted text.

4 Click anywhere outside of the edit box to end editing mode.

Note Be careful not to edit the text of a variable entry, because then the
variable information will not print. For example, if you accidentally remove
the % from the %<page> entry, the text <page> will print instead of the actual
page number.

Removing and Copying Entries
You can cut, copy, paste, or delete an entry:

1 Double-click the information you want to remove or copy.

An edit box appears around all of the information in that cell.

2 Click at the start of the entry you want to edit and drag to the end of that
entry. This highlights the entry.

For variable information, be sure to include the entire string, for example,
%<page>.

Note that for computers running the Microsoft® Windows® operating
system, you can select all of the entries in a cell by right-clicking the
information and choosing Select All from the pop-up menu.

3 Use the standard editing techniques for your platform to cut, copy, or delete
the highlighted information.

• For computers running the Microsoft Windows operating system,
right-click in the edit box and select Cut, Copy, or Delete from the
pop-up menu.

• For UNIX® based systems, highlighting the information automatically
copies it to the clipboard. If you want to remove it, press the Delete key.

If you make a mistake, use your platform’s standard undo technique. For
example, for computers running the Microsoft Windows operating system,
right-click in the edit box and select Undo from the pop-up menu.
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4 If you cut or copied the information to the clipboard and want to paste it,
double-click the entry where you want to paste it and position the cursor at
the new location in that edit box. Then use the standard paste technique
for your platform.

• For computers running the Microsoft Windows operating system,
right-click at the new location and select Paste from the pop-up menu.

• For UNIX based systems, click at the new location and then click the
middle mouse button.

5 Click somewhere outside of the edit box to end editing mode.

Changing the Font Characteristics
You can change the font characteristics for the information in any cell.
Specifically, you can specify the font size, style, color, and family.

1 Right-click the information in the cell.

The information in the cell is selected and the pop-up menu for changing
font characteristics appears.

If this pop-up menu does not appear, it is because you were in edit mode.
To get the font pop-up menu, click somewhere outside of the edit box
surrounding the information and then right-click.

2 Select an item from the pop-up menu. Choose Properties if you want to
change the font family or if you want to change multiple characteristics
at once.

Note that you can also select String from the pop-up menu, which allows
you to edit the text string.
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3 Select the new font characteristic(s) for that cell. For example, for Font
Size, select the new size from its pop-up menu.

Note that changing the font characteristics for the %<blockdiagram> entry
is not relevant and does nothing.
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Saving and Opening Print Frames

In this section...

“Saving a Print Frame” on page 23-22

“Opening a Print Frame” on page 23-22

Saving a Print Frame
You must save a print frame to print a block diagram with that print frame.
To save a print frame:

1 Select Save As from the File menu.

The Save As dialog box appears.

2 Type a name for the print frame in the File name edit box.

3 Click the Save button.

The print frame is saved as a figure file, which has the .fig extension. A
figure file is a binary file used for print frames.

Opening a Print Frame
You can open a saved print frame in the PrintFrame Editor, make changes
to it, and save it under the same or a different name. To open an existing
print frame:

1 Select Open from the File menu.

2 Select the print frame you want to open.

All print frames are figure files.

Alternatively, you can open a print frame from the MATLAB® prompt. Type
frameedit filename and the PrintFrame Editor opens with the print frame
file you specified.
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Printing Block Diagrams with Print Frames
When using the Simulink® software or Stateflow® product, you can print a
block diagram with the print frame.

1 Select Print from the File menu.

The Print Model dialog box appears. The dialog box shown below is for
computers running the Microsoft® Windows® operating system. The dialog
box for your platform might look slightly different.
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In the Print Model dialog box:

1 Select the Frame check box.
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2 Supply the filename for the print frame you want to use. Either type the
path and filename directly in the edit box, or click the ... button and select
the print frame file you saved using the PrintFrame Editor.

Note that the default print frame filename, sldefaultframe.fig, appears
in the filename edit box until you specify a different filename.

3 Specify other printing options in the Print dialog box. For example, for
computers running the Microsoft Windows operating system, specify
options under Properties.

Note Specify the paper orientation for printing the way you normally
would. The paper orientation you specified in the PrintFrame Editor’s
PrintFrame Page Setup dialog box is not the same as the paper
orientation used for printing. For example, assume you specified a
landscape-oriented print frame in the PrintFrame Editor. If you want the
printed page to have a landscape orientation, you must specify that at
the time of printing. For example, for computers running the Microsoft
Windows operating system, click the Properties button in the Print
Model dialog box, and for Page Setup, specify the Orientation as
Landscape.

4 Click OK in the Print dialog box.

The block diagram prints with the print frame you specified.

See also the example, “Print the Block Diagram with the Print Frame” on
page 23-30.
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Example

In this section...

“About the Example” on page 23-26

“Create the Print Frame” on page 23-27

“Print the Block Diagram with the Print Frame” on page 23-30

About the Example
This example uses a Simulink® software demo engine model. It involves two
parts — first creating a print frame, and then printing the engine model with
that print frame. The result looks similar to the figure below.
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Create the Print Frame

1 At the MATLAB® prompt, type frameedit.

The PrintFrame Editor window appears.

2 Set up the page:

a Select Page Setup from the File menu.
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The PrintFrame Page Setup dialog box opens.

b For Paper Type, select a size that is appropriate for your printer.

c For this example, keep the Paper Orientation as Landscape and the
Margins set to 0.75 inches.

d Click the OK button.

The dialog box closes. The print frame you see in the PrintFrame
Editor window will reflect your changes.

3 Add the information entries %<blockdiagram>, %<fullsystem>, and
%<page>.

a Click within the upper row in the print frame.

b From the bottom right list box, select Block Diagram, then click Add.
The %<blockdiagram> appears in the row.

c Click within the lower left cell in the print frame.

d From the bottom right list box, select Full System Name, then click
Add. The %<fullsystem> appears in the cell.

e Click within the lower right cell in the print frame.

f From the bottom right list box, select Page Number, then click Add.
The %<page> appears in the cell.

4 Add a row at the top.

a Click within the upper row in the print frame, the row that contains
the %<blockdiagram> entry.

Be sure that handles appear on all four corners of the row.

b Click the add row button.

A new row appears at the top, above the row you selected.

5 Make the new row shorter.

a Click on the horizontal line that separates the top row (the row you just
added) from the row beneath it (the row containing the %<blockdiagram>
entry).
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Be sure that only two handles appear, one at each end of the line. If you
see four handles in either row, click directly on the horizontal line and
the other two handles disappear.

b Drag the line up until the top row is about the same height as the row
at the bottom of the print frame.

6 Add information in the top row.

a Click anywhere within the top row (the row you just added).

b Select Text from the information list box.

c Click the Add button.

An edit box appears in the cell.

d Type Engine Division, press the Enter key to advance the cursor to
the next line, and then type Advanced Design Group.

Click the zoom in button if you need to magnify the entry.

e Click outside of the edit box to end editing mode.

7 In the left cell of the bottom row, align the information on the left.

a Click the zoom out button if you need to.

b Click within the left cell of the bottom row to select it.

c Click the left alignment button.

The entry moves to the left.

8 Make the information in the top row appear in italics.

a Right-click on the entry in the row.

b Select Font Style from the pop-up menu.

If the pop-up menu for font properties does not appear, you are in
editing mode. Click outside of the edit box to end editing mode and then
right-click the text to access the pop-up menu.

c From the Font Style pop-up menu, select italic.
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The entry in the cell appears in italics and the information will appear in
italics when the print frame is printed with a Simulink diagram.

9 Add the total number of pages to the right cell in the bottom row.

a Click within the cell to select it.

b Add the total pages entry: select Total Pages from the information
list box and click the Add button.

The %<npages> entry appears after the %<page> entry. If you need to,
zoom in to see the entry.

c Add the text of after the page number entry. Click the cursor after
the %<page> entry, and then type of (type a space before and after the
word).

The information in the cell now is: %<page> of %<npages>.

10 Save the print frame: select Save As from the File menu. In the Save
Frame dialog box, type engdivl for the File name. Click the Save button.

The print frame is saved as a figure file.

11 You can close the PrintFrame Editor window by clicking the close box.

Print the Block Diagram with the Print Frame

1 To view the Simulink engine model, type sldemo_engine at the MATLAB
prompt.

The engine model appears in a Simulink window.

2 Double-click the Throttle & Manifold block.

The Throttle & Manifold subsystem opens in a new window.
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3 In the Throttle & Manifold window, select Print from the File menu.

The Print Model dialog box opens with the default settings as shown here.

4 In the Print Model dialog box, set the page orientation to landscape.
This example uses the techniques for computers running the Microsoft®
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Windows® operating system. Use the methods for your own platform to
change the page orientation for printing.

a Click the Properties button.

The Document Properties dialog box opens.

b Go to the Page Setup tab.

c For Orientation, select Landscape.

d Click OK.

The Document Properties dialog box closes.

5 In the Print Model dialog box, under Options, select Current system
and below.

This specifies that the Throttle & Manifold block diagram and its
subsystems will print.

6 Check the Frame check box.

7 Specify the print frame to use.

a Click the ... button.

b In the Frame File Selection dialog box, find the filename of the print
frame you just created, engdivl.fig, and select it.

c Click the Open button.

The path and filename appear in the Frame edit box.

8 Click OK in the Print Model dialog box.

The Throttle & Manifold block diagram prints with the print frame; it
should look similar to the figure shown at the start of this example.

In addition, the Throttle block diagram and the Intake Manifold block
diagram print because you specified printing of the current system and its
subsystems. These block diagrams also print with the engdivl print frame,
but note that their variable information in the print frame is different.
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Glossary

library
A collection of blocks intended to serve as prototypes for creating
instances of block types in models. Simulink® software uses a special
type of model file to store block libraries.

library block
A block in a library that serves as a prototype for creating instances of
the block’s type in models. You create an instance of the block type by
copying the library block into a model.

library link
A connection between a library reference block and a library block that
allows Simulink to update the reference block when the library block
changes. Simulink creates the link when you create the reference block.

parameterized link
A link to a library block from a reference block whose parameter values
differ from those of the library block. Parameterized links reference
block parameter values to differ from library block parameter values
without losing the advantage of automatic updating of reference blocks
when library blocks change.

reference block
An instance of a block type in a model linked to a library block that
serves as the block type’s prototype.

sublibrary
A block library included in another library.
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Examples

Use this list to find examples in the documentation.



A Examples

Simulink Basics
“Updating a Block Diagram” on page 1-13
“Positioning and Sizing a Diagram” on page 1-23
“Print Command” on page 1-28
“Adding Items to Model Editor Menus” on page 20-2
“Disabling and Hiding Model Editor Menu Items” on page 20-13
“Disabling and Hiding Dialog Box Controls” on page 20-15

How Simulink Works
“Algebraic Loops” on page 2-31
“Multirate Systems” on page 2-44
“Sample Time Propagation” on page 2-47
“Constant Sample Time” on page 2-49

Creating a Model
“Creating a Model Template” on page 3-3
“Creating Annotations Programmatically” on page 3-33
“Creating a Subsystem by Grouping Existing Blocks” on page 3-36
“Data Store Examples” on page 3-77
“How to Discretize Blocks from the Simulink® Model” on page 3-123
“Enabled Subsystems” on page 4-4
“Triggered Subsystems” on page 4-12
“Triggered and Enabled Subsystems” on page 4-16
“Conditional Execution Behavior” on page 4-22

Working with Blocks
“Making Backward-Compatible Changes to Libraries” on page 7-22
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Working with Lookup Tables

Working with Lookup Tables
“Example of a Logarithm Lookup Table” on page 11-34

Creating Block Masks
“Masked Subsystem Example” on page 17-6
“Setting Masked Block Dialog Parameters” on page 17-41
“Self-Modifying Mask Example” on page 17-49

Creating Custom Simulink Blocks
“Tutorial: Creating a Custom Block” on page 21-18
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IndexSymbols and Numerics
% 23-16
< > 23-16

A
Abs block

zero crossings 2-28
absolute tolerance

definition 14-19
simulation accuracy 14-73

accelbuild command
building Accelerator MEX-file 19-28

Acceleration
code regeneration 19-7
compilation overhead 19-24
debugger advantages 19-31
decision tree 19-11
designing for 19-13
how to run debugger with 19-31
inhibiting 19-16
numerical precision 19-14

verses normal mode 19-14
trade-offs 19-9

Accelerator
description 19-2
determining why it rebuilds 19-7
how it works 19-3
making run time changes 19-21
Simulink blocks whose performance is not

improved by 19-13
switching back to normal mode 19-32
using with Simulink debugger 19-31

Accelerator and Rapid Accelerator
choosing between 19-9
comparing 19-9

Accelerator mode
keywords 19-17

Accelerators
customizing build process 19-19

interacting programmatically 19-28
running 19-20

Action Port block
in subsystem 3-43

activating
configuration references 14-59

Adams-Bashforth-Moulton PECE solver 14-18
Add button 23-14
adding

cells 23-12
rows 23-11
text to cells 23-14
variable information to cells 23-14

algebraic loops
direct feedthrough blocks 2-31
highlighting 18-41
identifying blocks in 18-38
simulation speed 14-72

aligning
information in cells 23-18

aligning blocks 6-6
annotations

changing font 3-25
creating 3-24
definition 3-24
deleting 3-25
editing 3-24
moving 3-24
using symbols and Greek letters in 3-31
using TeX formatting commands in 3-31
using to document models 12-7

Apply button on Mask Editor 17-19
Assignment block

and For Iterator block 3-49
Assignment mask parameter 17-26
atomic subsystem 2-12
attaching

configuration references 14-52
to additional models 14-57

attributes format string 3-21
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AttributesFormatString block parameter 6-26
Autoscale icon drawing coordinates 17-23
avoiding

mixed composite signals 9-43

B
Backlash block

zero crossings 2-28
backpropagating sample time 2-48
Backspace key

deleting annotations 3-25
deleting blocks 6-7
deleting labels 8-9

Band-Limited White Noise block
simulation speed 14-72

block
library Glossary-1
reference Glossary-1
simulation terminated or suspended 14-6

block callback parameters 3-55
block callbacks

adding custom functionality 21-37
Block data tips 6-2
block descriptions

creating 17-10
block diagram

updating 1-13
block diagram entry 23-15
block diagrams

panning 1-9
printing 1-21
zooming 1-9

block libraries
adding to Library Browser 7-30
creating 7-20
locking 7-22
modifying 7-21

searching 7-17
block library

definition Glossary-1
block names

changing location 6-31
copied blocks 6-5
editing 6-31
flipping location 6-31
generated for copied blocks 6-5
hiding and showing 6-32
location 6-30
rules 6-30

block parameters
about 6-8
displaying beneath a block 6-39
modifying during simulation 14-9
scalar expansion 8-24
setting 6-9

block priorities
assigning 6-39

Block Properties dialog box 6-20
block type of masked block 17-36
blocks

aligning 6-6
assigning priorities 6-39
associating user data with 10-55
autoconnecting 3-13
bus-capable 9-8
callback routines 3-52
changing font 6-31
changing font names 6-31
changing location of names 6-31
checking connections 2-15
connecting automatically 3-13
connecting manually 3-16
copying from Library Browser 7-19
copying into models 6-4
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custom, Simulink 21-2
categories 21-3
code generation requirements 21-9
designing 21-18
examples 21-44
incorporating legacy code 21-6
modeling requirements 21-7
simulation requirements 21-9
tutorial 21-18
using block callbacks 21-37
using MATLAB functions 21-3
using S-functions 21-4
using Subsystems 21-4

deleting 6-7
disconnecting 3-21
displaying sorted order on 6-38
drop shadows 6-30
duplicating 6-7
grouping to create subsystem 3-36
hiding block names 6-32
input ports with direct feedthrough 2-31
moving between windows 6-5
moving in a model 6-5
names

editing 6-31
orientation 6-28
resizing 6-29
reversing signal flow through 12-8
showing block names 6-32
signal flow through 6-28
under mask 17-19
updating 2-15

<>blocks 6-30
See also block names

Bogacki-Shampine formula 14-18
borders

creating 23-11
important note about 23-11

bounding box
grouping blocks for subsystem 3-36

selecting objects 3-5
branch lines 3-17
Break Library Link menu item 7-9
breaking links to library block 7-9
breakpoints

setting 18-27
setting at end of block 18-30
setting at timesteps 18-31
setting on nonfinite values 18-31
setting on step-size-limiting steps 18-31
setting on zero crossings 18-31

Browser 13-28
building models

tips 12-6
Bus Editor

opening 9-11
bus objects

creating
with the API 9-29
with the Bus Editor 9-14

bus signals
created by Mux blocks 9-38
used as vectors 9-39

Bus to Vector block
backward compatibility 9-43

bus-capable blocks 9-8
buses 9-33

connecting to inports 9-33
intermixing with muxes 9-37
nesting 9-7
using 9-5

busses used as muxes
correcting 9-42

C
callback routines 3-52
callback routines, referencing mask parameters

in 3-55
callback tracing 3-52
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Cancel button on Mask Editor 17-19
canvas, editor 1-8
cells

adding 23-12
adding text to 23-15
adding variable information to 23-15
changing information in 23-18
deleting 23-12
resizing 23-12
selecting 23-11
splitting 23-12

center alignment button 23-18
changing

configuration references 14-58
fonts 23-20
information in cells 23-18
signal labels font 8-9
values using configuration references 14-60

characters, special 23-15
Clear menu item 6-7
Clipboard block callback parameter 3-55
Clock block

example 16-3
CloseFcn block callback parameter 3-56
CloseFcn model callback parameter 3-53
closing PrintFrame Editor 23-7
color of text 23-20
colors for sample times 2-48
command line debugger for Embedded MATLAB

Function block 22-31
commands

undoing 1-8
Compare to Zero

zero-crossings 2-28
Compiled Size property for Embedded MATLAB

Function block variables 22-71
composite signals 9-2

mixed
and Model Advisor 9-40
avoiding 9-43
diagnostics for 9-38

conditional execution behavior 4-22
conditionally executed subsystem 2-11
conditionally executed subsystems 4-2
configurable subsystem 3-117
Configuration Parameters dialog box

increasing Accelerator performance 19-22
configuration references

activating 14-59
and building models 14-63
and generating code 14-63
attaching 14-52

to additional models 14-57
changing 14-58
changing values with 14-60
creating 14-52
limitations 14-63
obtaining handles 14-56
obtaining values with 14-60

configuration sets
copying 14-51
creating 14-51
freestanding 14-47
reading from an M-file 14-51
referencing 14-47
using 14-37

connecting
buses to inports 9-33
buses to root-level inports 9-33

connecting blocks 3-16
ConnectionCallback

port callback parameters 3-59
constant sample time 2-49
context menu 1-8
continuous sample time 2-41
control flow diagrams

do-while 3-47
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for 3-48
if-else 3-42
switch 3-44
while 3-45

control flow subsystem 4-2
control input 4-2
control signal 4-2 8-15
Control System Toolbox

linearization 16-5
Copy menu item 6-4
CopyFcn block callback parameter 3-56
copying

blocks 6-4
configuration sets 14-51
signal labels 8-8

copying information among cells 23-19
correcting

buses used as muxes 9-42
Create Mask menu item 17-19
Created model parameter 3-108
creating

bus objects
with the API 9-29
with the Bus Editor 9-14

configuration references 14-52
configuration sets 14-51
custom Simulink blocks 21-2
freestanding configuration sets 14-50

creating print frames 23-7
Creator model parameter 3-108
custom blocks

creating 21-2
Customizing Accelerator Build

AccelVerboseBuild 19-30
SimCompilerOptimization 19-30

Cut menu item 6-5

D
dash-dot lines 8-15

data range checking
Embedded MATLAB Function blocks 22-33

data store, global 3-75
data types

displaying 10-24
propagation definition 10-24
specifying 10-6

data types of Embedded MATLAB Function
variables 22-66

data, adding to Embedded MATLAB Function
blocks 22-44

date entry 23-15
Dead Zone block

zero crossings 2-28
debugger

running incrementally 18-19
setting breakpoints 18-27
setting breakpoints at time steps 18-31
setting breakpoints at zero crossings 18-31
setting breakpoints on nonfinite values 18-31
setting breakpoints on step-size-limiting

steps 18-31
skipping breakpoints 18-24
starting 18-11
stepping by time steps 18-22

debugging
breakpoints in Embedded MATLAB Function

block function 22-23
display variable values in Embedded

MATLAB Function block function 22-31
displaying Embedded MATLAB Function

block variables in MATLAB 22-31
Embedded MATLAB Function block

example 22-22
Embedded MATLAB Function block

function 22-21 to 22-22
operations for debugging Embedded

MATLAB functions 22-34
stepping through Embedded MATLAB

Function block function 22-24
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debugging initialization commands 17-52
decimation factor

saving simulation output 14-34
default print frame 23-6
Delete key

deleting blocks 6-7
deleting signal labels 8-9

DeleteChildFcn block callback parameter 3-56
DeleteFcn block callback parameter 3-56
deleting

cells 23-12
rows 23-11

dependency analysis 13-31
best practices 13-37
comparing manifests 13-45
editing manifests 13-42
exporting manifests 13-48
file manifests 13-32
generating manifests 13-38
viewing dependencies 13-49

Derivative block
linearization 16-8

Description model parameter 3-109
description of masked blocks 17-37
Description property

Embedded MATLAB Function blocks 22-44
designing

custom Simulink blocks 21-18
designing print frames 23-8
DestroyFcn block callback parameter 3-56
diagnosing simulation errors 14-65
diagnostics

for mixed composite signals 9-38
diagonal line segments 3-18
diagonal lines 3-17
dialog boxes

creating for masked blocks 17-40
direct feedthrough blocks 2-31
direct-feedthrough ports 6-37
disabled subsystem

output 4-5
disconnecting blocks 3-21
discrete blocks

in enabled subsystem 4-7
in triggered systems 4-15

discrete sample time 2-41
discrete states

initializing 8-62
discrete-time systems 2-40
discretization methods 3-115
discretizing a Simulink model 3-111
dlinmod function

extracting linear models 16-4
do-while control flow diagram 3-47
Docking Scope Viewer 15-12
Document Link property

Embedded MATLAB Function blocks 22-44
Documentation pane of Mask Editor 17-19
Dormand-Prince

pair 14-17
drawing coordinates

Autoscale 17-23
normalized 17-23
Pixel 17-23

drop shadows 6-30
duplicating blocks 6-7

E
editing

Embedded MATLAB Function block function
code 22-36

mode 23-14
text in cells 23-18

editing look-up tables 11-25
editor 1-6

canvas 1-8
toolbar 1-7

either trigger event 4-12
Embedded MATLAB
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comparing to M-file S-functions 21-5
Embedded MATLAB blocks

and Embedded MATLAB Language 22-3
description 22-3

Embedded MATLAB Editor
description 22-9

Embedded MATLAB Function block
resolving signal objects 22-75

Embedded MATLAB Function blocks
adding data using the Ports and Data

Manager 22-44
adding frame-based data 22-92
adding function call outputs using the Ports

and Data Manager 22-57
adding input triggers using the Ports and

Data Manager 22-54
and embedded applications 22-5
and standalone executables 22-5
breakpoints in function 22-23
builtin data types 22-66
calling MATLAB functions 22-5 22-12
creating model with 22-7
data range checking 22-33
debugging 22-22
debugging example 22-22
debugging function for 22-21
debugging operations 22-34
description 22-3
Description property 22-44
diagnostic errors 22-14
display variable value 22-31
displaying variable values in MATLAB 22-31
Document Link property 22-44
Embedded MATLAB Editor 22-9 22-36
Embedded MATLAB runtime library of

functions 22-5
example containing structures 22-78
example model with 22-7
example program 22-9
function library 22-12

implicitly declared variables 22-12
inherited data types and sizes 22-6
inheriting variable size 22-71
Lock Editor property 22-40
Model Explorer 22-17
Name property 22-39
names and ports 22-7
parameter arguments 22-74
Ports and Data Manager 22-37
Saturate on integer overflow property 22-40
setting properties 22-38
simulating function 22-22
Simulink input signal properties 22-42
sizing variables 22-71
sizing variables by expression 22-73
stepping through function 22-24
subfunctions 22-5 22-13
typing variables 22-61
typing with other variables 22-66
Update method property 22-39
variable type by inheritance 22-64
variables for 22-17
why use them? 22-5
working with frame-based signals 22-91
working with structures and bus

signals 22-77
Embedded MATLAB Language 22-3
Embedded MATLAB runtime library

functions 22-5
Enable block

creating enabled subsystems 4-5
outputting enable signal 4-6
states when enabling 4-6

enabled subsystems 4-4
initializing output of 8-66
setting states 4-6

ending Simulink session 1-37
enlarging display 23-6
entries for information 23-16
error checking
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Embedded MATLAB Function blocks 22-14
error tolerance 14-19

simulation accuracy 14-72
simulation speed 14-71

ErrorFcn block callback parameter 3-57
eval command

masked block help 17-37
example using print frames 23-26
examples

Clock block 16-3
continuous system 12-8
converting Celsius to Fahrenheit 12-15
equilibrium point determination 16-10
linearization 16-4
masking 17-6
multirate discrete model 2-44
Outport block 16-2
return variables 16-2
structures in an Embedded MATLAB

Function block 22-78
To Workspace block 16-3
Transfer Function block 12-9
working with frame-based signals in

Embedded MATLAB Function
blocks 22-93

execution context
defined 4-24
displaying 4-25
propagating 4-24

Exit MATLAB menu item 1-37

F
falling trigger event 4-12
Fcn block

simulation speed 14-71
figure file 23-6

saving 23-22
file

.fig 23-22

opening 23-22
saving 23-22

file name
maximum length 1-15

filename entry 23-15
files

writing to 14-6
Final State check box 14-32
fixed in minor time step 2-42
fixed-point data 10-4

properties 22-67
properties in Simulink model 10-18

fixed-step solvers
definition 2-18

Flip Block menu item 6-28
Flip Name menu item 6-31
floating Display block 14-9
floating Scope block 14-9
font

annotations 3-25
block 6-31
block names 6-31
signal labels 8-9
special characters 23-15
symbols 23-15

Font menu item
changing block name font 6-31
changing the font of a signal label 8-9

font size, setting for Model Explorer 13-21
font size, setting for Simulink dialog boxes 13-21
fonts, changing 23-20
for control flow diagram 3-48
For Iterator block

and Assignment block 3-49
in subsystem 3-48
output iteration number 3-49
specifying number of iterations 3-49

frame-based signals
adding frame-based data to Embedded

MATLAB Function blocks 22-92
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examples of use in Embedded MATLAB
Function blocks 22-93

using in Embedded MATLAB Function
blocks 22-91

frameedit
opening print frame 23-22
starting 23-6

frames 23-2
freestanding configuration sets 14-47

creating 14-50
From Workspace block

zero crossings 2-28
full filename entry 23-15
full system name entry 23-15
function call outputs, adding to Embedded

MATLAB Function blocks 22-57
functions

Embedded MATLAB Function block runtime
library 22-12

fundamental sample time 14-12

G
Gain block

algebraic loops 2-31
Generator

attaching 15-21
performing common tasks 15-21
removing 15-21

get_param command
checking simulation status 14-75

global data store 3-75
Go To Library Link menu item 7-5
Greek letters 23-15

using in annotations 3-31
grouping blocks 3-35

H
handles on selected object 3-5

held output of enabled subsystem 4-5
held states of enabled subsystem 4-6
Help button on Mask Editor 17-19
help text for masked blocks 17-10
Hide Name menu item

hiding block names 6-32
hiding port labels 3-39

Hide Port Labels menu item 3-39
hiding block names 6-32
hierarchy of model

advantage of subsystems 12-7
replacing virtual subsystems 2-15

Hit Crossing block
notification of zero crossings 2-29
zero crossings

and Disable zero crossing detection
option 2-28

hybrid systems
integrating 2-52

I
Icon pane of Mask Editor 17-18
icons

creating for masked blocks 17-20
If block

connecting outputs 3-43
data input ports 3-43
data output ports 3-43
zero crossings

and Disable zero crossing detection
option 2-28

if-else control flow diagram 3-42
important note about print frames 23-9
information

adding to cells 23-14
copying among cells 23-19
in print frames 23-8
mandatory 23-15
multiple entries in a cell 23-16
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removing 23-19
information list box 23-14
inherited sample time 2-42
inheriting Embedded MATLAB Function block

variable size 22-71
inheriting Embedded MATLAB Function

variable types 22-64
InitFcn block callback parameter 3-57
InitFcn model callback parameter 3-54
initial conditions

specifying 14-31
Initial State check box 14-33
initial states

loading 14-33
initial step size

simulation accuracy 14-72
initial values

tuning 8-64
initialization commands 17-33

debugging 17-52
Initialization pane of Mask Editor 17-18
inlining S-functions using the TLC

and Accelerator performance 19-14
Inport block

in subsystem 3-36
linearization 16-5
supplying input to model 14-21

inports
connecting to buses 9-33
root-level

connecting to buses 9-33
input triggers, adding to Embedded MATLAB

Function blocks 22-54
inputs

loading from a workspace 14-21
mixing vector and scalar 8-24
scalar expansion 8-24

integer overflow and underflow

and Real-Time Workshop targets in
Embedded MATLAB Function
blocks 22-42

and simulation targets in Embedded
MATLAB Function blocks 22-41

in Embedded MATLAB Function
blocks 22-40

Integrator block
algebraic loops 2-31
example 12-8
sample time colors 2-48
simulation speed 14-72
zero crossings 2-28

intermixing
muxes, and buses 9-37

invalid loops, avoiding 12-2
invalid loops, detecting 12-3
invariant constants 2-49

J
Jacobian matrices 14-19

K
keyboard actions summary 1-33
keyboard command 17-52
Keywords

acceleration 19-17

L
labeling signals 8-7
labeling subsystem ports 3-39
LastModificationDate model parameter 3-109
LastModifiedBy model parameter 3-109
left alignment button 23-18
libinfo command 7-5
libraries. See block libraries
library block

definition Glossary-1
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library blocks
breaking links to 7-9
finding 7-5
getting information about 7-8

Library Browser
adding libraries to 7-30
copying blocks from 7-19

library link
definition Glossary-1

library links
disabling 7-7
displaying 7-6
propagating changes to 7-7
self-modifying 7-5
showing in Model Browser 13-30
status of 7-8
unresolved 7-10

line segments 3-18
diagonal 3-18
moving 3-18

line vertices
moving 3-19

linear models
extracting

example 16-4
linearization 16-4
lines

branch 3-17
connecting blocks 3-13
diagonal 3-17
dragging 23-12
moving 6-5
selecting 23-11
signals carried on 14-9

links
breaking 7-9

LinkStatus block parameter 7-8
linmod function

example 16-4
LoadFcn block callback parameter 3-57

loading from a workspace 14-21
loading initial states 14-33
location of block names 6-30
Lock Editor property

Embedded MATLAB Function blocks 22-40
logging signals 8-49
Look Under Mask menu item 17-19
look-up tables, editing 11-25
Lookup Table Editor 11-25
lookup tables

blocks 11-6
components 11-5
data characteristics 11-17
data entry 11-11
definition 11-2
estimation 11-21
extrapolation 11-22
interpolation 11-21
rounding 11-23
selection 11-8
terminology 11-37

loops, algebraic. See algebraic loops
loops, avoiding invalid 12-2
loops, detecting invalid 12-3

M
M-file S-functions

customized saturation block example 21-21
simulation speed 14-71

magnifying display 23-6
manifest 13-32
margins 23-9
Mask Editor 17-17
mask help text 17-10
Mask Subsystem menu item 17-17
mask type

defining 17-10
mask workspace 17-52
masked blocks
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block descriptions 17-10
dialog boxes

creating dynamic 17-40
setting parameters for 17-41

documentation 17-36
help text 17-10
icons

creating 17-11
Icon pane 17-20

initialization commands 17-33
looking under 17-19
parameters

assigning values to 17-26
default values 17-47
mapping 17-7
predefined 17-44
prompts for 17-25
referencing in callbacks 3-55

showing in Model Browser 13-30
type 17-36
unmasking 17-19

masked subsystems
showing in Model Browser 13-30

Math Function block
algebraic loops 2-31

mathematical symbols 23-15
using in annotations 3-31

MATLAB
in Embedded MATLAB Function

blocks 22-12
terminating 1-37

MATLAB Fcn block
simulation speed 14-71

MATLAB functions
calling in Embedded MATLAB Function

block functions 22-5
mdl files 1-15
Memory block

simulation speed 14-71
memory issues 12-7

menus 1-7
context 1-8

MinMax block
zero crossings 2-28

mixed composite signals
and Model Advisor 9-40
avoiding 9-43
diagnostics for 9-38

mixed continuous and discrete systems 2-52
model

editor 1-6
Model Advisor

and mixed composite signals 9-40
Model Browser 13-28

showing library links in 13-30
showing masked subsystems in 13-30

model callback parameters 3-53
model configuration preferences 13-5
model dependencies 13-31

best practices 13-37
comparing manifests 13-45
editing manifests 13-42
exporting manifests 13-48
file manifests 13-32
generating manifests 13-38
viewing 13-49

model dependency viewer 13-49
model discretization

configurable subsystems 3-117
discretizing a model 3-111
overview 3-110
specifying the discretization method 3-115
starting the model discretizer 3-112

Model Explorer
Apply Changes 13-13
Auto Apply/Ignore Dialog Changes 13-13
Dialog pane 13-12
Embedded MATLAB Function blocks 22-17
font size 13-21

model file name, maximum size of 1-15
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model files
mdl file 1-15

model navigation commands 3-38
model parameters for version control 3-108
ModelCloseFcn block callback parameter 3-57
modeling strategies 12-7
models

callback routines 3-52
creating 3-3
creating change histories for 3-107
creating templates 3-3
editing 1-4
navigating 3-38
organizing and documenting 12-7
printing 1-21
properties of 3-99
saving 1-15
selecting entire 3-6
tips for building 12-6
version control properties of 3-108

ModelVersion model parameter 3-109
ModelVersionFormat model parameter 3-109
ModifiedBy model parameter 3-109
ModifiedByFormat model parameter 3-109
ModifiedComment model parameter 3-109
ModifiedDate model parameter 3-109
ModifiedDateFormat model parameter 3-109
ModifiedHistory> model parameter 3-109
Monte Carlo analysis 14-74
mouse actions summary 1-33
MoveFcn block callback parameter 3-57
multiple entries in a cell 23-16
multirate systems

example 2-44
Mux blocks

used to create bus signals 9-38
muxes

correcting busses used as 9-42
intermixing with buses 9-37
using 9-3

N
Name property

Embedded MATLAB Function blocks 22-39
NameChangeFcn block callback parameter 3-57
names

blocks 6-30
copied blocks 6-5

nesting
buses 9-7

New menu item 3-3
nonvirtual buses

compared with virtual 9-30
specifying 9-31

normalized icon drawing coordinates 17-23
number of pages entry 23-15
numerical differentiation formula 14-18
numerical integration 2-16

O
objects

selecting more than one 3-5
selecting one 3-5

obtaining
configuration reference handles 14-56
values using configuration references 14-60

ode113 solver
advantages 14-18
hybrid systems 2-52
Memory block

and simulation speed 14-71
ode15s solver

advantages 14-18
and stiff problems 14-72
hybrid systems 2-52
Memory block

and simulation speed 14-71
unstable simulation results 14-72

ode23 solver 14-18
hybrid systems 2-52
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ode23s solver
advantages 14-18
simulation accuracy 14-72

ode45 solver
hybrid systems 2-52

Open menu item 1-4
OpenFcn block callback parameter

purpose 3-58
opening

print frame file 23-22
PrintFrame Editor 23-6
Subsystem block 3-37
the Bus Editor 9-11

orientation of blocks 6-28
Outport block

example 16-2
in subsystem 3-36
linearization 16-5

output
additional 14-35
between trigger events 4-14
disabled subsystem 4-5
enable signal 4-6
options 14-34
saving to workspace 14-28
smoother 14-34
specifying for simulation 14-35
trajectories

viewing 16-2
trigger signal 4-14
writing to file

when written 14-6
writing to workspace 14-28

when written 14-6
output ports

Enable block 4-6
Trigger block 4-14

P
page number entry 23-15
page setup 23-9
panning block diagrams 1-9
paper orientation and type 23-9
PaperOrientation model parameter 1-23
PaperPosition model parameter 1-23
PaperPositionMode model parameter 1-23
PaperType model parameter 1-23
parameter arguments for Embedded MATLAB

Function blocks 22-74
Parameter values

checking
using get_param 6-12

parameterized link
definition Glossary-1

parameters
block 6-8
setting values of 6-9
tunable

definition 2-9
Parameters pane of Mask Editor 17-18
ParentCloseFcn block callback parameter 3-58
Paste menu item 6-4
performance

comparing Acceleration to Normal
Mode 19-26

Pixel icon drawing coordinates 17-23
ports

block orientation 6-29
labeling in subsystem 3-39

Ports and Data Manager
adding data to Embedded MATLAB Function

blocks 22-44
adding function call outputs to Embedded

MATLAB Function blocks 22-57
adding input triggers to Embedded MATLAB

Function blocks 22-54
Ports and Data Manager, Embedded MATLAB

Function Block 22-37
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PostLoadFcn model callback parameter 3-53
PostSaveFcn block callback parameter 3-58
PostSaveFcn model callback parameter 3-54
PostScript files

printing to 1-28
PreCopyFcn block callback parameter 3-58
PreDeleteFcn block callback parameter 3-58
preferences, model configuration 13-5
PreLoadFcn model callback parameter 3-54
PreSaveFcn block callback parameter 3-59
PreSaveFcn model callback parameter 3-54
print command 1-21
print frames

defined 23-2
designing 23-8
important note about 23-9
process for creating 23-7
size of 23-12

Print menu item 1-21
PrintFrame Editor

closing 23-7
interface for 23-6
starting 23-6
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